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We consider spectral decompositions of multiple time series that arise in studies where the interest
lies in assessing the influence of two or more factors. We write the spectral density of each time series
as a sum of the spectral densities associated to the different levels of the factors. We then use Whittle’s
approximation to the likelihood function and follow a Bayesian non-parametric approach to obtain pos-
terior inference on the spectral densities based on Bernstein–Dirichlet prior distributions. The prior is
strategically important as it carries identifiability conditions for the models and allows us to quantify our
degree of confidence in such conditions. A Markov chain Monte Carlo (MCMC) algorithm for posterior
inference within this class of frequency-domain models is presented.

We illustrate the approach by analyzing simulated and real data via spectral one-way and two-way
models. In particular, we present an analysis of functional magnetic resonance imaging (fMRI) brain
responses measured in individuals who participated in a designed experiment to study pain perception in
humans.

Key words: spectral one-way and two-way models, Bayesian nonparametrics, Whittle’s approximation,
Bernstein–Dirichlet priors.

1. Introduction

Time series data from several subjects that can be classified into groups according to a set of
features are oftentimes recorded in clinical and non-clinical studies. For instance, a set of brain
signals recorded from several individuals may be grouped by the type of stimulus each individual
received in a given experimental setting. In such cases, one of the main goals of the time series
analysis is to determine if there are differences in the spectral characteristics of the signals across
the groups.

More specifically, suppose that a collection of time series {yi1,i2,h(t)} are recorded during
a particular experimental setting in which i1 indexes the level of some factor, say A, i2 indexes
the level of some other factor, say B, and h indexes the time series within given levels of the
A and B factors, where i1 = 1 : N1, i2 = 1 : N2, h = 1 : Hi1,i2 , and t = 1 : T . Such data may
arise in designed experiments where factor A is a given treatment or experimental condition—
e.g., the type of stimulus in a neuroscience experiment or the disease level—, factor B is another
treatment or experimental condition, and h indexes the individuals who were assigned to levels
i1 and i2 of the A and B factors, respectively. We are interested in fitting models that allow us to
characterize the spectral features of the time series in terms of effects associated to the levels of
the factors and, possibly also, in terms of effects associated with the interaction of such factors.
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Assume for instance that each time series can be decomposed as

yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + εi1,i2,h(t), (1)

where the unobserved processes β
(1)
i1

(t) and β
(2)
i2

(t) are assumed to be uncorrelated, i.e.,

Cov(β
(1)
i1

(t), β
(2)
i2

(t)) = 0 for all i1, i2 and all t = 1 : T . Furthermore, for a given k with k = 1,2

assume that Cov(β
(k)
i (t), β

(k)
j (t)) = 0 when i �= j for all t . The εi1,i2,h(t)s are idiosyncratic—i.e.,

individual specific—error series assumed to be independent of the other unobserved processes
and also mutually independent. This implies that the spectral density of yi1,i2,h(t), which is the
Fourier transform of the theoretical autocovariance function of the yi1,i2,h(t) process and is de-
noted as f ∗

yi1,i2,h
(λ), can be written as

f ∗
yi1,i2,h

(λ) = f
∗,(1)
i1

(λ) + f
∗,(2)
i2

(λ) + f ∗
εi1,i2,h

(λ), (2)

where f
∗,(1)
i1

(λ) and f
∗,(2)
i2

(λ) are the spectral densities of the unobserved processes associated
with levels i1 and i2 of factors A and B, respectively; and f ∗

εi1,i2,h
(λ) is the spectral density of the

idiosyncratic error component associated to individual h within such levels.
There is a relatively rich literature on Bayesian approaches for estimation of functions that

can be used in the context of analyzing multiple signals. DiMatteo, Genovese, and Kass (2001)
describe a Bayesian method for fitting curves to data drawn from a distribution in the exponen-
tial family. This approach assumes that the curves can be well approximated by splines with an
unknown number of knots and unknown knot locations that are then inferred via reversible jump
Markov chain Monte Carlo. The method is used to analyze individual (not multiple) time series
data obtained from functional magnetic resonance imaging (fMRI) experiments. In such context
the method of DiMatteo et al. (2001) is a time-domain approach that assumes that a given time
series y(t) can be modeled as y(t) = f (t) + ε(t), with f (t) = ∑k+2

j=1 θjbj (t), where bj (t) is
the j th function of a cubic B-spline. In contrast, our proposed frequency-domain method aims
to infer the spectral characteristics of multiple, not just a single, time series. A possible way of
analyzing multiple times series in the spectral domain would consist on extending the method of
DiMatteo et al. (2001) for fitting curves to the periodogram ordinates of the multiple time series
recorded at various levels of the factors. Such extension would involve developing and imple-
menting models that can handle multiple series given that the approach of DiMatteo et al. (2001)
can only be directly applied to a single data set, e.g., the periodogram ordinates of an individ-
ual time series. Furthermore, the method of DiMatteo et al. (2001) applies to independent data
(y1, x1), . . . , (yn, xn) that satisfy a model of the form yi |x1, . . . , xn ∼ p(yi |f (xi), σ ). However,
the periodogram ordinates are only asymptotically independent. Therefore, it would not be advis-
able to directly apply the free-knots splines method in order to estimate spectral densities. On the
other hand, the method proposed here is based on the approaches of Choudhuri, Ghosal, and Roy
(2004) and Macaro (2010), which provide consistent Bayesian estimates even if the periodogram
ordinates are only asymptotically independent (see Choudhuri et al., 2004, pp. 1056–1057, and
Macaro, 2010, p. 384).

Regarding factorial temporal data, several authors have considered various time-domain and
frequency-domain approaches. Some key references include, among others, Shumway (1970),
Brillinger (1973, 1980), and Stoffer (1999). Shumway and Stoffer (2006) also summarize and
illustrate several aspects of some of such approaches. As mentioned above, we follow Choud-
huri et al. (2004) and Macaro (2010) to obtain Bayesian non-parametric posterior inference of
the spectral representation of multiple time series, including the particular case of factorial spec-
tral decompositions, by using Bernstein–Dirichlet prior distributions (Petrone, 1999a, 1999b) on
the spectral densities in (2). More specifically, Choudhuri et al. (2004) described a Bayesian
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approach to estimating the spectral density of a single stationary time series by imposing a non-
parametric prior on such density through Bernstein polynomials. Then, Macaro (2010) proposed
a mixture generalization of such approach in which each component in the spectral decompo-
sition is identified using informative prior distributions. We extend the methods and algorithms
of Macaro (2010) to provide a Bayesian non-parametric spectral analysis of multiple time se-
ries recorded during designed experiments that may involve several factors, various levels within
each factor and several individuals. Bernstein–Dirichlet prior distributions have been success-
fully applied to analyze other types of data that arise in psychometric applications. For example,
Karabatsos and Walker (2009) use a bivariate Bernstein–Dirichlet prior in the context of model-
ing test equating. Alternative Bayesian approaches to spectral density estimation of a single time
series, including stationary and long-range dependence time series, as well as nonstationary time
series with slowly varying dynamics or piecewise stationary time series, can be found in Carter
and Kohn (1997), Gangopadhyay, Mallick, and Denison (1998), Liseo, Marinucci, and Petrella
(2001), and Rosen, Stoffer, and Wood (2009), among others. A Bayesian approach for estimat-
ing the spectral density of multivariate stationary time series is presented in Rosen and Stoffer
(2007).

The article is organized as follows. The details of the modeling approach, including some
examples, are provided in Section 2. Section 3 summarizes the Markov chain Monte Carlo algo-
rithm1 for posterior inference. In Section 4 we present the results of several simulation studies
and discuss aspects of identification through the prior distributions. In Section 5 we analyze
multiple time series of fMRI brain responses measured in individuals who participated in an
experiment designed to study pain perception in humans. Finally, Section 6 presents the conclu-
sions.

2. Bayesian Spectral Decompositions of Factorial Time Series Data

2.1. General Model Formulation

Let {yi1,...,iD,h(t)} be a set of time series for id = 1 : Nd , h = 1 : Hi1,...,iD and t = 1 : T .
Assume that each time series yi1,...,iD,h(t) can be decomposed as a sum of D unobservable com-
ponents plus an idiosyncratic error term. That is,

yi1,...,iD,h(t) =
D∑

d=1

β
(d)
id

(t) + εi1,...,iD,h(t), (3)

where β
(j)
ij

(t) and β
(k)
ik

(t) are assumed to be independent for all j �= k and all t , and the

εi1,...,iD,h(t) are assumed to be independent of the β
(d)
ij

(t) processes for all d and also mutually

independent. Furthermore, it is assumed that for a given d , β
(d)
ij

(t) and β
(d)
ik

(t) are independent
for all ij �= ik and all t , and that εi1,...,iD,h(t0) and εi1,...,iD,h(t1) are independent for all t0 �= t1.
This implies that the spectral density of yi1,...,iD,h(t), denoted as f ∗

yi1,...,iD,h
(λ), can be written as

f ∗
yi1,...,iD,h

(λ) =
D∑

d=1

f
∗,(d)
id

(λ) + f ∗
εi1,...,iD,h

(λ), (4)

1The code is available upon request. Please email C. Macaro at christianmacaro@gmail.com.
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where f
∗,(d)
id

(λ) and f ∗
εi1,...,iD,h

(λ) are, respectively, the spectral densities of the unobserved fac-
tors and the idiosyncratic error components. The spectral density is the Fourier transform of the
theoretical autocovariance function. Under some regularity conditions it is a real and continuous
function over λ ∈ (−π,π]. A further assumption requires the spectral densities to be bounded
and bounded away from zero, ruling out long memory and band limited processes.

2.2. Examples

2.2.1. Baseline Plus Single Factor Model In this example we consider a one-way model
represented as a baseline process plus one factor with two levels. Specifically, let d = 1 : 2,
i1 = 1, i2 = 1 : 2, h = 1 : 2, and assume the following structure on y1,i2,h(t):

Observations: y1,i2,h(t) = β
(1)
1 (t) + β

(2)
i2

(t) + ε1,i2,h(t), ε1,i2,h(t) ∼ N(0,1), (5)

Baseline: β
(1)
1 (t) ∼ AR

(
φ(1) = 0.9,1

)
, (6)

One factor, two levels: β
(2)
i2

(t) ∼
{

AR(φ
(2)
1,1 = −0.8, φ

(2)
1,2 = −0.9,1) i2 = 1,

AR(φ
(2)
2,1 = −1.5, φ

(2)
2,2 = −0.8,1) i2 = 2.

(7)

Therefore, the baseline process β
(1)
1 (t) is an autoregressive process of order one, or AR(1), with

coefficient 0.9, while the factor has two levels, the first level corresponds to an autoregressive
process of order two, or AR(2), with two reciprocal characteristic roots each with modulus 0.949
and frequency 2.006 (period 3.132), and the second level is an AR(2) with two reciprocal char-
acteristic roots each with modulus 0.894 and frequency 2.566 (period 2.449). The spectral repre-
sentation is

f ∗
y1,i2,h

(λ) = f
∗,(1)
1 (λ) + f

∗,(2)
i2

(λ) + f ∗
εi1,i2,h

(λ), (8)

with f
∗,(1)
1 (λ) = 1/[2π(1 + (φ(1))2 − 2φ(1) cos(λ))], and

f
∗,(2)
i2

(λ) = 1/
[
2π

(
1 + (

φ
(2)
i2,1

)2 + 2φ
(2)
i2,2

+ (
φ

(2)
i2,2

)2 + 2
(
φ

(2)
i2,1

φ
(2)
i2,2

− φ
(2)
i2,1

)
cos(λ)

− 4φ
(2)
i2,2

cos2(λ)
)]

.

Therefore, the decomposition in (8) is such that f
∗,(1)
1 (λ) captures constant and persistent

effects, while the f
∗,(2)
i2

(λ) spectra capture quasiperiodic dynamics that shift across the levels, as
shown in Figure 1.

2.2.2. Two-Way Models The probabilistic spectral decomposition in the example below
corresponds to that of a two-way temporal model. In particular, assume that a two-way factor
model with two levels in each factor is obtained by letting d = 1 : 2, i1 = 1 : 2, i2 = 1 : 2, h = 1 :
H and by assuming the following structure on yi1,i2,h(t):

Observations: yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + εi1,i2,h(t), εi1,i2,h(t) ∼ N(0,1),

(9)

First factor, two levels: β
(1)
i1

(t) ∼
{

N(0,1), i1 = 1,

AR(φ
(1)
2,1 = 1.46, φ

(1)
2,2 = −0.81,1), i1 = 2,

(10)

Second factor, two levels: β
(2)
i2

(t) ∼
{

AR(φ
(2)
1,1 = 0.9,1),

AR(φ
(2)
2,1 = −0.9, φ

(2)
2,2 = −0.81,1).

(11)
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FIGURE 1.
Spectral representation of the one-way factor model given in Equations (5)–(7).

FIGURE 2.
Spectral representation of the two-way factor model given in Equations (9)–(11).

Therefore, the spectral representation of yi1,i2,h(t) is given by

f ∗
yi1,i2,h

(λ) = f
∗,(1)
i1

(λ) + f
∗,(2)
i2

(λ) + f ∗
εi1,i2,h

(λ),

with f
∗,(1)
1 (λ) the flat spectrum of a white-noise process and f

∗,(1)
2 (λ), f

∗,(2)
1 (λ) and f

∗,(2)
2 (λ)

the spectra of quasiperiodic AR(2) processes. The densities in the spectral decomposition of
yi1,i2,h(t) are shown in Figure 2.

2.2.3. Interaction Effects Oftentimes studies are characterized by the presence of one or
more interaction terms. For example, a two-way time-domain model with interactions can be
written as

yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + γ
(1,2)
i1,i2

(t) + εi1,i2,h(t), (12)

where γ
(1,2)
i1,i2

(t) are time series processes that represent possible interaction effects between fac-
tors 1 and 2 at the i1 and i2 levels. In general, if we have D factors, we can extend the model
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in (3) to allow for second order interactions as follows:

yi1,...,iD (t) =
D∑

d=1

β
(d)
id

(t) +
D∑

k=1

D∑

l=1

γ
(k,l)
ik,il

(t) + εi1,i2,h(t). (13)

The Bayesian non-parametric approach described in Section 3 is illustrated with one-way
and two-way models with no interactions in Sections 4 and 5. However, the methodology can
be applied to models that include interaction effects by adding such terms in Whittle’s likeli-
hood approximation and by directly modeling the spectra of the interaction processes using the
Bernstein–Dirichlet priors discussed in Section 2.4. Note that higher order interaction processes
(e.g., third or higher order) can be added to (13) and modeled similarly.

As it will be shown in Section 4 with simulated data, when the number of factors increases,
more restrictions need to be added to guarantee the identifiability of the different processes in
the spectral decomposition. Therefore, instead of adding interaction effects and directly mod-
eling the spectral densities of such processes, we propose simple post-processing calculations
that can be used to explore if such interaction processes are present. We summarize such cal-
culations in the case of a two-way model. Assume that yi1,i2,h(t) is represented as the two-way

model process in (12). Such model can be written as yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + ε′
i1,i2,h

(t),
with ε′

i1,i2,h
(t) = γi1,i2(t) + εi1,i2,h(t). If we were to analyze this scenario without implicitly

considering the interaction terms, such terms would appear in the idiosyncratic factors ε′
i1,i2,h

(t).
Therefore, we could obtain estimates of the spectral densities of the interaction terms as follows:

1. Evaluate the common baseline across all the individuals (i1, i2, h). Compute

f ∗̄
ε (λ) = min

i1,i2,h
f ∗′

εi1,i2,h
(λ).

2. Evaluate the corresponding individual residual. For each λ and each (i1, i2, h) compute

f ∗′[residual]i1,i2,h
(λ) = f ∗′

εi1,i2,h
(λ) − f ∗̄

ε (λ).

3. Evaluate the interaction term across all the individuals within the same group. For each λ

and each (i1, i2) compute an estimate of the spectrum of the interaction process γ
(1,2)
i1,i2

(t)

as

f ∗
γi1,i2

(λ) = min
h

f ∗′[residual],i1,i2,h(λ).

By inspecting the posterior distribution of f ∗
γi1,i2

(λ) for each combination of (i1, i2), it can
be determined if one or more interaction terms should be included in the analysis.

2.3. Spectral Representation

Following a similar approach to that in Macaro (2010), we use a discrete version of Whittle’s
approximation of the likelihood function (Whittle, 1957, 1962) to estimate the factors. That is,
the likelihood is approximated as

LT

[
Iyi1,...,iD,h

(λ1:J )|f ∗,(1:D)
β (λ1:J ), f ∗

ε (λ1:J )
] =

J∏

j=1

exp{− Iyi1,...,iD,h
(λj )

∑D
d=1 f

∗,d
βid

(λj )+f ∗
εi1,...,iD,h

(λj )
}

∑D
d=1 f

∗,d
βid

(λj ) + f ∗
εi1,...,iD,h

(λj )
, (14)

where Iyi1,...,iD,h
(λj ) are the periodogram ordinates evaluated at the Fourier frequencies,

λj = 2πj

T
for j = 0,1, . . . , �T/2� := J.
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These summarize the information obtained from the data, while the f
∗,d
βid

(λ)s are spectral ordi-

nates to be estimated.
We now combine Whittle’s approximation to the likelihood in (14) with prior distributions

on each f
∗,d
βid

(λ) to obtain posterior inference in the spectral domain. As discussed in Macaro

(2010), prior elicitation is difficult since it involves the approximation of continuous spectral den-
sities over the set of Fourier frequencies. Choudhuri et al. (2004) propose the use of Bernstein–
Dirichlet prior distributions (Petrone, 1999a, 1999b), while Macaro (2010) presents a mixture
generalization of their work. Specifically, the spectrum of an observable time series is mod-
eled as a weighted sum of several unobserved spectral densities in Macaro (2010). The resulting
procedure is indeed more flexible, although the real novelty of the approach is the possibility
of studying unobserved components from a non-parametric viewpoint. Here we extend Macaro
(2010) to consider factorial designs with multiple time series. In other words, the models and
methods described in this section lead to a non-parametric spectral representation of the unob-
served components underlying multiple time series recorded in factorial experimental settings.
Below we describe the prior structure and how posterior inference can be achieved under such
prior structure. We also discuss some issues related to prior choice and summarize the steps of a
Markov chain Monte Carlo (MCMC) algorithm for posterior inference.

2.4. The Bernstein–Dirichlet Prior Distribution

The Bernstein polynomial prior developed by Petrone (1999a, 1999b) was used as a non-
parametric prior to estimate densities on the [0,1] interval, and was then used by Choudhuri
et al. (2004) for Bayesian estimation of spectral densities. This non-parametric prior hinges on
the uniform convergence of

K∑

k=1

Q†
(

k − 1

K
,

k

K

)

Beta(k,K−k+1)(λ)

to q(λ), a continuous probability density on [0,1]. Here Q†(ε1, ε2) := Q(ε2) − Q(ε1), with
Q(λ) being the probability function associated to q(λ). In particular, the Bernstein–Dirichlet
prior induces the weights w1, . . . ,wK of the mixture through a Dirichlet process, i.e.,

q(λ) =
K∑

k=1

wkBeta(k,K−k+1)(λ), (15)

with

Π(w1, . . . ,wK |K) = M Dirichlet(θ1,...,θK)(w1, . . . ,wK), (16)

where θ1, . . . , θK are the shape parameters, M > 0 is the concentration parameter, and K deter-
mines how flexible is the prior, with larger values of K leading to more flexible distributions.

We now represent each of the spectral densities, f
∗,(d)
βid

(λ) in (4), through a Bernstein kernel.

In order to implement Bernstein–Dirichlet priors in the spectral domain, such densities must be
normalized to the interval [0,1]. Therefore, we can define a pseudo-spectral density function,
qyi1,...,iD,h

(λ), and a normalization parameter, τyi1,...,iD,h
, such that

τyi1,...,iD,h
qyi1,...,iD,h

(λ) :=
σ 2

yi1,...,iD

2π
qyi1,...,iD,h

(λ) = fyi1,...,iD,h
(λ),
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where

σ 2
yi1,...,iD,h

= 2
∫ π

0
f ∗

yi1,...,iD,h
(u) du = 2

∫ 1

0
f ∗

yi1,...,iD,h
(πu)du := 2π

∫ 1

0
fyi1,...,iD,h

(u) du.

Then, the normalization parameters for the spectral representation of the unobserved factors
β

(d)
id

(t) and the idiosyncratic errors εi1,...,iD,h(t) can be derived as follows:

qyi1,...,iD,h
(λ) =

D∑

d=1

q
(d)
βid

(λ) + qεi1,...,iD,h
(λ)

=
D∑

d=1

f
(d)
βid

(λ)

τ
β

(d)
id

+ fεi1,...,iD,h
(λ)

τεi1,...,iD,h

,

such that τyi1,...,iD,h
= ∑D

d=1 τ
β

(d)
id

+ τεi1,...,iD,h
, with

τ
β

(d)
id

=
σ 2

β
(d)
id

2π
and τεi1,...,iD,h

=
σ 2

εi1,...,iD,h

2π
.

Since τ
β

(d)
i1

, . . . , τ
β

(d)
iD

and τεi1,...,iD,h
are proportional to the variances of the factors, inverse-gamma

distributions can be used as priors. That is,

Π[τ(·)|a(·), b(·)] = b
a(·)
(·)

Γ [a(·)]
[

1

τ(.)

]a(·)+1

exp

(

−b(·)
τ(·)

)

. (17)

The pseudo-spectral densities q
(d)
βid

(λ) and qεi1,...,iD,h
(λ) will be discretized over the set of Fourier

frequencies and estimated using Bernstein–Dirichlet priors.
Note that infinitely many choices of β

(d)
id

and εi1,...,iD (t) would lead to the same yi1,...,iD,h(t).
The same is true in the spectral domain. Therefore, identifiability conditions need to be imposed.
One way of doing so is by adding ANOVA-type restrictions (see Section 4.2). Alternatively,
following Macaro (2010), identifiability can be achieved through proper specification of infor-
mative Bernstein–Dirichlet prior as follows. For each q

(d)
βid

(λ) we have the representation in (15)

and (16) characterized by weights w
id,d
kd

for kd = 1 : Kd
id

and concentration parameter Md
id

. Simi-
larly, for each qεi1,...,iD,h

(λ) we have a Bernstein–Dirichlet prior characterized by mixture weights

w
εi1,...,iD,h

k for k = 1 : Ki1,...,iD,h and concentration parameter Mε
i1,...,id ,h. The concentration pa-

rameters control the variance of the Dirichlet processes. In other words, as Md
id

→ 0 the variance

of the corresponding Dirichlet process increases; and as Md
id

→ ∞ such variance goes to zero.

Therefore, instead of letting Md
id

→ ∞, we choose informed priors (Md
id

< ∞) on the f
(d)
id

(λ)s.
In practice, if we use the Dirichlet process characterization proposed by Sethuraman (1994), a
natural choice is to fix Md

id
= 1 (Choudhuri et al., 2004), which is equivalent to saying that the

prior for v
id ,d
kd ,l for l = 1 : L is flat (see Section 3 for a detailed description of such parameters).

Theoretically, we could also set a prior on Kd
id

as proposed by Choudhuri et al. (2004),
however, we fix these parameters in order to improve the speed and the stability of the MCMC
algorithm (see Section 3 for further discussion). This will be illustrated in the analyses of simu-
lated and real data sets in Sections 4 and 5. One of the main reasons for choosing this approach
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is that in many practical scenarios we have information about the unobserved components in the
decomposition of the series that we may want to incorporate into the model through the prior
distribution. For instance, electroencephalographic signals typically display activity in four main
frequency bands (see, e.g., Prado, 2010), which induces a natural way of decomposing each
signal into four unobserved components, one per frequency band.

Finally, it is important to notice the difference between Kd
id

and Md
id

. The parameter Kd
id

is
similar to the bandwidth parameter used when smoothing the periodogram: a smaller value of
Kd

id
leads to a higher degree of smoothing. On the other hand, Md

id
indicates the degree of trust

that we have in our prior distribution.

3. Posterior Inference

The posterior associated with the likelihood function (14) and with the priors described
above is not available in closed form. Nevertheless, samples from this distribution can be ob-
tained with a Metropolis–Hastings Markov chain Monte Carlo (MCMC) algorithm. The original
construction of the Dirichlet process is not suitable for MCMC schemes. Sethuraman (1994) pro-
posed an alternative construction which has been implemented by Gelfand and Kottas (2002) for
a more flexible algorithm. Our sampling procedure is a generalization of the algorithm in Macaro
(2010) which, in turn, is an adaptation of the work of Choudhuri et al. (2004) for the analysis of
spectral densities. Particularly, the MCMC algorithm outlined in Section 3.2 is not built for the
weight parameters w

id,d
1 , . . . ,w

id ,d

Kd
id

and w
εi1,...,iD,h

1 , . . . ,w
εi1,...,iD,h

Ki1,...,iD,h
, but for the set of parameters

r
id ,d
kd ,1, . . . , r

id ,d
kd ,L, v

id ,d
kd ,1, . . . , v

id ,d
kd ,L, r

εi1,...,iD,h

kh,1 , . . . , r
εi1,...,iD,h

kh,L , and v
εi1,...,iD,h

kh,1 , . . . , v
εi1,...,iD,h

kh,L such that

w
id,d
kd

=
L∑

l=0

p
id ,d
kd ,l 1{ kd−1

Kd
id

<r
id ,d

kd ,l ≤ kd

Kd
id

}, (18)

with

p
id ,d
kd ,1 = v

id ,d
kd ,1, p

id ,d
kd ,l = v

id ,d
kd ,l

l−1∏

i=1

(
1 − v

id ,d
kd ,i

)
, p

id ,d
kd ,0 = 1 −

L∑

l=1

p
id ,d
kd ,l , (19)

and

w
εi1,...,iD,h

kh
=

L∑

l=0

p
εi1,...,iD,h

kh,l 1{ kh−1
Ki1,...,iD,h

<r
εi1,...,iD,h

kh,l ≤ kh
Ki1,...,iD,h

}, (20)

with

p
εi1,...,iD,h

kh,1 = v
εi1,...,iD,h

kh,1 , p
εi1,...,iD,h

kh,l = v
εi1,...,iD,h

kh,l

l−1∏

i=1

(
1 − v

εi1,...,iD,h

kh,i

)
,

p
εi1,...,iD,h

kd ,0 = 1 −
L∑

l=1

p
εi1,...,iD,h

kh,l ,

(21)

where the truncation level of the Dirichlet process is L = max(20, T 1/3) (Choudhuri et al., 2004).

3.1. Prior Choice

The prior probabilities can be chosen by performing the following steps:
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1. Choose the number and types of factors and idiosyncratic components. This will depend
on the data structure and the particular decomposition of interest (e.g., one-way vs. two-
way factor structures). For example, in the data analysis presented in Section 5, for each
time series we use a model with two factors, where each factor has two levels, and one
idiosyncratic component which tries to capture the individual-specific features that are
not described by any of the two factors.

2. Determine the a priori spectral properties that characterize each factor and transform
this information into kernel parameters θ

id ,d
1 , . . . , θ

id ,d

Kd
id

for the corresponding Dirich-

let process. For the idiosyncratic components the parameters can be set all equal to
one to represent the prior assumption that these components are white noise. The prior
for the remaining parameters r

id ,d
kd ,1, . . . , r

id ,d
kd ,L, v

id ,d
kd ,1, . . . , v

id ,d
kd ,L, r

εi1,...,iD,h

kh,1 , . . . , r
εi1,...,iD,h

kh,L ,

and v
εi1,...,iD,h

kh,1 , . . . , v
εi1,...,iD,h

kh,L of the Bernstein representation are chosen according to the
guidelines provided by Choudhuri et al. (2004).

3. Determine the flexibility of the priors on the factors: the smaller the value of Kd
id

and
Ki1,...,iD,h, the smoother the corresponding spectral densities. Notice that this is partic-
ularly useful to separate the white-noise effects—which are characterized by flat and
smooth spectral densities—from other effects. It is worth to remember that although
Kid and Ki1,...,iD,h control for the smoothness of the spectra, they do not control for
the strength of the prior distributions (this is achieved by changing the values of Md

id
and

Mi1,...,iD,h).
4. Choose the Md

id
and Mi1,...,iD,h concentration parameters: large values reduce the vari-

ance of the corresponding Dirichlet processes. Note for example that by letting Md
id

→ ∞
the underlying components become fixed (for more details see Macaro, 2010).

5. Determine the prior distributions for the normalization parameters. These parameters are
proportional to the variances, therefore inverse gammas seem to be appropriate:

τ(.) ∼ InvGamma
{
s

prior
(.)

, τ̃(.)

[
s

prior
(.)

− 1
]}

(22)

with s
prior
(.) and τ̃(.) chosen using the fact that

E[τ(.)] = τ̃(.) and var[τ(.)] = τ̃ 2
(.)

s
prior
(.) − 2

. (23)

3.2. MCMC Algorithm

The posterior distribution associated with the likelihood function (14) and with the prior
distributions described above is not available in closed form. The following Metropolis–Hastings
MCMC algorithm can be used to obtain samples from the posterior distribution.

1. For each factor indexed by d = 1 : D
(a) For each level of by id = 1 : Nd of the factor d

i. Update v. For each l = 1 : L
• Propose a candidate value for v

id ,d
kd ,l .

• Evaluate the new set of p
id,d
kd ,1, . . . , p

id ,d
kd ,L and the corresponding new set of

mixture weights w
id,d
1 , . . . ,w

id ,d

Kd
id

.

• Evaluate the new spectral density f
∗,(d)
id

(λ) of the corresponding factor
component and the likelihood (14).
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• Decide whether to accept the proposed value of v
id ,d
kd ,l .

ii. Update r. For each l = 0 : L
• Propose a candidate value for r

id ,d
kd ,l .

• Evaluate the new set of mixture weights w
id,d
1 , . . . ,w

id ,d

Kd
id

.

• Evaluate the new spectral density f
∗,(d)
id

(λ) of the corresponding factor
component and the likelihood (14).

• Decide whether to accept the proposed value of r
id ,d
kd ,l .

iii. Update τ . Propose a candidate value of τ
(d)
βid

and evaluate the corresponding spec-

tral density and the likelihood (14).
2. Given the updates for the levels id of each process d , update the corresponding idiosyn-

cratic component.
(a) For the set of indices (i1, . . . , iD,h),

i. Update v for the spectral density f ∗
εi1,...,iD,h

(λ) as described in 1(a)i.
ii. Update r for the spectral density f ∗

εi1,...,iD,h
(λ) as described in 1(a)ii.

iii. Update τ for the spectral density f ∗
εi1,...,iD,h

(λ) as described in 1(a)iii.

The above algorithm was implemented in R (R Development Core Team, 2007) using the
MCMC package written by Martin and Quinn (2005).2 The algorithm is run for I iterations
with I as large as needed to obtain MCMC convergence. This algorithm is an extension of the
MCMC scheme of Macaro (2010) that allows us to consider factorial time series data. From the
computational point of view this is rather complex; and, so, the computation time required to do
the analysis increases with the number of factors, the number of levels within each factor, and
the number of time series within each combination of factors. The proposed candidate values
in Steps 1(a)i–ii and 2(a)i–ii are sampled from uniform distributions and those in Steps 1(a)iii
and 2(a)iii are sampled from inverse-Gamma distributions whose moments are functions of the
old parameter values (see Macaro, 2010 for further details). In addition, the proposed values are
accepted or rejected according to Metropolis–Hastings schemes.

4. Simulation Studies

4.1. Baseline Plus Single Factor Model

A data set with a total of four time series of length T = 500 was simulated from the one-
way model described in Section 2.2.1. The priors are chosen to be Beta kernels. Specifically, we
chose a low frequency band-pass kernel for the baseline, q

β
(1)
1

(λ) ∼ Beta(1,20), and an approx-

imately periodic kernel for the two levels of the remaining factor q
β

(2)
1

(λ) ∼ Beta(50,20) and

q
β

(2)
2

(λ) ∼ Beta(50,20). Finally, qεi1,i2,h
(λ) ∼ Beta(1,1) implies a white-noise assumption for

the error term. The parameters controlling the flexibility of the representation are set to K1
i1

= 40,

K2
i2

= 40 and K3
i1,i2,h

= 1. This prior choice empowers the belief that the main factors must not
capture white-noise effects; and, so, their spectra are not expected to be flat a priori. In addition,
the parameters which control for the variances of the Dirichlet distributions are set to Md

id
= 1

and Mε· = 1.

2The code is available upon request. Please email C. Macaro at christianmacaro@gmail.com.

mailto:christianmacaro@gmail.com
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Figure 3 shows the prior and posterior distributions (gray and black areas, respectively), as
well as estimators based on the smoothed periodograms for the spectral densities of the observed
time series and the unobserved processes β

(1)
1 (t), β

(2)
1 (t), and β

(2)
2 (t). Note that, in spite of the

fact that the priors on the spectral densities of β
(2)
1 (t) and β

(2)
2 (t) had modes away from the cor-

rect periods, the estimated posterior spectral densities adequately capture the frequencies around
2.0 and 2.6.

4.2. Two-Way Models

We analyze time series data simulated from the two-way model described in Section 2.2.2
with d = 2, i1 = 1 : 2, i2 = 1 : 2, h = 1 : 2, and T = 500. We consider two alternative ways of
selecting the prior distributions in this example. First we assume that the spectral density of the
first level of the first factor, β

(1)
1 (t), as well as the spectral density of the ε·,·,·(t) processes are

constant over all the frequencies. This is consistent with the assumption that these processes are
white-noise processes. In addition, we assume weak and flat priors on the spectral densities of
the remaining time series processes. Specifically, we have q

β
(1)
2

(λ) ∼ Beta(1.3,1.3), q
β

(2)
1

(λ) ∼
Beta(1.3,1.3), q

β
(2)
2

(λ) ∼ Beta(1.3,1.3). Notice that we purposely chose these kernels to be

nearly flat to contrast the boundary bias (see Zhang & Karunamuni, 2010) which seems to affect
weak and flat priors. The parameters controlling the flexibility of the representation are set again
to K1

i1
= 40, K2

i2
= 40 and K3

i1,i2,h
= 1. The parameters that control the variances of the Dirichlet

distributions are set to Md
id

= 1 and Mε· = 1.
By fixing the spectral densities of one of the levels of one of the factors and the spectral

densities of the error term processes, identification of the remaining components is achieved, as
shown in Figures 4 and 5.

The second scenario does not fix the spectra of any of the factor processes. It is assumed that
the error processes have white-noise spectra a priori, and slightly more informative priors on the
factor processes are considered. In particular we assume band-pass filter types of priors that em-
phasize smaller frequencies for β

(1)
1 (t) and β

(1)
2 (t) and larger frequencies for β

(2)
1 (t) and β

(2)
2 (t).

The graphs in Figures 6 and 7 show that the implementation of a model with these band-pass fil-
ter priors produces results similar to those obtained under the white-noise assumption on β

(1)
1 (t)

considered above and adequately captures the data structure.

4.3. Further Identification Issues in Two-Way Models

In order to illustrate some additional features related to prior elicitation and corresponding
posterior inference, we consider a larger simulated data set. Specifically, a total of 12 time series
were simulated from a two-way model with the following structure:

yi1,i2,h(t) = α
(1)
i1

(t) + α
(2)
i2

(t) + εi1,i2,h(t), (24)

for t = 1 : 500, i1 = 1 : 2, i2 = 1 : 2, and l = 1 : 3, where

α
(1)
1 (t) ∼ AR

[
2, (0.95,9),0.5

]
, α

(1)
2 (t) ∼ α

(1)
1 (t) + AR

[
2, (0.95,3),0.5

]
, (25)

α
(2)
1 (t) ∼ AR[1,0.86,0.5] + ν1(t), α

(2)
2 (t) ∼ AR[1,0.94,0.5] + ν2(t), (26)

with εi1,i2,h(t) ∼ N(0,0.5) for all i1, i2 and l, ν1(t) ∼ N(0,0.5), and ν2(t) ∼ N(0,0.5). In the
notation above, AR[2, (0.95,9),0.5] denotes a quasiperiodic autoregressive process of order
two, or AR(2), with a pair of complex reciprocal roots with modulus 0.95, wavelength 9—
or equivalently, frequency 0.698—and standard deviation 0.5. Similarly, AR[2, (0.95,3),0.5]
denotes a quasiperiodic AR(2) process with a pair of complex reciprocal roots with modulus
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FIGURE 3.
Spectral analysis of time series data simulated from the one-way model described in Section 2.2.1. Gray areas are central
95 % spectral prior distributions, while black areas are central 95 % spectral posterior distributions. The dotted lines
represent estimators of the spectral densities obtained by smoothing the periodograms of the data. First row: estimated

spectral densities of β
(1)
1 (t), y1,1,1(t), and y1,1,2(t). Second row: estimated spectral densities of β

(2)
1 (t), ε1,1,1(t), and

ε1,1,2(t). Third row: estimated spectral densities of β
(1)
1 (t), y1,2,1(t), and y1,2,2(t). Fourth row: estimated spectral

densities of β
(2)
2 (t), ε1,2,1(t) and ε1,2,2(t).
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FIGURE 4.
Spectral analysis of time series data simulated from the two-way model described in Section 2.2.2. Gray areas are central
95 % spectral prior distributions, while black areas are central 95 % spectral posterior distributions. The dotted lines
represent estimators of the spectral densities obtained by smoothing the periodograms of the data. First row: estimated

spectral densities of β
(1)
1 (t), y1,1,1(t), and y1,1,2(t). Second row: estimated spectral densities of β

(2)
1 (t), ε1,1,1(t), and

ε1,1,2(t). Third row: estimated spectral densities of β
(1)
1 (t), y1,2,1(t), and y1,2,2(t). Fourth row: estimated spectral

densities of β
(2)
2 (t), ε1,2,1(t) and ε1,2,2(t).
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FIGURE 5.
Spectral analysis of time series data simulated from the two-way model described in Section 2.2.2. Gray areas represent
central 95 % spectral prior distributions, while black areas are central 95 % spectral posterior distributions. The dotted
lines represent estimators of the spectral densities obtained by smoothing the periodograms of the data. First row: esti-

mated spectral densities of β
(1)
2 (t), y2,1,1(t), and y2,1,2(t). Second row: estimated spectral densities of β

(2)
1 (t), ε2,1,1(t),

and ε2,1,2(t). Third row: estimated spectral densities of β
(1)
2 (t), y2,2,1(t), and y2,2,2(t). Fourth row: estimated spectral

densities of β
(2)
2 (t), ε2,2,1(t) and ε2,2,2(t).
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FIGURE 6.
Spectral analysis of time series data simulated from the two-way model described in Section 2.2.2. Gray areas represent
central 95 % spectral prior distributions, while black areas are central 95 % spectral posterior distributions. The dotted
lines represent estimators of the spectral densities obtained by smoothing the periodograms of the data. First row: esti-

mated spectral densities of β
(1)
1 (t), y1,1,1(t), and y1,1,2(t). Second row: estimated spectral densities of β

(2)
1 (t), ε1,1,1(t),

and ε1,1,2(t). Third row: estimated spectral densities of β
(1)
1 (t), y1,2,1(t), and y1,2,2(t). Fourth row: estimated spectral

densities of β
(2)
2 (t), ε1,2,1(t) and ε1,2,2(t).
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FIGURE 7.
Spectral analysis of time series data simulated from the two-way model described in Section 2.2.2. Gray areas represent
central 95 % spectral prior distributions, while black areas are central 95 % spectral posterior distributions. The dotted
lines represent estimators of the spectral densities obtained by smoothing the periodograms of the data. First row: esti-

mated spectral densities of β
(1)
2 (t), y2,1,1(t), and y2,1,2(t). Second row: estimated spectral densities of β

(2)
1 (t), ε2,1,1(t),

and ε2,1,2(t). Third row: estimated spectral densities of β
(1)
2 (t), y2,2,1(t), and y2,2,2(t). Fourth row: estimated spectral

densities of β
(2)
2 (t), ε2,2,1(t) and ε2,2,2(t).
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0.95, wavelength 3—or frequency 2.094—and standard deviation 0.5; AR[1,0.86,0.5] denotes
an AR(1) process with a reciprocal root of modulus 0.86 and standard deviation 0.5; and fi-
nally, AR[1,0.94,0.5] denotes an AR(1) with a reciprocal root of modulus 0.94 and standard
deviation 0.5.

The structure above implies that the spectra of the series y1,1,h(t) and y1,2,h(t) will have
a peak at the frequency ω1 = 0.698, in addition to the peak at zero related to the AR(1) com-
ponents; while those of the series y2,1,h(t) and y2,2,h(t) will have an additional peak at the fre-
quency ω2 = 2.094. We proceed to analyze these data with the Bayesian spectral non-parametric
approach described in the previous sections. In particular, we assume the following underlying
structure on the observed data:

yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + εi1,i2,h(t).

Furthermore, we assume that, a priori, the spectra of β
(1)
i1

(t) for i1 = 1 : 2 have a single peak

around the frequency ω1 = 0.698, the spectra of β
(2)
i2

(t) for i2 = 1 : 2 have only a peak at zero,
and the spectra of εi1,i2,h(t) are flat.

Figures 8 and 9 show the prior structure (gray areas). Note that this prior is closely describing
the structure underlying the processes y1,1,h(t) and y1,2,h(t), but it misspecifies the structure of
the processes underlying y2,1,h(t) and y2,2,h(t), completely missing the second peak at ω2 =
2.094.

Note that the error components, assumed to have flat spectra a priori under a white-noise
structure, capture, a posteriori, whatever is left unexplained by the factor structure. Therefore,
if an informative prior used on the spectra of a given factor misses certain frequency compo-
nents present in the data, such components will be captured by the posterior distributions of the
spectra of the idiosyncratic components, if relatively noninformative priors were given to these
components. This is confirmed by the results shown in Figures 8 and 9. The prior distribution for
β

(1)
2 (t) does not include one of the frequency components in the true α

(1)
2 (t) and the posterior

distribution of β
(1)
2 (t) does not capture the peak at ω2 = 2.094. Note, however, that this peak

clearly appears in the estimated spectra of the six idiosyncratic error terms ε2,1,h(t) and ε2,2,h(t)

for h = 1 : 3, indicating that such structure is missing from the factorial decomposition of the
process.

The analysis above that assumes informative priors on some of the unobserved components
is performed in order to illustrate a couple of features about the spectral decomposition. First,
the use of informative priors allow us to choose a particular decomposition of the series where
some of the components may have a specific scientifically interpretable meaning a priori. For
example, in this simulation study, we use a strong informative prior on the spectrum of β

(1)
2 (t)

that identifies this time series process as one with activity in a particular frequency band. Alter-
natively, we could have used a more standard time-domain two-way representation of the data
by assuming that the spectrum of one of the levels of one of the two factors, say the spectrum of
β

(1)
1 (t), is flat (consistent with a white-noise prior assumption on this process). Such represen-

tation would also imply strong assumptions on the components that would not lead to the true
unobserved representation in (24), (25), and (26), but that would allow us to adequately capture
the structure of the spectra of the observed time series a posteriori. Researchers can therefore
explore several spectral decompositions of the data by making different assumptions on the un-
observed components, as long as such assumptions guarantee identifiability. The second model
feature that we want to emphasize is that, regardless of the identifiability conditions used on the
spectral characterization of the factors β

(d)
id

(t), the model will be able to adequately describe the
structure of the data a posteriori if the priors on the spectra of εi1,i2,h(t) are assumed to be flat

and diffuse. As seen in the simulation study above, none of the priors on the spectra of β
(d)
i1

(t)
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FIGURE 8.
Spectral analysis of the time series data simulated from the model described in Section 4.3. Gray areas represent central
95 % of the prior distributions. Black areas represent central 95 % of the posterior distributions from the two-way
model. The dotted lines represent periodogram-based estimators of the spectral densities of the individual series without
considering the factor structure.
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FIGURE 9.
Spectral analysis of the time series data simulated from the model described in Section 4.3. Gray areas represent central
95 % of the prior distributions. Black areas represent central 95 % of the posterior distributions from the two-way
model. The dotted lines represent periodogram-based estimators of the spectral densities of the individual series without
considering the factor structure.
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and εi1,i2,h(t) had peaks on frequencies above 1.5, however, the estimated posterior spectra of
ε2,1,h(t), ε2,2,h(t), and, therefore, the estimated posterior spectra of y2,1,h(t) and y2,2,h(t), show
a peak at the ω2 = 2.094 frequency that does not appear in any of the spectra of the yi1,i2,h(t)

series.

5. Functional Magnetic Resonance Imaging Data

We consider the analysis of a data set from an experiment of Antognini, Buonocore, Dis-
brow, and Carstens (1998) in which functional magnetic resonance imaging (fMRI) was used
to examine pain perception in humans. The data, previously analyzed in Stoffer (1999) and
Shumway and Stoffer (2006), consist of consecutive measures of blood oxygenation level depen-
dent (BOLD) signal intensities at nine locations in brain. The signals were measured in 26 awake
and mildly anesthetized individuals who were presented with three types of periodic stimuli:
brushing, heat, and shock. The stimuli were applied alternately for 32 seconds, with a sampling
rate of one point every two seconds, and then stopped for 32 seconds.

Data were recorded by several sensors located on different parts of the brain, namely, Cor-
tex 1, 2, 3 and 4, Caudate, Thalamus 1 and 2, and Cerebellum 1 and 2. Here we analyze only
those related to the region Cortex 1. The 26 patients were divided into six groups depending on
the type of stimulus they received (Brush, Heat, or Shock) and on whether they were awake or
mildly anesthetized. Specifically, we have the following: (1) data from three patients in Low se-
dation state who were stimulated with a Brush; (2) data from five patients in Low sedation state
stimulated by Heat; (3) data from four patients in Low sedation state stimulated by a Shock; (4)
data from five Awake patients recorded while they were stimulated with a Brush; (5) data from
four Awake patients stimulated by Heat; and finally, (6) data from five Awake patients stimulated
by a Shock. Given this structure, a two-way model with one factor associated to the level of con-
sciousness (Low and Awake) and another factor associated to the stimulus type (Brush, Heat, and
Shock) was chosen to describe these data. Therefore, we consider a two-way model of the form

yi1,i2,h(t) = β
(1)
i1

(t) + β
(2)
i2

(t) + εi1,i2,h(t),

where β
(1)
i1

(t) for i1 = 1 : 2 model the effects related to the consciousness level, β
(2)
i2

(t) for i2 =
1 : 3 model the effects of the type of stimulus, and each εi1,i2,h(t) is the idiosyncratic component
modeling those effects specific to each patient that are not captured by the factor structure. Since
the number of patients varies within each combination of consciousness level and stimulus type,
we have y1,1,h(t) (Low and Brush) for h = 1 : 3; y1,2,h(t) (Low and Heat) for h = 1 : 5; y1,3,h(t)

(Low and Shock) for h = 1 : 4; y2,1,h(t) (Awake and Brush) for h = 1 : 5; y2,2,h(t), (Awake and
Heat) for h = 1 : 4; and y2,3,h(t) (Awake and Shock) for h = 1 : 5.

The priors are chosen to be Beta kernels. Specifically, we chose q
β

(1)
1

(λ) ∼ Beta(1.7,8.6);

q
β

(1)
2

(λ) ∼ Beta(1.7,10.6); q
β

(2)
1

(λ) ∼ Beta(1.7,1.1); q
β

(2)
2

(λ) ∼ Beta(1.7,1.1); q
β

(2)
3

(λ) ∼
Beta(1.7,1.1); and qεi1,i2,h

(λ) ∼ Beta(1,1) for all i1, i2 and h. The idea is that, a priori, the

β
(1)
i1

(t) processes aim to describe low frequency components, the β
(2)
i2

(t) aim to describe high
frequency components and εi1,i2,h(t) are white-noise processes. For the remaining parameters,
we set K1

i1
= 30 (cyclical), K2

i2
= 100 (long term) and K3

i1,i2,h
= 10 (short-term/white noise) for

i1 = 1 : 2, i2 = 1 : 3 and h = [(1 : 3), (1 : 5), (1 : 4), (1 : 5), (1 : 4), (1 : 5)]. The parameters that
control the variances of the Dirichlet distributions were set to Md

id
= 1 and Mε· = 1.

Figure 10 shows the prior and posterior distributions (light and dark gray areas, respectively)
of the spectra of the factors. Figure 11 shows the prior and posterior distributions (light and
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FIGURE 10.
Spectral analysis of the fMRI data. The plots display the spectra of the factor processes. The light gray areas represent
central 95 % of the prior distributions and the dark gray areas represent central 95 % of the posterior distributions.

dark gray areas, respectively) of the spectra of the idiosyncratic processes for each of the 26
individuals.

From the graphs we can see that the posterior distributions of the spectral density for the
process β

(1)
1 (t) related to Low sedation level and that for the process β

(2)
1 (t) related to Awake

consciousness level show a marked peak around 0.19–0.22 which, given the sampling rate of the
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FIGURE 11.
Spectral analysis of the fMRI data. The plots show the spectra of the idiosyncratic components for each of the 26 subjects.
The light gray areas represent central 95 % of the prior distributions. The dark gray areas represent central 95 % of the
posterior distributions.
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data, corresponds to the 64-second period band (or 1/64 cycles per second). The posterior spectral
density of β

(1)
1 (t) (Low) shows more uncertainty in this frequency band than the posterior spectral

density of β
(1)
2 (t) (Awake). In addition, the spectral density of β

(1)
1 (t) (Low) shows additional

activity in higher frequency bands. Similarly, comparing the posterior estimates of the spectral
densities of the processes β

(2)
1 (t), β

(2)
2 (t) and β

(2)
3 (t) associated, respectively, with the Brush,

Heat and Shock stimuli, we see that the density for Brush shows a marked peaked around the
0.19–0.22 (again, the 64-second period band) that increases the power at this frequency in the
estimated spectra of the subjects who received this type stimulus. For the other two types of
stimuli, rather small peaks appear at higher frequencies. In summary, the posterior results based
on the Bayesian non-parametric analysis for the data collected at the Cortex 1 location indicate
that there is a significant difference in the power spectra at the 1/64 frequency band for patients
that received the Brush stimulus.

6. Conclusions

This work presents a Bayesian non-parametric framework for the analysis of multiple time
series that are collected in factorial experimental designs. This approach is based on representing
the prior distributions on the spectral densities with Bernstein–Dirichlet priors. It is an impor-
tant extension of the univariate methods of Macaro (2010) in that it allows us to combine data
and prior distributions on the unobserved spectral components in the decomposition of multiple
time series. In particular, users can explore various decompositions of the observed time series
processes and, consequently, various spectral decompositions, which can provide useful repre-
sentations of the data.

Because of the possibility of extracting unobserved factors from a set of time series, this
work is related to the well known literature on dynamic factor models (Geweke, 1977; Sargent &
Sims, 1977; Forni, Hallin, Lippi, & Reichlin, 2000; Stock & Watson, 2002, and many others). In
our work we emphasize how the priors can be used to guarantee the identifiability of the different
model components at the spectral level. Forni et al. (2000) and Stock and Watson (2002), on the
other hand, derived their identification conditions from the properties of the principal component
analysis.

We illustrate the main features and the performance of the Bayesian non-parametric ap-
proach in the analyses of simulated data and in functional magnetic resonance (fMRI) brain
responses measured in awake and mildly anesthetized individuals who were presented with three
types of stimuli. The posterior distributions on the specific spectral decomposition of the data
that we chose—i.e., a decomposition in which each observed signal was represented as a sum of
two unobserved components, one related to the level of consciousness and one to the stimulus,
plus an idiosyncratic term—reveals differences in the power spectra at certain frequency bands
for patients who received a particular stimulus. The spectral domain approaches presented here
can be used to study data from a broad range of applications in which multiple time series are
collected in the context of a designed experiment.
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