Skip to main content
Log in

The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties

  • Published:
Psychometrika Aims and scope Submit manuscript

Abstract

We present a cognitive process model of response choice and response time performance data that has excellent psychometric properties and may be used in a wide variety of contexts. In the model there is an accumulator associated with each response option. These accumulators have bounds, and the first accumulator to reach its bound determines the response time and response choice. The times at which accumulator reaches its bound is assumed to be lognormally distributed, hence the model is race or minima process among lognormal variables. A key property of the model is that it is relatively straightforward to place a wide variety of models on the logarithm of these finishing times including linear models, structural equation models, autoregressive models, growth-curve models, etc. Consequently, the model has excellent statistical and psychometric properties and can be used in a wide range of contexts, from laboratory experiments to high-stakes testing, to assess performance. We provide a Bayesian hierarchical analysis of the model, and illustrate its flexibility with an application in testing and one in lexical decision making, a reading skill.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.

Similar content being viewed by others

Notes

  1. Word frequency is the how often a word occurs in natural written discourse. It is simply the frequency of occurrence in a large corpora such as a large collection newspaper and magazine articles (Kucera & Francis, 1967). For instance, AJAR occurs less than once per million words of text, ECHO occurs 34 times per million words of text, and CITY occurs over 200 times per million words of text.

References

  • Anderson, J.R., & Lebiere, C. (1998). The atomic component of thought. Mahwah: Lawrence Erlbaum Associates.

    Google Scholar 

  • Audley, R.J., & Pike, A.R. (1965). Some alternative stochastic models of choice. British Journal of Mathematical and Statistical Psychology, 18, 207–225.

    Article  Google Scholar 

  • Bertelson, P. (1961). Sequential redundancy and speed in a serial two choice responding task. Quarterly Journal of Experimental Psychology, 13, 290–292.

    Article  Google Scholar 

  • Brown, S.D., & Heathcote, A. (2008). The simplest complete model of choice reaction time: linear ballistic accumulation. Cognitive Psychology, 57, 153–178.

    Article  PubMed  Google Scholar 

  • Craigmile, P.F., Peruggia, M., & Van Zandt, T. (2010). Hierarchical Bayes models for response time. Psychometrika, 75, 613–632.

    Article  Google Scholar 

  • Davis, C. (2010). The spatial coding model of visual word identification. Psychological Review, 117(3), 713.

    Article  PubMed  Google Scholar 

  • Diederich, A., & Busemeyer, J.R. (2003). Simple matrix methods for analyzing diffusion models of choice probability, choice response time and simple response time. Journal of Mathematical Psychology, 47, 304–322.

    Article  Google Scholar 

  • Dufau, S., Grainger, J., & Ziegler, J.C. (2012). How to say “no” to a nonword: a leaky competing accumulator model of lexical decision. Journal of Experimental Psychology: Learning, Memory, and Cognition, 38, 1117–1128.

    PubMed  Google Scholar 

  • Dzhafarov, E.N. (1992). The structure of simple reaction time to step-function signals. Journal of Mathematical Psychology, 36, 235–268.

    Article  Google Scholar 

  • Embretson, S.E. (1991). A multidimensional latent trait model for measuring learning and change. Psychometrika, 56, 495–516.

    Article  Google Scholar 

  • Falmagne, J.C., Cohen, S.P., & Dwivedi, A. (1975). Two choice reactions as an ordered memory scanning process. In P.M.A. Rabbit & S. Dornic (Eds.), Attention and performance V (pp. 296–344). New York: Academic Press.

    Google Scholar 

  • Gelfand, A., & Smith, A.F.M. (1990). Sampling based approaches to calculating marginal densities. Journal of the American Statistical Association, 85, 398–409.

    Article  Google Scholar 

  • Gelman, A., Carlin, J.B., Stern, H.S., & Rubin, D.B. (2004). Bayesian data analysis (2nd ed.). London: Chapman and Hall

    Google Scholar 

  • Gold, J.I., & Shadlen, M.N. (2007). The neural basis of decision making. Annual Review of Neuroscience, 30, 535–574.

    Article  PubMed  Google Scholar 

  • Gomez, P., Ratcliff, R., & Perea, M. (2008). The overlap model: a model of letter position coding. Psychological Review, 115(3), 577.

    Article  PubMed Central  PubMed  Google Scholar 

  • Greenwald, A.G., Draine, S.C., & Abrams, R.L. (1996). Three cognitive markers of unconscious semantic activation. Science, 273(5282), 1699–1702.

    Article  PubMed  Google Scholar 

  • Grice, G.R. (1968). Stimulus intensity and response evocation. Psychological Review, 75, 359–373.

    Article  PubMed  Google Scholar 

  • Hanes, D.P., & Schall, J.D. (1996). Neural control of voluntary movement initiation. Science, 274(5286), 427–430.

    Article  PubMed  Google Scholar 

  • Heathcote, A., & Love, J. (2012). Linear deterministic accumulator models of simple choice. Frontiers in Cognitive Science, 3, 292. http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2012.0029.

    Google Scholar 

  • Huk, A., & Shadlen, M.N. (2005). Neural activity in macaque parietal cortex reflects temporal integration of visual motion signals during perceptual decision making. Journal of Neuroscience, 25, 10420–10436.

    Article  PubMed  Google Scholar 

  • Jackman, S. (2009). Bayesian analysis for the social sciences. Chichester: Wiley.

    Book  Google Scholar 

  • Kass, R.E. (1993). Bayes factors in practice. The Statistician, 42, 551–560.

    Article  Google Scholar 

  • Kass, R.E., & Raftery, A.E. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795.

    Article  Google Scholar 

  • Kucera, H., & Francis, W.N. (1967). Computational analysis of present-day American English. Providence: Brown University Press.

    Google Scholar 

  • Lee, S.-Y. (2007). Structural equation modelling: a Bayesian approach. New York: Wiley.

    Book  Google Scholar 

  • Link, S.W. (1992). Wave theory of difference and similarity. Hillsdale: Erlbaum.

    Google Scholar 

  • Luce, R.D. (1986). Response times. New York: Oxford University Press.

    Google Scholar 

  • McClelland, J.L. (1993). Toward a theory of information processing in graded, random, and interactive networks. In D.E. Meyer & S. Kornblum (Eds.), Attention & performance XIV: synergies in experimental psychology, artificial intelligence and cognitive neuroscience. Cambridge: MIT Press.

    Google Scholar 

  • McClelland, J.L., & Rumelhart, D.E. (1981). An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychological Review, 88, 375–407.

    Article  Google Scholar 

  • McGill, W. (1963). Stochastic latency mechanism. In R.D. Luce & E. Galanter (Eds.), Handbook of mathematical psychology (Vol. 1, pp. 309–360). New York: Wiley.

    Google Scholar 

  • Morey, R.D., Rouder, J.N., Pratte, M.S., & Speckman, P.L. (2011). Using MCMC chain outputs to efficiently estimate Bayes factors. Journal of Mathematical Psychology, 55, 368–378. http://dx.doi.org/10.1016/j.jmp.2011.06.004.

    Article  Google Scholar 

  • Peruggia, M., Van Zandt, T., & Chen, M. (2002). Was it a car or a cat I saw? An analysis of response times for word recognition. Case Studies in Bayesian Statistics, 6, 319–334.

    Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.

    Article  Google Scholar 

  • Ratcliff, R., & McKoon, G.M. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural Computation, 20, 873–922.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratcliff, R., & Rouder, J.N. (1998). Modeling response times for decisions between two choices. Psychological Science, 9, 347–356.

    Article  Google Scholar 

  • Ratcliff, R., Thapar, A., & McKoon, G. (2003). A diffusion model analysis of the effects of aging on brightness discrimination. Perception and Psychophysics, 65, 523–535.

    Article  PubMed Central  PubMed  Google Scholar 

  • Ratcliff, R., Gomez, P., & McKoon, G.M. (2004). A diffusion model account of the lexical decision task. Psychological Review, 111, 159–182.

    Article  PubMed Central  PubMed  Google Scholar 

  • Reddi, B., & Carpenter, R. (2003). Accuracy, information and response time in a saccadic decision task. Journal of Neurophysiology, 90, 3538–3546.

    Article  PubMed  Google Scholar 

  • Riefer, D.M., Knapp, B.R., Batchelder, W.H., Bamber, D., & Manifold, V. (2002). Cognitive psychometrics: assessing storage and retrieval deficits in special populations with multinomial processing tree models. Psychological Assessment, 14, 184–201.

    Article  PubMed  Google Scholar 

  • Roberts, G.O., & Sahu, S.K. (1997). Updating schemes, correlation structure, blocking and parameterization for the Gibbs sampler. Journal of the Royal Statistical Society, Series B, Methodological, 59, 291–317.

    Article  Google Scholar 

  • Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on theory testing. Psychological Review, 107, 358–367.

    Article  PubMed  Google Scholar 

  • Roitman, J.D., & Shadlen, M.N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22, 9475–9489.

    PubMed  Google Scholar 

  • Rouder, J.N. (2005). Are unshifted distributional models appropriate for response time? Psychometrika, 70, 377–381.

    Article  Google Scholar 

  • Rouder, J.N., Sun, D., Speckman, P.L., Lu, J., & Zhou, D. (2003). A hierarchical Bayesian statistical framework for response time distributions. Psychometrika, 68, 587–604.

    Article  Google Scholar 

  • Rumelhart, D.E., & McClelland, J.L. (1982). An interactive activation model of context effects in letter perception: II. The contextual enhancement effect and some tests and extensions of the model. Psychological Review, 89, 60–94.

    Article  PubMed  Google Scholar 

  • Schall, J.D. (2003). Neural correlates of decision processes: neural and mental chronometry. Current Opinion in Neurobiology, 13, 182–186.

    Article  PubMed  Google Scholar 

  • Skrondal, A., & Rabe-Hesketh, S. (2004). Generalized latent variable modeling: multilevel, longitudinal, and structural equation models. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Smith, P.L. (2000). Stochastic dynamic models of response time and accuracy: a foundational primer. Journal of Mathematical Psychology, 44, 408–463.

    Article  PubMed  Google Scholar 

  • Spiegelhalter, D.J., Best, N.G., Carlin, B.P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society, Series B, Statistical Methodology, 64, 583–639.

    Article  Google Scholar 

  • Thissen, D. (1983). Timed testing: an approach using item response theory. In D.J. Weiss (Ed.), New horizons in testing: latent trait test theory and computerized adaptive testing (pp. 179–203). New York: Academic Press.

    Chapter  Google Scholar 

  • Tuerlickx, F., & De Boek, P. (2005). Two interpretations of the discrimination parameter. Psychometrika, 70, 629–650.

    Article  Google Scholar 

  • Ulrich, R., & Miller, J.O. (1993). Information processing models generating lognormally distributed reaction times. Journal of Mathematical Psychology, 37, 513–525.

    Article  Google Scholar 

  • Usher, M., & McClelland, J.L. (2001). On the time course of perceptual choice: the leaky competing accumulator model. Psychological Review, 108, 550–592.

    Article  PubMed  Google Scholar 

  • van Breukelen, G.J.P. (2005). Psychometric modeling of response time and accuracy with mixed and conditional regression. Psychometrika.

  • Vandekerckhove, J., Tuerlinckx, F., & Lee, M.D. (2011). Hierarchical diffusion models for two-choice response time. Psychological Methods, 16, 44–62.

    Article  PubMed  Google Scholar 

  • Vandekerckhove, J., Verheyen, S., & Tuerlinckx, F. (2010). A cross random effects diffusion model for speeded semantic categorization decisions. Acta Psychologica, 133, 269–282.

    Article  PubMed  Google Scholar 

  • van der Linden, W.J. (2007). A hierarchical framework for modeling speed and accuracy on test items. Psychometrika, 72, 287–308.

    Article  Google Scholar 

  • van der Linden, W.J. (2009). Conceptual issues in response-time modeling. Journal of Educational Measurement, 14, 247–272.

    Article  Google Scholar 

  • van der Linden, W.J., Scrams, D.J., & Schnipke, D.L. (1999). Using response-time constraints to control for differential speededness in computerized adaptive testing. Applied Psychological Measurement, 23, 195–210.

    Article  Google Scholar 

  • van der Maas, H.L.J., Molenaar, D., Maris, G., Kievit, R.A., & Borsboom, D. (2001). Cognitive psychology meets psychometric theory: on the relation between process models for decision making and latent variable models for individual differences. Psychological Review, 118, 339–356.

    Article  Google Scholar 

  • Wagenmakers, E.-J., van der Maas, H.L.J., & Grasman, R.P.P.P. (2007). An EZ-diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3–22.

    Article  Google Scholar 

  • Whitney, C., Bertrand, D., & Grainger, J. (2011). On coding the position of letters in words . Experimental Psychology (formerly Zeitschrift für Experimentelle Psychologie), 1–6.

  • Wild, P., & Gilks, W.R. (1993). Adaptive rejection sampling from log-concave density functions. Applied Statistics, 42, 701–708.

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by National Science Foundation Grants SES-1024080 and BCS-1240359 (JNR) and Australian Research Council Professorial Fellowship (AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey N. Rouder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouder, J.N., Province, J.M., Morey, R.D. et al. The Lognormal Race: A Cognitive-Process Model of Choice and Latency with Desirable Psychometric Properties. Psychometrika 80, 491–513 (2015). https://doi.org/10.1007/s11336-013-9396-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11336-013-9396-3

Key words

Navigation