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The likelihood ratio test (LRT) is widely used for comparing the relative fit of nested latent variable
models. FollowingWilks’ theorem, theLRT is conducted by comparing theLRT statisticwith its asymptotic
distribution under the restricted model, a χ2 distribution with degrees of freedom equal to the difference in
the number of free parameters between the two nested models under comparison. For models with latent
variables such as factor analysis, structural equation models and random effects models, however, it is
often found that the χ2 approximation does not hold. In this note, we show how the regularity conditions
of Wilks’ theorem may be violated using three examples of models with latent variables. In addition, a
more general theory for LRT is given that provides the correct asymptotic theory for these LRTs. This
general theory was first established in Chernoff (J R Stat Soc Ser B (Methodol) 45:404–413, 1954) and
discussed in both van der Vaart (Asymptotic statistics, Cambridge, Cambridge University Press, 2000) and
Drton (Ann Stat 37:979–1012, 2009), but it does not seem to have received enough attention. We illustrate
this general theory with the three examples.

Key words: Wilks’ theorem, χ2 distribution, latent variable models, random effects models, dimension-
ality, tangent cone.

1. Introduction

1.1. Literature on Likelihood Ratio Test

The likelihood ratio test (LRT) is one of the most popular methods for comparing nested
models. When comparing two nested models that satisfy certain regularity conditions, the p-
value of an LRT is obtained by comparing the LRT statistic with a χ2 distribution with degrees of
freedom equal to the difference in the number of free parameters between the two nested models.
This reference distribution is suggested by the asymptotic theory of LRT that is known as Wilks’
theorem (Wilks 1938).

However, for the statistical inference of models with latent variables (e.g., factor analysis,
item factor analysis for categorical data, structural equation models, random effects models, finite
mixture models), it is often found that the χ2 approximation suggested by Wilks’ theorem does
not hold. There are various published studies showing that the LRT is not valid under certain
violations/conditions (e.g., small sample size, wrong model under the alternative hypothesis,
large number of items, non-normally distributed variables, unique variances equal to zero, lack
of identifiability), leading to over-factoring and over-rejections; see, e.g., Hakstian et al. (1982),
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Liu and Shao (2003), Hayashi et al. (2007), Asparouhov and Muthén (2009), Wu and Estabrook
(2016), Deng et al. (2018), Shi et al. (2018), Yang et al. (2018) and Auerswald and Moshagen
(2019). There is also a significant amount of the literature on the effect of testing at the boundary
of parameter space that arise when testing the significance of variance components in random
effects models as well as in structural equation models (SEM) with linear or nonlinear constraints
(see Stram and Lee 1994, 1995; Dominicus et al. 2006; Savalei and Kolenikov 2008; Davis-Stober
2009; Wu and Neale 2013; Du and Wang 2020).

Theoretical investigations have shown that certain regularity conditions of Wilks’ theorem
are not always satisfied when comparing nested models with latent variables. Takane et al. (2003)
and Hayashi et al. (2007) were among the ones who pointed out that models for which one
needs to select dimensionality (e.g., principal component analysis, latent class, factor models)
have points of irregularity in their parameter space that in some cases invalidate the use of LRT.
Specifically, such issues arise in factor analysis when comparing models with different number of
factors rather than comparing a factor model against the saturated model. The LRT for comparing
a q-factor model against the saturated model does follow a χ2 distribution under mild conditions.
However, for nested models with different number of factors (q-factor model is the correct one
against the one with (q + k) factors), the LRT is likely not χ2-distributed due to violation of
one or more of the regularity conditions. This is in line with the two basic assumptions required
by the asymptotic theory for factor analysis and SEM: the identifiability of the parameter vector
and non-singularity of the information matrix (see Shapiro 1986 and references therein). More
specifically, Hayashi et al. (2007) focus on exploratory factor analysis and on the problem that
arises when the number of factors exceeds the true number of factors that might lead to rank
deficiency and non-identifiability of model parameters. That corresponds to the violations of the
two regularity conditions. Those findings go back to Geweke and Singleton (1980) and Amemiya
and Anderson (1990). More specifically, Geweke and Singleton (1980) studied the behavior of
the LRT in small samples and concluded that when the regularity conditions fromWilks’ theorem
are not satisfied the asymptotic theory seems to be misleading in all sample sizes considered.

1.2. Our Contributions

The contribution of this note is twofold. First, we provide a discussion about situations under
whichWilks’ theorem forLRTmay fail.Via three examples,weprovide a relativelymore complete
picture about this issue in models with latent variables. Second, we introduce a unified asymptotic
theory for LRT that covers Wilks’ theorem as a special case and provides the correct asymptotic
reference distribution for LRT when Wilks’ theorem fails. This unified theory does not seem to
have received enough attention in psychometrics, even though it has been established in statistics
for long (Chernoff 1954; van der Vaart 2000; Drton 2009). In this note, we provide a tutorial
on this theory, by presenting the theorems in a more accessible way and providing illustrative
examples.

1.3. Examples

To further illustrate the issue with the classical theory for LRT, we provide three examples.
These examples suggest that the χ2 approximation can perform poorly and give p-values that can
be either more conservative or more liberal.

Example 1. (Exploratory factor analysis) Consider a dimensionality test in exploratory factor
analysis (EFA). For ease of exposition, we consider two hypothesis testing problems: (a) testing a
one-factor model against a two-factor model and (b) testing a one-factor model against a saturated
multivariate normal model with an unrestricted covariance matrix. Similar examples have been
considered in Hayashi et al. (2007) where similar phenomena have been studied.
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1(a). Suppose that we have J mean-centered continuous indicators, X = (X1, ..., X J )
�, which

follow a J -variate normal distribution N (0,�). The one-factor model parameterizes � as

� = a1a�
1 + �,

where a1 = (a11, ..., aJ1)� contains the loading parameters and� = diag(δ1, ..., δJ ) is diagonal
matrix with a diagonal entries δ1, ..., δJ . Here, � is the covariance matrix for the unique factors.
Similarly, the two-factor model parameterizes � as

� = a1a�
1 + a2a�

2 + �,

where a2 = (a12, ..., aJ2)� contains the loading parameters for the second factor and we set
a12 = 0 to ensure model identifiability. Obviously, the one-factor model is nested within the
two-factor model. The comparison between these two models is equivalent to test

H0 : a2 = 0 versus Ha : a2 �= 0.

If Wilks’ theorem holds, then under H0 the LRT statistic should asymptotically follow a χ2

distribution with J − 1 degrees of freedom.
We now provide a simulated example. Data are generated from a one-factor model, with

J = 6 indicators and N = 5000 observations. The true parameter values are given in Table 1.
We generate 5000 independent datasets. For each dataset, we compute the LRT for comparing the
one- and two-factor models. Results are presented in panel (a) of Fig. 1. The black solid line shows
the empirical cumulative distribution function (CDF) of the LRT statistic, and the red dashed line
shows the CDF of the χ2 distribution suggested by Wilks’ Theorem. A substantial discrepancy
can be observed between the two CDFs. Specifically, the χ2 CDF tends to stochastically dominate
the empirical CDF, implying that p-values based on this χ2 distribution tend to be more liberal.
In fact, if we reject H0 at 5% significance level based on these p-values, the actual type I error is
10.8%. These results suggest the failure of Wilks’ theorem in this example.
1(b). When testing the one-factor model against the saturated model, the LRT statistic is
asymptotically χ2 if Wilks’ theorem holds. The degrees of freedom of the χ2 distribution are
J (J + 1)/2 − 2J , where J (J + 1)/2 is the number of free parameters in an unrestricted covari-
ance matrix � and 2J is the number of parameters in the one-factor model. In panel (b) of Fig. 1,
the black solid line shows the empirical CDF of the LRT statistic based on 5000 independent
simulations, and the red dashed line shows the CDF of the χ2 distribution with 9 degrees of
freedom. As we can see, the two curves almost overlap with each other, suggesting that Wilks’
theorem holds here.

Table 1.
Values of the true parameters for the simulations in Example 1.

a11 a21 a31 a41 a51 a61

1.17 1.87 1.42 1.71 1.23 1.78

δ1 δ2 δ3 δ4 δ5 δ6

1.38 0.85 1.46 0.78 1.24 0.60
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Figure 1.
a Results of Example 1(a). The black solid line shows the empirical CDF of the LRT statistic, based on 5000 independent
simulations. The red dashed line shows the CDF of the χ2 distribution with 5 degrees of freedom as suggested by
Wilks’ theorem. The blue dotted line shows the CDF of the reference distribution suggested by Theorem 2. b Results of
Example 1(b). The black solid line shows the empirical CDF of the LRT statistic, and the red dashed line shows the CDF
of the χ2 distribution with 9 degrees of freedom as suggested by Wilks’ theorem

Example 2. (Exploratory item factor analysis)We further give an example of exploratory item
factor analysis (IFA) for binary data, in which similar phenomena as those in Example 1 are
observed. Again, we consider two hypothesis testing problems: (a) testing a one-factor model
against a two-factor model and (b) testing a one-factor model against a saturated multinomial
model for a binary random vector.
2(a). Suppose that we have a J -dimensional response vector, X = (X1, ..., X J )

�, where all the
entries are binary-valued, i.e., X j ∈ {0, 1}. It follows a categorical distribution, satisfying

P(X = x) = πx, x ∈ {0, 1}J ,

where πx ≥ 0 and
∑

x∈{0,1}J πx = 1.
The exploratory two-factor IFA model parameterizes πx by

πx =
∫ ∫ J∏

j=1

exp(x j (d j + a j1ξ1 + a j2ξ2))

1 + exp(d j + a j1ξ1 + a j2ξ2)
φ(ξ1)φ(ξ2)dξ1dξ2,

where φ(·) is the probability density function of a standard normal distribution. This model is also
known as a multidimensional two-parameter logistic (M2PL) model (Reckase 2009). Here, a jks
are known as the discrimination parameters and d j s are known as the easiness parameters. We
denote a1 = (a11, ..., aJ1)� and a2 = (a12, ..., aJ2)�. For model identifiability, we set a12 = 0.
When a j2 = 0, j = 2, ..., J , then the two-factor model degenerates to the one-factor model.
Similar to Example 1(a), if Wilks’ theorem holds, the LRT statistic should asymptotically follow
a χ2 distribution with J − 1 degrees of freedom.

Simulation results suggest the failure of this χ2 approximation. In Fig. 2, we provide plots
similar to those in Fig. 1, based on 5000 datasets simulated from a one-factor IFA model with
sample size N = 5000 and J = 6. The true parameters of this IFA model are given in Table 2.
The result is shown in panel (a) of Fig. 2, where a similar pattern is observed as that in panel (a)
of Fig. 1 for Example 1(a).
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Table 2.
Values of the true parameters for the simulations in Example 2.

d1 d2 d3 d4 d5 d6

−0.23 −0.12 0.07 0.31 −0.29 0.19

a11 a21 a31 a41 a51 a61

0.83 1.22 0.96 0.91 1.02 1.25
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Figure 2.
a Results of Example 2(a). The black solid line shows the empirical CDF of the LRT statistic, based on 5000 independent
simulations. The red dashed line shows the CDF of the χ2 distribution with 5 degrees of freedom as suggested by
Wilks’ theorem. The blue dotted line shows the CDF of the reference distribution suggested by Theorem 2. b Results of
Example 2(b). The black solid line shows the empirical CDF of the LRT statistic, and the red dashed line shows the CDF
of the χ2 distribution with 51 degrees of freedom as suggested by Wilks’ theorem

2(b). When testing the one-factor IFA model against the saturated model, the LRT statistic is
asymptotically χ2 if Wilks’ theorem holds, for which the degree of freedom is 2J −1−2J . Here,
2J −1 is the number of free parameters in the saturatedmodel, and 2J is the number of parameters
in the one-factor IFAmodel. The result is given in panel (b) of Fig. 2. Similar to Example 1(b), the
empirical CDF and the CDF implied by Wilks’ theorem are very close to each other, suggesting
that Wilks’ theorem holds here.

Example 3. (Random effects model) Our third example considers a random intercept model.
Consider two-level data with individuals at level 1 nested within groups at level 2. Let Xi j be data
from the j th individual from the i th group, where i = 1, ..., N and j = 1, ..., J . For simplicity,
we assume all the groups have the same number of individuals. Assume the following random
effects model,

Xi j = β0 + μi + εi j ,

where β0 is the overall mean across all the groups, μi ∼ N (0, σ 2
1 ) characterizes the difference

between the mean for group i and the overall mean, and εi j ∼ N (0, σ 2
2 ) is the individual level

residual.
To test for between-group variability under this model is equivalent to test

H0 : σ 2
1 = 0 against Ha : σ 2

1 > 0.
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Figure 3.
The black solid line shows the empirical CDF of the LRT statistic, based on 5000 independent simulations. The red dashed
line shows the CDF of the χ2 distribution with one degree of freedom as suggested by Wilks’ theorem. The blue dotted
line shows the CDF of the mixture of χ2 distribution suggested by Theorem 2 (Color figure online)

If Wilks’ theorem holds, then the LRT statistic should follow a χ2 distribution with one degree
of freedom. We conduct a simulation study and show the results in Fig. 3. In this figure, the black
solid line shows the empirical CDF of the LRT statistic, based on 5000 independent simulations
from the null model with N = 200, J = 20, β0 = 0, and σ 2

2 = 1. The red dashed line shows
the CDF of the χ2 distribution with one degree of freedom. As we can see, the two CDFs are not
close to each other, and the empirical CDF tends to stochastically dominate the theoretical CDF
suggested by Wilks’ theorem. It suggests the failure of Wilks’ theorem in this example.

This kind of phenomenon has been observed when the null model lies on the boundary of
the parameter space, due to which the regularity conditions of Wilks’ theorem do not hold. The
LRT statistic has been shown to often follow a mixture of χ2 distribution asymptotically (e.g.,
Shapiro 1985; Self and Liang 1987), instead of a χ2 distribution. As it will be shown in Sect. 2,
such a mixture of χ2 distribution can be derived from a general theory for LRT.

We now explain whyWilks’ theorem does not hold in Examples 1(a), 2(a), and 3. We define
some generic notations. Suppose that we have i.i.d. observations X1, ..., XN , from a parametric
model P
 = {Pθ : θ ∈ 
 ⊂ R

k}, where Xi = (Xi1, ..., Xi J )
�. We assume that the distributions

inP
 are dominated by a common σ -finite measure ν with respect to which they have probability
density functions pθ : RJ → [0,∞). Let
0 ⊂ 
 be a submodel and we are interested in testing

H0 : θ ∈ 
0 versus Ha : θ ∈ 
\
0.

Let pθ∗ be the true model for the observations, where θ∗ ∈ 
0.
The likelihood function is defined as

lN (θ) =
N∑

i=1

log pθ (Xi ),

and the LRT statistic is defined as

λN = 2

(

sup
θ∈


lN (θ) − sup
θ∈
0

lN (θ)

)

.

Under suitable regularity conditions, Wilks’ theorem suggests that the LRT statistic λN is asymp-
totically χ2.
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Wilks’ theorem for LRT requires several regularity conditions; see, e.g., Theorem 12.4.2,
Lehmann and Romano (2006). Among these conditions, there are two conditions that the previous
examples do not satisfy. First, it is required that θ∗ is an interior point of 
. This condition is
not satisfied for Example 3, when 
 is taken to be {(β0, σ

2
1 , σ 2

2 ) : β0 ∈ R, σ 2
1 ∈ [0,∞), σ 2

2 ∈
[0,∞)}, as the null model lies on the boundary of the parameter space. Second, it is required
that the expected Fisher information matrix at θ∗, I (θ∗) = Eθ∗ [∇lN (θ∗)∇lN (θ∗)�]/N is strictly
positive definite. As we summarize in Lemma 1, this condition is not satisfied in Examples 1(a)
and 2(a), when 
 is taken to be the parameter space of the corresponding two-factor model.
However, interestingly, when comparing the one-factor model with the saturatedmodel, the Fisher
information matrix is strictly positive definite in Examples 1(b) and 2(b), for both simulated
examples.

Lemma 1. (1) For the two-factormodel given in Example 1(a), choose the parameter space
to be


 =
{
(δ1, ..., δJ , a11, ..., aJ1, a22, ..., aJ2)

� ∈ R
3J−1 : δ j > 0, j = 1, ..., J

}
.

If the true parameters satisfy a∗
j2 = 0, j = 2, ..., J, then I (θ∗) is non-invertible.

(2) For the two-factor IFA model given in Example 2(a), choose the parameter space to
be 
 = R

3J−1. If the true parameters satisfy a∗
j2 = 0, j = 2, ..., J, then I (θ∗) is

non-invertible.

We remark on the consequences of having a non-invertible information matrix. The first
consequence is computational. If the information matrix is non-invertible, then the likelihood
function does not tend to be strongly convex near the MLE, resulting in slow convergence. In the
context of Examples 1(a) and 2(a), it means that computing the MLE for the corresponding two-
factor models may have convergence issue. When convergence issue occurs, the obtained LRT
statistic is below its actual value, due to the log likelihood for the two-factor model not achieving
the maximum. Consequently, the p-value tends to be larger than its actual value, and thus, the
decision based on the p-value tends to be more conservative than the one without convergence
issue. This convergence issue is observed when conducting simulations for these examples. To
improve the convergence, we use multiple random starting points when computing MLEs. The
second consequence is a poor asymptotic convergence rate for the MLE. That is, the convergence
rate is typically much slower than the standard parametric rate N−1/2, even though the MLE is
still consistent; see Rotnitzky et al. (2000) for more theoretical results on this topic.

We further provide some remarks on the LRT in Examples 1(b) and 2(b) that use a LRT
for comparing the fitted model with the saturated model. Although Wilks’ theorem holds asymp-
totically in example 2(b), the χ2 approximation may not always work well as in our simulated
example. This is because, when the number of items becomes larger and the sample size is not
large enough, the contingency table for all 2J response patterns may be sparse, and thus, the sat-
urated model cannot be accurately estimated. In that case, it is better to use a limited information
inference method (e.g., Maydeu-Olivares and Joe 2005, 2006) as a goodness-of-fit test statistic.
Similar issues might also occur to Example 1(b).

2. General Theory for Likelihood Ratio Test

The previous discussions suggest that Wilks’ theorem does not hold for Examples 1(a), 2(a),
and 3, due to the violation of regularity conditions. It is then natural to ask: What asymptotic
distribution does λN follow in these situations? Is there asymptotic theory characterizing such
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irregular situations? The answer to these questions is “yes.” In fact, a general theory characterizing
these less regular situations has already been established in Chernoff (1954). In what follows, we
provide a version of this general theory that is proved in van der Vaart (2000), Theorem 16.7.
It is also given in Drton (2009), Theorem 2.6. Two problems will be considered, (1) comparing
a submodel with the saturated model as in Examples 1(b) and 2(b), and (2) comparing two
submodels as in Examples 1(a), 2(a), and 3.

2.1. Testing Submodel Against Saturated Model

We first introduce a few notations. We use R
J×J
pd and R

J×J
d to denote the spaces of

J × J strictly positive definite matrices and diagonal matrices, respectively. In addition, we
define a one-to-one mapping ρ: RJ×J

pd �→ R
J (J+1)/2 that maps a positive definite matrix to

a vector containing all its upper triangular entries (including the diagonal entries). That is,
ρ(�) = (σ11, σ12..., σ1J , σ22, ..., σ2J , ..., σJ J )

�, for � = (σi j )J×J ∈ R
J×J
pd . We also define

a one-to-one mapping μ: RJ×J
d �→ R

J that maps a diagonal matrix to a vector containing all its
diagonal entries.

Weconsider to compare a submodel versus the saturatedmodel. Let
0 and
be theparameter
spaces of the submodel and the saturated model, respectively, satisfying 
0 ⊂ 
 ⊂ R

k . Also
let θ∗ ∈ 
0 be the true parameter vector. The asymptotic theory of the LRT for comparing 
0
versus 
 requires regularity conditions C1-C5.

C1. The true parameter vector θ∗ is in the interior of 
.
C2. There exists a measurable map l̇θ : RJ → R

k such that

lim
h→0

1

‖h‖2
∫

RJ

(
√
pθ+h(x) − √

pθ (x) − 1

2
h�l̇θ (x)

√
pθ (x)

)2

dν(x) = 0, (1)

and the Fisher information matrix I (θ∗) for P
 is invertible.
C3. There exists a neighborhood of θ∗, Uθ∗ ⊂ 
, and a measurable function l̇ : RJ → R,

square integrable as
∫
RJ l̇(x)2dPθ∗(x) < ∞, such that

| log pθ1(x) − log pθ2(x)| ≤ l̇(x)‖θ1 − θ2‖, ∀θ1, θ2 ∈ Uθ∗ .

C4. The maximum likelihood estimators (MLEs)

θ̂N ,
 = argmax
θ∈


lN (θ)

and

θ̂N ,
0 = argmax
θ∈
0

lN (θ)

are consistent under Pθ∗ .

The asymptotic distribution of λN depends on the local geometry of the parameter space 
0
at θ∗. This is characterized by the tangent cone T
0(θ

∗), to be defined below.

Definition 1. The tangent cone T
0(θ
∗) of the set 
0 ⊂ R

k at the point θ∗ ∈ R
k is the set of

vectors in R
k that are limits of sequences αn(θn − θ∗), where αn are positive reals and θn ∈ 
0

converge to θ∗.
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The following regularity is required for the tangent cone T
0(θ
∗) that is known as the Chernoff

regularity.

C5. For every vector τ in the tangent cone T
0(θ
∗), there exist ε > 0 and amap α : [0, ε) →


0 with α(0) = θ∗ such that τ = limt→0+[α(t) − α(0)]/t.
Under the above regularity conditions, Theorem 1 holds and explains the phenomena in

Examples 1(b) and 2(b).

Theorem 1. Suppose that conditions C1-C5 are satisfied for comparing nested models 
0 ⊂

 ⊂ R

k , with θ∗ ∈ 
0 being the true parameter vector. Then as N grows to infinity, the
likelihood ratio statistic λN converges to the distribution of

min
τ∈T
0 (θ∗)

‖Z − I (θ∗)
1
2 τ‖2, (2)

where Z = (Z1, ..., Zk)
� is a random vector consisting of i.i.d. standard normal random vari-

ables.

Remark 1. We give some remarks on the regularity conditions. Conditions C1-C4 together ensure
the asymptotic normality for

√
N (θ̂N ,
 − θ∗). Condition C1 depends on both the true model and

the saturated model. As will be shown below, this condition holds for the saturated models in
Examples 1(b) and 2(b). Equation (1) in C2 is also known as the condition of “differentiable in
quadratic mean” for P
 at θ∗. If the map θ �→ √

pθ (x) is continuously differentiable for every
x, then C2 holds with l̇θ (x) = ∂

∂θ
log pθ (x) (Lemma 7.6, van der Vaart (2000)). Furthermore, C3

holds if l̇(x) = supθ∈Uθ∗ l̇θ (x) is square integrable with respect to the measure Pθ∗ . Specifically, if

l̇(x) is a bounded function, then C3 holds. C4 holds for our examples by Theorem 10.1.6, Casella
and Berger (2002). C5 requires certain regularity on the local geometry of T
0(θ

∗), which also
holds for our examples below.

Remark 2. By Theorem 1, the asymptotic distribution for λN depends on the tangent cone
T
0(θ

∗). If T
0(θ
∗) is a linear subspace of Rk with dimension k0, then one can easily show

that the asymptotic reference distribution of λN is χ2 with degrees of freedom k − k0. As we
explain below, Theorem 1 directly applies to Examples 1(b) and 2(b). If T
0(θ

∗) is a convex cone,
then λN converges to a mixture of χ2 distribution (Shapiro 1985; Self and Liang 1987). That is,
for any x > 0, P(λN ≤ x) converges to

∑k
i=0 wk P(ξi ≤ x), as N goes to infinity, where ξ0 ≡ 0

and ξi follows a χ2 distribution with i degrees of freedom for i > 0. Moreover, the weights
sum up to 1/2 for the components with even degrees of freedom, and so do the weights for the
components with odd degrees of freedom (Shapiro 1985).

Example 4. (Exploratory factor analysis, revisited) Now we consider Example 1(b). As the
saturated model is a J -variate normal distribution with an unrestricted covariance matrix, its
parameter space can be chosen as


 = {ρ(�) : � ∈ R
J×J
pd } ⊂ R

J (J+1)/2,

and the parameter space for the restricted model is


0 =
{
ρ(�) : � = a1a�

1 + �, a1 ∈ R
J ,� ∈ R

J×J
pd ∩ R

J×J
d

}
.
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Suppose θ∗ = ρ(�∗) ∈ 
0, where �∗ = a∗
1a

∗
1
� + �∗. It is easy to see that C1 holds with the

current choice of 
. The tangent cone T
0(θ
∗) takes the form:

T
0(θ
∗) =

{
ρ(�) : � = a∗

1b
�
1 + b1a∗

1
� + B, b1 ∈ R

J ,B ∈ R
J×J
d

}
,

which is a linear subspace of RJ (J+1)/2 with dimension 2J, as long as a∗
j1 �= 0, j = 1, ..., J. By

Theorem 1, λN converges to the χ2 distribution with degrees of freedom J (J + 1)/2 − 2J.

Example 5. (Exploratory item factor analysis, revisited) Now we consider Example 2(b). As
the saturatedmodel is a 2J -dimensional categorical distribution, its parameter space can be chosen
as


 =
⎧
⎨

⎩
θ = {θx}x∈�J : θx ≥ 0,

∑

x∈�J

θx ≤ 1

⎫
⎬

⎭
⊂ R

2J−1,

where �J := {0, 1}J\{(0, ..., 0)�}. Then, the parameter space for the restricted model is


0 =
⎧
⎨

⎩
θ ∈ 
 : θx =

∫ J∏

j=1

exp(x j (d j + a j1ξ1))

1 + exp(d j + a j1ξ1)
φ(ξ1)dξ1, a1,d ∈ R

J

⎫
⎬

⎭
. (3)

Let θ∗ ∈ 
0 that corresponds to true item parameters a∗
1 = (a∗

j1, ..., a
∗
J1)

� and d∗ =
(d∗

1 , ..., d∗
J )

�. By the form of 
0, θ∗ is an interior point of 
.

For any x ∈ �J , we define fx = ( f1(x), ..., f J (x))� and gx = (g1(x), ..., gJ (x))�, where

fl(x) =
∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

[

xl − exp(d∗
l + a∗

l1ξ1)

1 + exp(d∗
l + a∗

l1ξ1)

]

φ(ξ1)dξ1,

and

gl(x) =
∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

[

xl − exp(d∗
l + a∗

l1ξ1)

1 + exp(d∗
l + a∗

l1ξ1)

]

ξ1φ(ξ1)dξ1,

for l = 1, ..., J. Then the tangent cone T
0(θ
∗) has the form

T
0(θ
∗) =

{
θ = {θx}x∈�J : θx = b�

0 fx + b�
1 gx, b0,b1 ∈ R

J
}

,

which is a linear subspace of R2J−1 with dimension 2J. By Theorem 1, λN converges to the
distribution of χ2 with degrees of freedom 2J − 1 − 2J.
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2.2. Comparing Two Nested Submodels

Theorem 1 is not applicable to Example 3, because θ∗ is on the boundary of 
 if 
 is chosen
to be {(β0, σ

2
1 , σ 2

2 ) : β0 ∈ R, σ 2
1 ∈ [0,∞), σ 2

2 ∈ [0,∞)}, and thus, C1 is violated. Theorem 1
is also not applicable to Examples 1(a) and 2(a), because the Fisher information matrix is not
invertible when 
 is chosen to be the parameter space of the two-factor EFA and IFA models,
respectively, in which case condition C2 is violated.

To derive the asymptotic theory for such problems, we view them as a problem of testing
nested submodels under a saturatedmodel forwhich θ∗ is an interior point of
 and the information
matrix is invertible. Consider testing

H0 : θ ∈ 
0 versus Ha : θ ∈ 
1\
0,

where 
0 and 
1 are two nested submodels of a saturated model 
, satisfying 
0 ⊂ 
1 ⊂

 ⊂ R

k . Under this formulation, Theorem 2 provides the asymptotic theory for the LRT statistic
λN = 2

(
supθ∈
1

lN (θ) − supθ∈
0
lN (θ)

)
.

To obtain the asymptotic distribution of λN , regularity conditions C1-C5 are still required
for 
0 ⊂ 
. Two additional conditions are needed for 
1, which are satisfied for Examples 6, 7
and 8.

C6. The MLE under 
1, θ̂N ,
1 = argmax
θ∈
1

lN (θ), is consistent under Pθ∗ .

C7. Let T
1(θ
∗) be the tangent cone for 
1, defined the same as in Definition 1, but with


0 replaced by 
1. T
1(θ
∗) satisfies Chernoff regularity. That is, for every vector τ in

the tangent cone T
1(θ
∗) there exist ε > 0 and a map α : [0, ε) → 
1 with α(0) = θ∗

such that τ = limt→0+[α(t) − α(0)]/t.
Theorem 2. Let θ∗ ∈ 
0 be the true parameter vector. Suppose that conditions C1-C7 are
satisfied. As N grows to infinity, the likelihood ratio statistic λN converges to the distribution of

min
τ∈T
0 (θ∗)

‖Z − I (θ∗)
1
2 τ‖2 − min

τ∈T
1 (θ∗)
‖Z − I (θ∗)

1
2 τ‖2, (4)

where Z = (Z1, ..., Zk)
� is a random vector consisting of i.i.d. standard normal random vari-

ables, and I (θ∗) 1
2 satisfies I (θ∗) 1

2 (I (θ∗) 1
2 )� = I (θ∗) that can be obtained by eigenvalue decom-

position.

Example 6. (Random effects model, revisited) Now we consider Example 3. Let 1n denote
a length-n vector whose entries are all 1 and In denote the n × n identity matrix. As Xi =
(Xi1, ..., Xi J )

� from the random effects model is multivariate normal withmean β01J and covari-
ance matrix σ 2

1 1J1
�
J + σ 2

2 IJ , the saturated parameter space can be taken as


 = {(ρ(�)�, β0)
� : � ∈ R

J×J
pd , β0 ∈ R}.

The parameter space for restricted models are


0 = {(ρ(�)�, β0)
� : � = σ 2

2 IJ , σ 2
2 > 0, β0 ∈ R},

and


1 = {(ρ(�)�, β0)
� : � = σ 2

1 1J1
�
J + σ 2

2 IJ , σ
2
1 ≥ 0, σ 2

2 > 0, β0 ∈ R}.
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Let θ∗ = (ρ(�∗), β∗
0 ) ∈ 
0, where �∗ = σ ∗

2
2IJ . Then, C1 holds. The tangent cones for 
0 and


1 are

T
0(θ
∗) = {(ρ(�)�, b0)

� : � = b2IJ , b0, b2 ∈ R}

and

T
1(θ
∗) = {(ρ(�)�, b0)

� : � = b11J1�
J + b2IJ , b1 ≥ 0, b0, b2 ∈ R}.

By Theorem 2, λN converges to the distribution of (4).
In this example, the form of (4) can be simplified, thanks to the forms of T
0(θ

∗) and T
1(θ
∗).

We denote

c0 = (0, ..., 0, 1), c1 = (ρ(1J1�
J )�, 0)�, c2 = (ρ(IJ )�, 0)� ∈ R

J (J+1)/2+1.

It can be seen that T
0(θ
∗) is a two-dimensional linear subspace spanned by {c0, c2}, and T
1(θ

∗)
is a half three-dimensional linear subspace defined as {α0c0+α1c1+α2c2 : α1 ≥ 0, α0, α2 ∈ R}.
Let P0 denote the projection onto T
0(θ

∗). Define

v = c1 − P0c1
‖c1 − P0c1‖ ,

and then, (4) has the form

‖v�Z‖21{v�Z≥0}. (5)

It is easy to see that v�Z follows standard normal distribution. Therefore, λN converges to the
distribution of w21{w≥0}, where w is a standard normal random variable. This is known as a
mixture of χ2 distribution. The blue dotted line in Fig. 3 shows the CDF of this mixture χ2

distribution. This CDF is very close to the empirical CDF of the LRT, confirming our asymptotic
theory.

Example 7. (Exploratory factor analysis, revisited) Now we consider Example 1(a). Let

,
0, θ

∗ and T
0(θ
∗) be the same as those in Example 4. In addition, we define


1 =
{
ρ(�) : � = a1a�

1 + a2a�
2 + �, a1, a2 ∈ R

J , a12 = 0,� ∈ R
J×J
pd ∩ R

J×J
d

}
.

The tangent cone of 
1 at θ∗ becomes

T
1(θ
∗) =

{
ρ(�) : � = a∗

1b
�
1 + b1a∗

1
� + b2b�

2 + B, b1,b2 ∈ R
J , b12 = 0,B ∈ R

J×J
d

}
.

Note that T
1(θ
∗) is not a linear subspace, due to the b2b�

2 term. Therefore, by Theorem 2, the
asymptotic distribution of λN is not χ2 . See the blue dotted line in Panel (a) of Fig. 1 for the CDF
of this asymptotic distribution. This CDF almost overlaps with the empirical CDF of the LRT,
suggesting that Theorem 2 holds here.
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Example 8. (Exploratory item factor analysis, revisited) Now we consider Example 2(a). Let

,
0, θ

∗ and T
0(θ
∗) be the same as those in Example 5. Let


1 =
⎧
⎨

⎩
θ ∈ 
 : θx =

∫ ∫ J∏

j=1

exp(x j (d j + a j1ξ1 + a j2ξ2))

1 + exp(d j + a j1ξ1 + a j2ξ2)
φ(ξ1)φ(ξ2)dξ1dξ2, a12 = 0, x ∈ �J

⎫
⎬

⎭

be the parameter space for the two-factor model. Recall fx and gx as defined in Example 5. For
any x ∈ �J , we further define Hx = (hrs(x))J×J , where

hrs(x) =
∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

[

xr − exp(d∗
r + a∗

r1ξ1)

1 + exp(d∗
r + a∗

r1ξ1)

]

×
[

xs − exp(d∗
s + a∗

s1ξ1)

1 + exp(d∗
s + a∗

s1ξ1)

]

φ(ξ1)dξ1

for r �= s, and

hrr (x) =
∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

{[

xr − exp(d∗
r + a∗

r1ξ1)

1 + exp(d∗
r + a∗

r1ξ1)

]2

− exp(d∗
r + a∗

r1ξ1)

(1 + exp(d∗
r + a∗

r1ξ1))
2

}

φ(ξ1)dξ1.

Then, the tangent cone of 
1 at θ∗ is

T
1(θ
∗) =

{
θ = {θx}x∈�J : θx = b�

0 fx + b�
1 gx + b�

2 Hxb2, b0,b1,b2 ∈ R
J , b12 = 0

}
. (6)

Similar to Example 7, T
1(θ
∗) is not a linear subspace, and thus, λN is not asymptotically χ2 .

In Panel (a) of Fig. 2, the asymptotic CDF suggested by Theorem 2 is shown as the blue dotted
line. Similar to the previously examples, this CDF is very close to the empirical CDF of the LRT.

3. Discussion

In this note, we point out how the regularity conditions of Wilks’ theorem may be violated,
using three examples of models with latent variables. In these cases, the asymptotic distribution
of the LRT statistic is no longer χ2, and therefore, the test may no longer be valid. It seems that
the regularity conditions of Wilks’ theorem, especially the requirement on a non-singular Fisher
information matrix, have not received enough attention. As a result, the LRT is often misused.
Although we focus on LRT, it is worth pointing out that other testing procedures, including the
Wald and score tests, aswell as limited information tests (e.g., tests based onbivariate information),
require similar regularity conditions and thus may also be affected.

We present a general theory for LRT first established in Chernoff (1954) that is not widely
known in psychometrics and related fields. As we illustrate by the three examples, this theory
applies to irregular cases not covered by Wilks’ theorem. There are other examples for which
this general theory is useful. For example, Examples 1(a) and 2(a) can be easily generalized to
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the comparison of factor models with different numbers of factors, under both confirmatory and
exploratory settings. This theory can also be applied to model comparison in latent class analysis
that also suffers from a non-invertible information matrix. To apply the theorem, the key is to
choose a suitable parameter space and then characterize the tangent cone at the true model.

There are alternative inference methods for making statistical inference under such irregular
situations. One method is to obtain a reference distribution for LRT via parametric bootstrap.
Under the same regularity conditions as in Theorem 2, we believe that the parametric bootstrap
is still consistent. The parametric bootstrap may even achieve better approximation accuracy for
finite sample data than the asymptotic distributions given by Theorems 1 and 2. However, for
complex latent variable models (e.g., IFA models with many factors), the parametric bootstrap
may be computationally intensive, due to the high computational cost of repeatedly computing
the marginal maximum likelihood estimators. On the other hand, Monte Carlo simulation of the
asymptotic distribution in Theorem 2 is computationally much easier, even though there are still
optimizations to be solved. Another method is the split likelihood ratio test recently proposed
by Wasserman et al. (2020) that is computationally fast and does not suffer from singularity or
boundary issues. By making use of a sample splitting trick, this split LRT is able to control the
type I error at any pre-specified level. However, it may be quite conservative sometimes.

This paper focuses on the situations where the true model is exactly a singular or boundary
point of the parameter space. However, the LRT can also be problematic when the true model is
near a singular or boundary point. A recent article by Mitchell et al. (2019) provides a treatment
of this problem, where a finite sample approximating distribution is derived for LRT.

Besides the singularity and boundary issues, the asymptotic distribution may be inaccurate
when the dimension of the parameter space is relatively high comparing with the sample size. This
problem has been intensively studied in statistics and a famous result is the Bartlett correction
which provides a way to improve the χ2 approximation (Bartlett 1937; Bickel and Ghosh 1990;
Cordeiro 1983; Box 1949; Lawley 1956;Wald 1943). When the regularity conditions do not hold,
the classical form of Bartlett correction may no longer be suitable. A general form of Bartlett
correction remains to be developed, which is left for future investigation.
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Appendix

Proof of Lemma 1. Denote the (i, j)-entry of the Fisher information matrix I (θ∗) as qi j . In both
cases, we show that qi j = 0 for i ≥ 2J +1, or j ≥ 2J +1, and therefore, I (θ∗) is non-invertible.
Since

qi j =
∫

∂ log pθ (x)
∂θi

∣
∣
∣
θ∗

∂ log pθ (x)
∂θ j

∣
∣
∣
θ∗ pθ∗(x)dx,

it suffices to show that

∂ log pθ (x)
∂θi

∣
∣
∣
θ∗ = 0, j ≥ 2J + 1.

In the case of two-factor model, it suffices to show that

∂ log pθ (x)
∂al2

∣
∣
∣
θ∗ = 0,

for l = 2, ..., J. Let σi j be the (i, j)-entry of the covariance matrix � and it is easy to see that
σi j = ai1a j1 + ai2a j2 + 1{i= j}δi , where a12 = 0. By the chain rule,

∂ log pθ (x)
∂al2

=
∑

i≤ j

∂ log pθ (x)
∂σi j

∂σi j

∂al2
.

Since

∂σi j

∂al2

∣
∣
∣
θ∗ = 1{l=i}a∗

j2 + 1{l= j}a∗
i2

= 0,

then I (θ∗) is non-invertible in the case of two-factor model.
In the case of two-factor IFA model, since

∂ log pθ (x)
∂θi

= 1

pθ (x)
∂pθ (x)
∂al2

it suffices to show that

∂pθ (x)
∂al2

∣
∣
∣
θ∗ = 0,

for l = 2, ..., J. Since

∂pθ (x)
∂al2

∣
∣
∣
θ∗ =

∫ ∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

[

xl − exp(d∗
l + a∗

l1ξ1)

1 + exp(d∗
l + a∗

l1ξ1)

]

ξ2φ(ξ1)φ(ξ2)dξ1dξ2

=
∫

ξ2φ(ξ2)dξ2 ×
∫ J∏

j=1

exp(x j (d∗
j + a∗

j1ξ1))

1 + exp(d∗
j + a∗

j1ξ1)

[

xl − exp(d∗
l + a∗

l1ξ1)

1 + exp(d∗
l + a∗

l1ξ1)

]

φ(ξ1)dξ1

= 0,
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then I (θ∗) is non-invertible in the case of two-factor IFA model. ��
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