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MOKKEN SCALE ANALYSIS FOR DICHOTOMOUS ITEMS USING
MARGINAL MODELS
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Scalability coefficients play an important role in Mokken scale analysis. For a set of items, scalability
coefficients have been defined for each pair of items, for each individual item, and for the entire scale.
Hypothesis testing with respect to these scalability coefficients has not been fully developed. This study
introduces marginal modelling as a framework to derive the standard errors for the scaling coefficients
and test hypotheses about these coefficients. Several examples demonstrate the possibilities of marginal
modelling in Mokken scale analysis. These possibilities include testing whether Mokken’s criteria for a
scale are satisfied, testing whether scalability coefficients of different items are equal, and testing whether
scalability coefficients are equal across different groups.
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1. Introduction

Mokken scale analysis (Mokken, 1971; Sijtsma & Molenaar, 2002) is used for scaling items
and measuring respondents on an ordinal scale. Mokken scale analysis consists of two parts.
The first part is the evaluation of a set of items with ordered scores as a scale according to
particular scaling criteria that are related to the monotone homogeneity model (Mokken, 1971;
Sijtsma & Molenaar, 2002). This can be done in a confirmatory way for a set of items that
are hypothesized to form a scale or in an exploratory way when an experimental set of items
is analyzed to find out whether they constitute one or more scales. When none of the items
satisfy the criteria of Mokken scale analysis, the result is that no scales can be constructed, but it
happens more frequently that one or a few items in the set are unscalable whereas the majority
of the items is scalable. The unscalable items are left out of the analysis. The scales that are
produced by Mokken scale analysis are referred to as Mokken scales. The second part of Mokken
scale analysis takes the scales found in the first part, and investigates several other interesting
properties of the monotone homogeneity model that were not assessed explicitly in the first part
of the analysis. This second part does not play a role in this study. Mokken scale analysis can be
conducted using the stand-alone software package MSP5.0 for Windows (Molenaar & Sijtsma,
2000) and the R package mokken.0.2 (Van der Ark, 2007).

Mokken scales are defined by means of scalability coefficients (Mokken, 1971, pp. 148–
153). The first part of Mokken scale analysis involves the testing of hypotheses about these scal-
ability coefficients and the evaluation of their numerical values. The hypotheses involve testing
whether scalability coefficients satisfy the criteria for a Mokken scale (Mokken, 1971, p. 184),
and testing whether scalability coefficients are equal across items or across groups. We demon-
strate that currently available methods do not allow us to test several interesting hypotheses about
the scaling coefficients that are relevant in Mokken scale analysis, and we propose to use the
marginal modelling framework for this purpose and also for testing hypotheses for which other
solutions already exist (Mokken, 1971).
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The paper is organized as follows. First, the principles of marginal modelling are explained.
Second, Mokken scale analysis is discussed, including the monotone homogeneity model, the
scalability coefficients, and the definition of a scale. Third, the scalability coefficients are dis-
cussed and it is shown how these coefficients can be reformulated so that they can be incorpo-
rated in marginal models. For the sake of readability, several important but rather cumbersome
derivations have been diverted to appendices. Fourth, we give an overview of relevant hypothe-
ses in Mokken scale analysis and we show how these hypotheses can be tested using marginal
models. As an example, the marginal models were applied to data from a cognitive balance-task
test (Van Maanen, Been, & Sijtsma, 1989). Fifth, the strengths and weaknesses of the marginal
modelling approach are discussed, and recommendations are given for its practical use and for
future improvements.

2. Marginal Models

Assume that a test consists of J dichotomously scored items, indexed by j and i. The
random variable representing the scores on item j is denoted by Xj , and its realization by xj

(xj ∈ {0,1}). A vector containing the J item-score variables is denoted (X1,X2, . . . ,XJ ). The
total score on the test is denoted by X+ = ∑J

j=1 Xj . The popularity or the easiness of an item
is defined as the probability that a randomly drawn respondent from the population of interest
endorses a positively worded statement or answers an item correctly, respectively, and is denoted
by π1

j . The probability that a randomly drawn respondent does not endorse a positively worded

statement or answers an item incorrectly, is denoted by π0
j . The joint probability of scores on

Xi and Xj is denoted by πuv
ij [u,v = 0,1; πuv

ij can assume values for four different score pairs:
(0,0), (0,1), (1,0), and (1,1)]. Without loss of generality, the items are ordered by decreasing
popularity or easiness and numbered accordingly, such that

π1
1 ≥ π1

2 ≥ · · · ≥ π1
J . (1)

Equation (1) arbitrarily defines the most popular item to be item 1, the next popular item to be
item 2, and so on. Equation (1) does not in any way restrict the data. Finally, the test data can be
collected in a J -dimensional contingency table with L = 2J cells.

Consider the example in Table 1 (upper left-hand panel), which shows the cross classification
of J = 2 items in a two-way contingency table. The observed frequencies in the contingency
table are denoted by nuv

ij (u, v = 0,1) and the marginal frequencies are denoted by nu
i , nv

j , and n.
Assuming a fixed sample size n, let muv

ij be the theoretically expected frequency satisfying muv
ij =

n × πuv
ij (u, v = 0,1), with marginal frequencies mu

i , mv
j , and m = n. Sample estimates of muv

ij

and πuv
ij are denoted by m̂uv

ij and π̂uv
ij , respectively. Without any constraints imposed upon the

data, m̂uv
ij = nuv

ij and π̂uv
ij = nuv

ij /n. In Table 1 (upper left-hand panel), π̂1
i = 58/178 = 0.33 and

π̂1
j = 44/178 = 0.25. Because π̂1

i > π̂1
j , item i is assumed to be more popular than item j in

the population. The order of the indices i and j in the subscripts of, for example, nuv
ij , in general

indicates that in the sample item i is more popular than item j .
Marginal models for categorical data (Bartolucci & Forcina, 2002; Bartolucci, Forcina, &

Dardanoni, 2001; Bergsma, 1997a; Bergsma & Rudas, 2002; Lang & Agresti, 1994; Rudas &
Bergsma, 2004) constitute a family of models that impose restrictions on certain marginals (i.e.,
subsets) of contingency tables. These restrictions can have several forms. To illustrate this, we
take the contingency table in the upper left-hand panel of Table 1 as a starting point.

The first example of a marginal model imposes equality constraints on two cell frequencies
by hypothesizing that π00

ij = π11
ij . Estimation of this marginal model of equal diagonal probabil-



L.A. VAN DER ARK, M.A. CROON, AND K. SIJTSMA 185

TABLE 1.

Example of a contingency table with observed frequencies for a dichotomous item pair (upper left-
hand panel), the estimated expected frequencies under a marginal model of equal diagonal probabilities
(upper right-hand panel), the estimated expected frequencies under a marginal model of homogeneous
item popularity (lower left-hand panel), and the estimated expected frequencies under a marginal model
with γ = .8 (lower right-hand panel).

Item j Total
0 1

Item i 0 102 18 120

1 32 26 58

Total 134 44 178

Item j Total
0 1

Item i 0 64 18 82

1 32 64 96

Total 96 82 178

Item j Total
0 1

Item i 0 102 25 127

1 25 26 51

Total 127 51 178

Item j Total
0 1

Item i 0 106.684 13.316 120.000

1 27.316 30.684 58.000

Total 134.000 44.000 178

ities yields estimated expected frequencies m̂uv
ij that are as close as possible to the observed fre-

quencies nuv
ij (e.g., using a maximum likelihood or least-squares criterion) but with m̂00

ij = m̂11
ij .

Table 1 (upper right-hand panel) shows the maximum likelihood estimates of the expected fre-
quencies.

Throughout the paper we assume a multinomial sampling distribution that has the effect of
reproducing the sample size n (here m = n = 178) in the marginal model. The fit of the marginal
model is evaluated by comparing the observed and expected frequencies using commonly known
fit statistics for contingency tables such as the likelihood ratio statistic, G2 (see Appendix A). Let
C denote the number of nonredundant constraints on the frequencies in the contingency table.
For large n, G2 approaches a chi-square distribution with C degrees of freedom (df = C). In the
first example, it may be verified that G2 = 64.352; because there is one nonredundant constraint
(i.e., m00

ij − m11
ij = 0), it follows that df = 1 and, as a result, p < .0001.

The second example of a marginal model imposes equality constraints on the marginal fre-
quencies in Table 1 by hypothesizing that π1

i = π1
j , which implies π0

i = π0
j . Estimation of this

marginal model of homogeneous item popularity yields estimated expected frequencies m̂uv
ij such

that m̂0
i = m̂0

j and m̂1
i = m̂1

j . Table 1 (lower left-hand panel) shows the maximum likelihood es-

timates of the expected frequencies. It may be verified that G2 = 3.973; because there is one
nonredundant constraint (i.e., m0

i − m0
j = 0), it follows that df = 1 and, as a result, p = .0462.

The third example of a marginal model imposes equality constraints on functions of the cell
frequencies in Table 1 by restricting Goodman and Kruskal’s (1954) γ coefficient to a value
that is hypothesized between two variables in a particular study. This application is interesting
because it allows us to illustrate marginal modelling in greater detail than the previous, simpler
examples. Coefficient γ can be written as a function of the expected cell frequencies,

γ = m00
ij m11

ij − m01
ij m10

ij

m00
ij m11

ij + m01
ij m10

ij

.
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Bergsma and Croon (2005) described several interesting restrictions on γ that can be estimated
using marginal models. A simple restriction is the arbitrary equality constraint γ = .8. For this
marginal model the expected frequencies muv

ij (u, v = 0,1) are estimated under the constraint
that γ = .8. Table 1 (lower right-hand panel) shows the maximum likelihood estimates of the
expected frequencies. It may be verified that G2 = 3.207; because there is one nonredundant
constraint (i.e., γ − 0.8 = 0), it follows that df = 1 and, as a result, p = .0733.

In general, marginal models can be applied to multiway contingency tables with L cells.
Let n be the (L × 1) vector of observed frequencies in the contingency table, and let m be the
(L × 1) vector of expected frequencies given the marginal model. It is assumed that the order of
the elements in both n and m corresponds to the following ordering of the item-score patterns
collected in the L × J matrix R, defined as

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 . . . 0 0 0
0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0
0 0 0 . . . 0 1 1
0 0 0 . . . 1 0 0
0 0 0 . . . 1 0 1
0 0 0 . . . 1 1 0
...

...
...

...
...

...

1 1 1 . . . 1 1 0
1 1 1 . . . 1 1 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (2)

Given the ordering with respect to popularity or easiness in equation (1), the scores in the first
column of R correspond to the most popular item, the scores in the second column to the next
most popular item, and so on, and the scores in the last column correspond to the least popular
item. Suppose that the marginal model consists of C nonredundant equality constraints, which are
functions of m. The first inequality constraint is denoted by g1(m), the second by g2(m), and the
last by gC(m). Setting each function equal to zero yields g1(m) = 0, g2(m) = 0, . . . , gC(m) = 0.
In vector notation these equality constraints can be written as

g(m) =
⎛

⎜
⎝

g1(m)
...

gC(m)

⎞

⎟
⎠ = 0. (3)

For the first example with respect to equal diagonal probabilities (Table 1, upper right-hand
panel), equation (3) equals g(m) = g1(m) = m00

ij −m11
ij = 0; for the second example with respect

to homogeneous item popularity (Table 1, lower left-hand panel), equation (3) equals g(m) =
g1(m) = m1

i − m1
j = (m10

ij + m11
ij ) − (m01

ij + m11
ij ) = m10

ij − m01
ij = 0; and for the third example

that imposes restriction γ = .8 (Table 1, lower right-hand panel), equation (3) equals g(m) =
g1(m) = (m00

ij m11
ij − m01

ij m10
ij )/(m00

ij m11
ij + m01

ij m10
ij ) − .8 = 0.

Bergsma (1997b) developed syntax for Mathematica (Wolfram, 1999) that produces max-
imum likelihood estimates and asymptotic standard errors for m. In the process of maximum
likelihood estimation, the Jacobian of g(m) with respect to log(m) must be computed (see Ap-
pendix A). For different marginal models this Jacobian can have very different forms. Bergsma
(1997a, p. 66) proposed to write the constraints in equation (3) in a single general matrix formula
using a recursive exp-log notation (see also Kritzer, 1977). Once written in recursive exp-log no-
tation, the derivation of the Jacobian is straightforward (Bergsma, 1997a, p. 68; see also Appen-
dix A), and a simple recursive algorithm, which can be easily implemented in software, suffices
to compute the Jacobian irrespective of the marginal model.
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Given that A1, . . . ,Aq are q design matrices, the general form of the recursive exp-log no-
tation of a marginal model is

g(m) = Aq exp
(
Aq−1 log

(
Aq−2 . . . exp

(
A2 log(A1m)

)))
. (4)

For a particular marginal model, the appropriate design matrices must be derived in order to write
g(m) in a recursive exp-log notation. There are no explicit rules for deriving design matrices and
the same marginal model can often be written in different recursive exp-log notations. Finding
the most parsimonious recursive exp-log notation may require some effort.

For the three examples of marginal models in Table 1, the expected frequencies are collected
in the vector m = (m00

ij ,m01
ij ,m10

ij ,m11
ij )T (the superscript T denotes the transpose). The first ex-

ample concerning equal diagonal probabilities has one design matrix, which is A1 = (1 0 0 −1 ),
and the recursive exp-log notation of the model constraints in equation (3) is equal to

g(m) = g1(m) = A1m = (1 0 0 −1 )

⎛

⎜
⎜
⎜
⎝

m00
ij

m01
ij

m10
ij

m11
ij

⎞

⎟
⎟
⎟
⎠

= m00
ij − m11

ij = 0.

The second example with respect to homogeneous item popularity also has one design matrix,
which is A1 = (0 1 −1 0 ). The recursive exp-log notation of equation (3) is A1m = 0, which
results in m01

ij − m10
ij = m1

i − m1
j = 0.

For the third example that imposes γ = .8 upon the table, the design matrices were derived
by Bergsma and Croon (2005), who showed that γ = A5. exp(A4. log(A3. exp(A2. log(A1.m)))),
with

A1 = I4×4, A2 =
(

1 0 0 1
0 1 1 0

)

, A3 =
(1 0

0 1
1 1

)

,

A4 =
(

1 0 −1
0 1 −1

)

, A5 = (1 −1 ) .

Hence the recursive exp-log notation of equation (3) is

g(m) = g1(m) = A5. exp
(
A4. log

(
A3. exp

(
A2. log(A1.m)

))) − 0.8 = 0.

In Appendix A it is shown how maximum likelihood estimates of m are obtained subject to the
constraints in equation (3), when these constraints are written in the recursive exp-log notation
of equation (4).

3. Mokken Scale Analysis

The main purpose of this study is to use marginal models and the recursive exp-log no-
tation to test hypotheses about scalability coefficients in the context of Mokken scale analysis
(Mokken, 1971; Sijtsma & Molenaar, 2002). Before we explain this application, subsequently
we introduce the monotone homogeneity model, the scalability coefficients, the relationships
between the monotone homogeneity model and the scalability coefficients, the definition of a
scale, two types of Mokken scale analysis, and some existing results for the distribution of the
scalability coefficients.
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3.1. The Monotone Homogeneity Model

The monotone homogeneity model (Mokken, 1971, Chap. 4; Sijtsma & Molenaar, 2002,
pp. 22–23; Sijtsma & Meijer, 2007) is a nonparametric item response theory (IRT) model for
ordinal person measurement (related theory was developed, e.g., by Molenaar, 1997; Ramsay,
1991; Scheiblechner, 2007; and Stout, 1990). Before we discuss the assumptions of this model,
first we introduce some notation. Let θ denote the latent variable underlying performance on
each of the items in the test. Let the probability of obtaining score xj on item j be denoted
by P(Xj = xj |θ). This conditional response probability is known as the item response function
(IRF). Further, let the joint probability of a particular score pattern on the J items in the test
be denoted by P(X1 = x1, . . . ,XJ = xJ |θ). The monotone homogeneity model is based on the
following three assumptions.

Unidimensionality. The responses to the items are driven by a unidimensional latent variable
denoted θ .

Local Independence. The joint distribution of the item scores conditional on θ can be writ-
ten as the product of the J conditional marginal distributions: P(X1 = x1, . . . ,XJ = xJ |θ) =∏J

j=1 P(Xj = xj |θ).
Monotonicity. As latent variable θ increases, the probability of a positive response to an item

increases or stays the same across intervals of θ ; that is, for two values of θ , say, θa and θb, and
arbitrarily assuming that θa < θb , monotonicity means that P(Xj = 1|θ = θa) ≤ P(Xj = 1|θ =
θb) for j = 1, . . . , J .

For dichotomous items, the monotone homogeneity model implies the stochastic ordering of
latent variable θ by total score X+; that is, for an arbitrary value t of θ , the probability
P(θ > t |X+ = x+) is nondecreasing in x+ (Hemker, Sijtsma, Molenaar, & Junker, 1997; also,
see Grayson, 1988). This property guarantees an ordinal person scale: Persons with higher X+
scores on average have higher θ values.

Mokken (1971, pp. 119–120) showed that for a J -item test the monotone homogeneity
model implies that all interitem covariances or, equivalently, all interitem product-moment corre-
lations, are nonnegative. Let σij denote the covariance between items i and j ; then, the monotone
homogeneity model implies

σij ≥ 0 for all i < j. (5)

Equation (5) is used throughout. Nonnegative interitem covariance is a special case of a more
general interitem covariance result, known as conditional association, and proven to be true by
Holland and Rosenbaum (1986) under more general conditions—multidimensional latent vari-
ables and continuous item scores, and local independence and monotonicity adapted to these
conditions. In Holland and Rosenbaum’s (1986) conditional association framework, nonnega-
tive interitem covariance in equation (5) is referred to as pairwise nonnegative association (Ellis
& Van den Wollenberg, 1993). Other observable consequences, such as manifest monotonicity
(Junker & Sijtsma, 2000), can be used to test the monotonicity assumption, but like conditional
association (except pairwise nonnegative association) they do not play a role in this study.

3.2. Scalability Coefficients

The Guttman (1950) model is the basis of the scalability coefficients Hij , Hj , and H

(Mokken, 1971; cf. Loevinger, 1948). Given an ordering of the J items according to decreas-
ing popularity (equation (1)), the Guttman model assumes that a respondent who endorses the
less popular item in a pair of items also endorses the more popular item. Thus, if π1

i > π1
j , for

any respondent the Guttman model excludes the item-score pattern (Xi,Xj ) = (0,1). This item-
score pattern is called a Guttman error, and the other three item-score patterns [(0,0), (1,0), and
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(1,1)] are called conformal patterns. Data that do not contain Guttman errors are in agreement
with the Guttman model.

In a 2 × 2 contingency table for the scores on items i and j (with π1
i > π1

j and sample

of size n), the expected number of Guttman errors, denoted Fij , equals Fij = n × π01
ij , and

the expected number of Guttman errors under marginal independence, denoted by Eij , equals
Eij = n × π0

i × π1
j . The scalability coefficient for items i and j , denoted by Hij , is computed

from

Hij = 1 − Fij

Eij

= 1 − π01
ij

π0
i × π1

j

= 1 − n × m01
ij

m0
i × m1

j

. (6)

For the example in Table 1 (upper left-hand panel), F̂ij = 18 and Êij = 29.663, yielding Ĥij =
.3932. To facilitate its interpretation, coefficient Hij can be written as a normed covariance (e.g.,
Sijtsma & Molenaar, 2002, p. 55). Let σ max

ij be the maximum covariance between items i and j ,
given the marginal distributions of Xi and Xj . Given that items i and j have positive variance,
equation (6) is equal to

Hij = σij

σ max
ij

. (7)

The scalability coefficient for an individual item j , denoted Hj , j = 1, . . . , J (Mokken,
1971, p. 151), is defined as

Hj = 1 −
∑

i �=j Fij
∑

i �=j Eij

= 1 − n
(∑j−1

i=1 m01
ij + ∑J

i=j+1 m01
ji

)

∑j−1
i=1 m0

i m
1
j + ∑J

i=j+1 m0
jm

1
i

. (8)

Coefficient Hj can also be written in terms of interitem covariances and corresponding maximum
covariances, given the marginal distributions of the item scores, as

Hj =
∑

i �=j σij
∑

i �=j σ max
ij

.

Let rest score R(j) be defined as the total score on J − 1 items excluding item j , then one can
also write (Sijtsma & Molenaar, 2002, p. 57)

Hj = σXj R(j)

σ max
Xj R(j)

. (9)

Equation (9) shows that coefficient Hj expresses the strength of the relationship between item j

and the other items in the test, comparable with a regression coefficient in a regression model.
For a set of J items, Mokken (1971, p. 149) proposed the total-scale coefficient H , which is

defined as

H = 1 −
∑J−1

i=1
∑J

j=i+1 Fij
∑J−1

i=1
∑J

j=i+1 Eij

= 1 − n
(∑J−1

i=1
∑J

j=i+1 m01
ij

)

∑J−1
i=1

∑J
j=i+1 m0

i m
1
j

. (10)

Coefficient H can also be written in terms of interitem covariances and item rest-score covari-
ances, which results in

H =
∑J−1

i=1
∑J

j=i+1 σij
∑J−1

i=1
∑J

j=i+1 σ max
ij

=
∑J

j=1 σXj R(j)

∑J
j=1 σ max

Xj R(j)

.
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If the data obey a perfect Guttman scalogram, H = 1, but this value is never found in practice.
Sijtsma and Molenaar (2002, Theorem 4.2; see also Hemker, Sijtsma, & Molenaar, 1995)

showed that Hij , Hj , and H are related such that

min
i,j

(Hij ) ≤ min
j

(Hj ) ≤ H ≤ max
j

(Hj ) ≤ max
i,j

(Hij ). (11)

3.3. Relationships Between the Monotone Homogeneity Model and the Scalability Coefficients

The monotone homogeneity model implies observable consequences with respect to the
scalability coefficients Hij , Hj , and H . These observable consequences are used in data analysis
to investigate whether the data support the fit of the monotone homogeneity model (Mokken,
1971; Sijtsma & Molenaar, 2002; Sijtsma & Meijer, 2007).

In particular, Mokken (1971, pp. 148–153; see also Sijtsma & Molenaar, 2002, Theorem
4.3) showed that the monotone homogeneity model implies that

0 ≤ Hij ≤ 1 for all i < j,

0 ≤ Hj ≤ 1 for all j, and

0 ≤ H ≤ 1.

(12)

Thus, negative scalability coefficients are in conflict with the monotone homogeneity model.
These observable consequences are the basis of Mokken scale analysis.

3.4. Definition of a Scale and Two Types of Mokken Scale Analysis

3.4.1. Definition of a Scale. A set of items is a scale (Mokken, 1971, p. 184; Molenaar
& Sijtsma, 2000; Sijtsma & Molenaar, 2002, p. 68), in this study called a Mokken scale if, for
product-moment correlation ρ, and for any constant value 0 < c ≤ 1,

ρij > 0 (or, equivalently, Hij > 0) for all i < j, and (13)

Hj ≥ c > 0 for all j. (14)

Equation (13) is the first criterion of a Mokken scale, and equation (14) is the second criterion of
a Mokken scale. Compared to equations (5) and (12), strict inequality is not crucial here due to
continuity of the scales of ρ and Hj . Except for the strict inequalities, the monotone homogeneity
model implies both equation (13) and Hj > 0 (which is part of equation (14)).

However, the monotone homogeneity model does not imply a specific positive values of c.
Thus, the inclusion of positive c in the definition of a Mokken scale can be a source of confusion
and needs to be explained. To understand the role of positive c, one may note that the monotone
homogeneity model, and special cases of this model such as the one-, two-, and three-parameter
logistic models, allow items in a scale which have (nearly) flat IRFs. Such items contribute
little, if anything, to a reliable person ordering and may even attenuate the reliability of this
ordering; thus, these items are unwanted in a scale. The inclusion of a positive c in the definition
of a Mokken scale prevents the selection of such items in a scale by rejecting items with Hj s
which are smaller than c. Thus, Mokken scale analysis aims to produce “high-quality” scales,
the definition of which depends on the researcher’s choice of lower bound c.

Mokken (1971, p. 184) proposed to always set c at least to .3. One may note that equa-
tion (11) implies that H ≥ minj (Hj ); thus, for lower bound c = .3, the total-scale H ≥ .3. The
choice of c controls the quality of the individual items in the scale and of the total scale and,
therefore, of the total-scale score X+ for ordering persons on latent variable θ . Mokken (1971,
p. 185) proposed the following rules of thumb for the interpretation of H . A set of items is
unscalable for all practical purposes if H < .3; and a scale is considered weak if .3 ≤ H < .4,
moderate if .4 ≤ H < .5, and strong if H ≥ .5.



L.A. VAN DER ARK, M.A. CROON, AND K. SIJTSMA 191

3.4.2. Two Types of Mokken Scale Analysis. Mokken scale analysis can have two forms
(Mokken, 1971, pp. 187–199). The first possibility is that the researcher evaluates a given set
of J items with respect to the definition of a scale for a chosen value of c. This is confirmatory
Mokken scale analysis. The second possibility is to use an automated item selection algorithm
(Mokken, 1971, pp. 190–199; Sijtsma & Molenaar, 2002, Chap. 5). This algorithm selects items
one by one to obtain one or more scales (depending on the data structure) that agree with the
definition of a Mokken scale. In each selection step, the item is chosen from the items not already
selected, that not only agrees with equations (13) and (14) but also produces the greatest total-
scale H coefficient with the items already selected in previous steps. This is exploratory Mokken
scale analysis.

In the remainder of this paper we discuss the use of marginal modelling for testing hy-
potheses about the scalability coefficients. The term Mokken scale analysis refers to the use of
scalability coefficients for scale construction both in a confirmatory and in an exploratory con-
text.

3.5. Results for the Distribution of the Scalability Coefficients

Results for the distribution of the scalability coefficients are available for the null case (which
refers to the null hypothesis that H = 0) and the nonnull case (which refers to the null hypothesis
that H = w, w is some positive constant) (Mokken, 1971, pp. 160–169). Results for the null case
Mokken (1971, pp. 160–164) are the following. Let Sij be the sample covariance of items i and
j , and let Si and Sj be the sample standard deviations of items i and j , respectively; then for
large n, in the null case, the statistics

Zij = Sij

SiSj

√
n − 1,

Zj =
∑

i �=j Sij

Sj

∑
i �=j Si

√
n − 1,

and

Z =
∑J−1

i=1
∑J

j=i+1 Sij
∑J−1

i=1
∑J

j=i+1 SiSj

√
n − 1,

converge to a standard normal distribution. In the available software for Mokken scale analysis,
Hij = 0 is tested against the alternative that Hij > 0 to decide whether items satisfy the first
criterion of a Mokken scale that ρij > 0 (equation (13)). Results for the nonnull case yield as-
ymptotic standard errors for Ĥ (Mokken, 1971, pp. 164–169). These results are not available in
current software for Mokken scale analysis.

4. A Marginal Modelling Approach to the Scalability Coefficients

Coefficient Hij can be written in the recursive exp-log notation, which is useful for testing
hypotheses involving Hij . Let m = (m00

ij ,m01
ij ,m10

ij ,m11
ij )T, and let A1 and A2 be the following

design matrices:

A1 =
⎛

⎜
⎝

1 1 1 1
1 1 0 0
0 1 0 1
0 1 0 0

⎞

⎟
⎠ and A2 = (1 −1 −1 1 ) .
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TABLE 2.

Estimated expected frequencies for the data in Table 1
under the marginal model imposing Hij = .5 on the
table.

Item j Total
0 1

Item i 0 103.716 14.360 118.074

1 30.990 28.935 59.924

Total 134.706 43.294 178

Then, Hij in equation (6) equals

Hij = 1 − exp
(
A2 log(A1m)

)
. (15)

This can be verified by writing the term log(A1m) in equation (15) as

log(A1m) = log

⎡

⎢
⎢
⎣

⎛

⎜
⎝

1 1 1 1
1 1 0 0
0 1 0 1
0 1 0 0

⎞

⎟
⎠ .

⎛

⎜
⎜
⎝

m00
ij

m01
ij

m10
ij

m11
ij

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ = log

⎛

⎜
⎜
⎝

n

m0
i

m1
j

m01
ij

⎞

⎟
⎟
⎠ ,

and noting that

exp
(
A2 log(A1m)

) = exp

⎡

⎢
⎢
⎣(1 −1 −1 1 ) log

⎛

⎜
⎜
⎝

n

m0
i

m1
j

m01
ij

⎞

⎟
⎟
⎠

⎤

⎥
⎥
⎦ = n × m01

ij

m0
i × m1

j

.

In the case of J items, there are K = 1
2J (J − 1) item pairs; hence, there are K coefficients

Hij . The recursive exp-log notation for the vector Hij = (H12,H13, . . . ,HJ−1,J )T containing all
K item-pair coefficients Hij (i < j) is derived in Appendix C.

Based on previous results, a researcher may have reason to believe that for two particular
key items in a test Hij = w, with 0 ≤ w < 1, and (s)he may wish to test this hypothesis on a
sample from another population. Using the recursive exp-log notation for Hij (equation (15)),
it may be verified that the marginal model imposing Hij = w on the contingency table has one
nonredundant constraint, which can be written in terms of equation (3) as

g1(m) = 1 − w − exp
(
A2 log(A1m)

) = 0.

For the observed frequencies in Table 1 (upper left-hand panel), choosing w = .5 as an example,
the marginal model with constraint Hij = .5 yields the estimated expected frequencies shown in
Table 2. This results in G2 = 1.2207, df = 1, and p = .2692.

Item coefficient Hj can be written in a recursive exp-log notation, which is derived in Ap-
pendix D for the vector Hj = (H1,H2, . . . ,HJ )T containing all Hj s. Total-scale coefficient H

can be written in a recursive exp-log notation, which is derived in Appendix E.

5. Hypotheses in Mokken Scale Analysis

The use of marginal modelling for testing hypotheses in Mokken scale analysis is illustrated
by means of the binary data from 484 children who were administered a 25-item balance-task
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TABLE 3.
π̂1

j
-Values for each of the five balance-task scales.

Scales

Conflict Conflict Conflict
Item Weight Distance Weight Distance Balance
1 .318 .118 .444 .684 .921
2 .326 .126 .496 .698 .950
3 .343 .153 .558 .698 .955
4 .382 .165 .791 .702 .963
5 .415 .428 .833 .727 .967

test (Van Maanen et al. 1989). It was hypothesized that the tasks could be divided into five di-
mensionally different subscales based on the type of task. The subscales are named Distance,
Weight, Conflict Weight, Conflict Balance, and Conflict Distance. For a convenient presenta-
tion in the tables, in each of the five scales the items are numbered 1, . . . ,5. Table 3 shows the
proportions-correct (i.e., the π̂1

j s) of the 25 items.

5.1. Testing the First Criterion of a Mokken Scale

The first criterion of a Mokken scale is ρij > 0 for all i < j , which is identical to Hij > 0
for all i < j (equation (13)). In this section it is explained how marginal modelling can be used
to test the global hypothesis that all K item-pair coefficients Hij s are 0. This global test is a
novel statistical tool in Mokken scale analysis. To appreciate its usefulness, first we discuss the
exploratory analysis and then the confirmatory analysis. In doing this, we only discuss details of
exploratory Mokken scale analysis that are relevant here, and skip many other details.

For exploratory Mokken scale analysis, assuming that already r −1 items have been selected
into a scale (and without worrying how this has been accomplished; for the details, see Mokken,
1971, pp. 190–199; Sijtsma & Molenaar, 2002, Chap. 5), the r th candidate item for selection
must have positive correlations (or, equivalently, positive pairwise scalability coefficients) with
each of the r − 1 items already selected (Mokken, 1971, p. 192, third step). This requirement
assures us that the first criterion (equation (13)) of a scale is satisfied for the r items selected thus
far. If, for the r th item, each of the r − 1 item-pair coefficients is significantly greater than 0, the
first criterion is satisfied, and if this result is also found for other candidate items, each of these
items remains in competition to be included in the scale (which of these candidates eventually
is the r th item to be selected depends on the second criterion (equation (14)) and other decision
rules not discussed here).

The tests of Hij = 0 against Hij > 0 are conducted by testing the marginal independence of
Xi and Xj . This is a simple procedure which can be done with little computational effort. The
type I error rate is controlled by a Bonferroni correction, which is very conservative here because
the test statistics are dependent, and because tests are accumulated across different steps in the
automated item selection algorithm (Mokken, 1971, pp. 196–198).

In confirmatory Mokken scale analysis, the researcher has to test the first criterion for each
item pair separately, but here we propose to use a marginal model to test for all K Hij coefficients
simultaneously whether they are equal to zero, thus circumventing the Bonferroni correction.
Formally, Hij = (H12,H13, . . . ,HJ−1,J )T contains all K coefficients Hij (i < j). If the global
null hypothesis that Hij = 0 is rejected, the researcher has to check next whether the sample
values of the item-pair scalability coefficients are positive; that is, whether Ĥij > 0. Only the
combination of a rejected global null hypothesis and positive sample Hij s leads to the conclusion
that the first criterion (equation (13)) of a Mokken scale is satisfied. If not all sample Hij s are
positive, the next step is to identify items that may be rejected from the scale. This is done in the
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same way as when the global null hypothesis that Hij = 0 is not rejected. We suggest identifying
candidate items for rejection by testing for separate item pairs Hij = 0 against the alternative
that Hij > 0, just as with the exploratory procedure. Item pairs for which the null hypothesis is
not rejected are identified, and for each item involved in such a pair it is counted how often it is
involved in negative Ĥij s with other items. Items that are frequently involved in negative sample
item-pair scalability coefficients are candidates for removal from the test. We now concentrate
on the new global test, based on marginal modelling, that Hij = 0.

Let uK denote a vector of length K that contains 1s, and let A1 and A2 be design matrices
(derived in Appendix C). In Appendix C it is shown that

Hij = uK − exp
(
A2 log(A1m)

)
. (16)

Hence, the recursive exp-log notation of the K restrictions (see equation (3)) for marginal model
Hij = 0 is

g(m) = uK − exp
(
A2 log(A1m)

) = 0K. (17)

If the marginal model in equation (17) is rejected and if in the sample Ĥij > 0 for all i < j , then
the first criterion (equation (13)) for a Mokken scale is met for all J items.

One advantage of this global test is that it does not require a Bonferroni correction. Another
advantage is that it allows the first criterion for a Mokken scale to be strengthened, for example,
by requiring that all Hij s are greater than a positive value d so as to avoid values of Hij close to 0.
Values close to 0 may allow undesirable multidimensionality in a scale, and are not excluded by
the second criterion for a Mokken scale, Hj ≥ c > 0 all j (equation (14)). What is a reasonable
choice for d? Because, by equation (11), we have that mini,j (Hij ) ≤ Hj ≤ maxi,j (Hij ), it seems
reasonable to choose an a priori lower bound d for Hij smaller than c. In this example, we
arbitrarily set d = .1.

Let dK be a vector of length K with all elements equal to d . Then the marginal model
equals Hij = dK . Using the recursive exp-log notation for Hij in equation (16), it may be veri-
fied that the recursive exp-log notation of the K restrictions (see equation (3)) for this marginal
model is

g(m) = uK − exp
(
A2 log(A1m)

) − dK = 0K. (18)

The marginal model with d = 0 (equation (17)) and the stronger marginal model with d = .1
(equation (18)) were tested on the balance-scale data. For each balance scale, the Ĥij s and their
standard errors, and the likelihood ratio statistic G2 and corresponding p-value, are shown in
Table 4. For d = 0, using α = .05 the null model was rejected for all scales and, in addition,
all sample Ĥij s were found to be greater than zero. Thus, the first criterion of the Mokken
scale (ρij > 0; equation (13)) was assumed to be satisfied. For d = .1, implying the statisti-
cal test that simultaneously all Hij > .1, four scales were found to satisfy this more demanding
criterion but for the Conflict Balance scale the marginal model in equation (18) was not re-
jected.

5.2. Testing the Second Criterion of a Mokken Scale

The second criterion of a Mokken scale is that Hj ≥ c > 0 for all j = 1, . . . , J (equa-
tion (14)). The current practice is that for each item the null hypothesis is tested that Hj = 0.
When this null hypothesis is rejected, it is checked in the data whether Ĥj exceeds lower bound c.
If for each item the null hypothesis is rejected and Ĥj > c for all j , the second criterion for a
Mokken scale is assumed to be satisfied. Currently, there is no test available for the null hypoth-
esis that Hj = c against the alternative that Hj > c and, sometimes, when the automated item
selection procedure is used, an item scalability coefficient is greater than c when the item enters
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TABLE 4.

Estimated scalability coefficients Ĥij with standard errors between parentheses for each of the five balance-task scales

(upper panel); fit statistics (G2, p-value) for the marginal model defining Hij = 0 for i = 1 . . . ,4; j = i + 1, . . . ,5
(middle panel); and fit statistics for the marginal model defining Hij = .1 for i = 1 . . . ,4; j = i + 1, . . . ,5 (lower panel).

Scales

Conflict Conflict Conflict
Item pair Weight Distance Weight Distance Balance
1,2 .658 (.045) .454 (.085) .438 (.064) .730 (.046) .221 (.110)

1,3 .557 (.051) .362 (.091) .447 (.086) .718 (.046) .214 (.111)

1,4 .632 (.051) .341 (.102) .427 (.095) .696 (.047) .211 (.111)

1,5 .589 (.053) .448 (.103) .500 (.098) .756 (.045) .254 (.123)

2,3 .561 (.049) .482 (.064) .272 (.079) .672 (.046) .185 (.100)

2,4 .529 (.052) .470 (.072) .221 (.088) .632 (.047) .240 (.108)

2,5 .580 (.051) .411 (.075) .510 (.086) .787 (.041) .397 (.124)

3,4 .576 (.048) .439 (.071) .614 (.047) .647 (.047) .139 (.083)

3,5 .575 (.049) .399 (.073) .653 (.050) .700 (.045) .161 (.094)

4,5 .499 (.049) .257 (.067) .594 (.047) .669 (.046) .096 (.080)

Model: All Hij = .0
G2 589.366 208.155 390.232 684.838 34.706
p .000 .000 .000 .000 .000
Model: All Hij = .1
G2 366.968 106.484 250.617 439.107 13.191
p .000 .000 .000 .000 .213

the scale, but then drops below c as subsequent items enter the scale (e.g., Sijtsma & Molenaar,
2002, pp. 79–80).

The marginal modelling approach offers a solution. A marginal model may be tested in
which, simultaneously, all Hj = c. Hj = (H1, . . . ,HJ )T contains all Hj s, and let cJ be a vector
of length J with all elements equal to lower bound c. The marginal model is then Hj = c. If the
marginal model is rejected and all sample Ĥj s exceed c, the second criterion is assumed to be
satisfied.

Let A1, A2, A3, and A4 be design matrices (derived in Appendix D). Appendix D shows that

Hj = uJ − exp
(
A4 log

(
A3 exp

(
A2 log(A1m)

)))
. (19)

Using the recursive exp-log notation for Hj in equation (19), it may be verified that the recursive
exp-log notation of the J restrictions (see equation (3)) for the marginal model is

g(m) = uJ − exp
(
A4 log

(
A3 exp

(
A2 log(A1m)

))) − cJ = 0J . (20)

The marginal model in equation (20) with c = .3 (which is the default value in soft-
ware for Mokken scale analysis) and the marginal model with the more demanding crite-
rion c = .4 were tested on the balance-task data. For each balance-task scale, Table 5 shows
the estimates of the Hj s and their standard errors, and the likelihood ratio statistic G2 and
corresponding p-value. For lower bound c = .3, for four scales the marginal model was re-
jected. In addition, all the Ĥj s exceeded .3. Thus, the four scales meet the second criterion
of a Mokken scale. The exception was the Conflict Balance scale, for which the marginal null
model was not rejected. Thus, Conflict Balance does not meet the second criterion of a Mokken
scale.

For c = .4, for the Distance scale the marginal model was not rejected, and for the Con-
flict Balance scale this marginal model was rejected but all Ĥj s were smaller than .4. Thus, for
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TABLE 5.

Estimated scalability coefficients Ĥj with standard errors between parentheses for each of the five balance-task scales

(upper panel); fit statistics (G2, p-value) for the marginal model defining Hj = .3 for j = 1, . . . ,5 (middle panel); and
fit statistics for the marginal model defining Hj = .4 for j = 1, . . . ,5 (lower panel).

Scales

Conflict Conflict Conflict
Item Weight Distance Weight Distance Balance
1 .610 (.037) .403 (.066) .450 (.052) .725 (.037) .225 (.092)

2 .584 (.033) .456 (.045) .359 (.050) .704 (.032) .261 (.077)

3 .567 (.031) .427 (.044) .538 (.035) .683 (.030) .172 (.072)

4 .557 (.033) .381 (.047) .518 (.038) .660 (.032) .164 (.073)

5 .559 (.035) .372 (.054) .588 (.042) .727 (.030) .213 (.075)

Model: All Hj = .3
G2 100.209 14.546 68.578 175.373 6.332
p .000 .013 .000 .000 .275
Model: All Hj = .4
G2 40.982 5.022 36.590 102.063 11.284
p .000 .413 .000 .000 .046

these two scales the more demanding second criterion of a Mokken scale was not satisfied. For
the other three scales, the null model was rejected and all Ĥj s exceeded .4; hence, the more
demanding second criterion of a Mokken scale was satisfied.

5.3. Testing the Strength of the Scale

Testing the strength of the scale can be considered equivalent with testing for the total-
scale coefficient that H ≤ c against the alternative that H > c. If the null model is rejected
for c = .3 and if in the sample Ĥ > .3, then the scale can be considered to be at least a weak
scale; if the null model is rejected for c = .4 and if Ĥ > .4, then the scale can be considered
to be at least a moderate scale; and if the null model is rejected for c = .5 and if Ĥ > .5, then
the scale can be considered to be a strong scale. The statistical test can be performed using
the asymptotic standard errors derived by Mokken (1971, pp. 164–169). From the asymptotic
standard errors a (1 − α)% confidence interval is constructed, and if c exceeds the upper bound
of the confidence interval, the null hypothesis is rejected. This test is not available in the current
software.

Alternatively, the test may be conducted using a marginal model. Let A1, A2, A3, and A4
be design matrices. These matrices are derived in Appendix E. Appendix E shows that H can be
written as

H = 1 − exp
(
A4 log

(
A3 exp

(
A2 log(A1m)

)))
. (21)

Using equation (21) it can be verified that the recursive exp-log notation of the restriction (see
equation (3)) in the null model is

g1(m) = 1 − exp
(
A4 log

(
A3 exp

(
A2 log(A1m)

))) − c = 0. (22)

It may be noted that, in principle, in equation (22) lower bound c may be replaced by any constant
w > 0.

The marginal models with c = .3, c = .4, and c = .5 (equation (22)) were tested on the
balance-scale data. For each scale, Table 6 shows the estimate of coefficient H and its stan-
dard error, and the likelihood ratio statistic G2 and corresponding p-value. Using the rules of
thumb for the interpretation of values of H , Weight and Conflict Distance were strong scales,
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TABLE 6.

For each of the five scales of the balance-task test: The estimated scalability coefficient Ĥ with standard error between
parentheses (first row); and the fit statistics (G2, p-value) for the marginal models defining H = .3, H = .4, and H = .5.

Scales

Conflict Conflict Conflict
Weight Distance Weight Distance Balance

Coefficient H .576 (.028) .410 (.040) .502 (.032) .700 (.027) .205 (.068)

Model: H = .3
G2 97.141 8.170 39.559 169.855 1.573
p .000 .004 .000 .000 .210
Model: H = .4
G2 38.647 0.057 9.971 96.676 5.828
p .000 .812 .002 .000 .016
Model: H = .5
G2 7.244 4.921 0.003 45.041 12.647
p .007 .027 .956 .000 .000

Conflict Weight a moderate scale, Distance a weak scale, and Conflict Balance was found to be
unscalable.

5.4. Testing Equality of Item Coefficients

Coefficient Hj expresses the contribution of item j to the ordering of respondents by means
of total score X+. Thus, it can be argued that coefficient Hj is a nonparametric IRT analogue
to the discrimination power of an item (Van Abswoude, Van der Ark, & Sijtsma, 2004). The
marginal modelling framework can be used to test whether the Hj s of different items are equal.
This may be interesting when one wants to know whether the items are different with respect
to their contribution to the accuracy of the person ordering. Large differences may also provide
the researcher with indications that different latent variables may drive the responses to different
items (Sijtsma & Meijer, 2007). Currently, such a test is not available.

A statistical test for the null hypothesis “H1 = · · · = HJ ” requires a slight modification of
the marginal model in equation (20). Let A5 be a (J − 1) × J matrix with element (j, j) equal
to 1 for j = 1, . . . , J − 1; and element (j, j + 1) equal to −1 for j = 1, . . . , J − 1; the remaining
elements are equal to 0. Using equation (19), it may be verified that

A5Hj =

⎛

⎜
⎜
⎝

H1 − H2
H2 − H3

...

HJ−1 − HJ

⎞

⎟
⎟
⎠ ,

which should be equal to 0J−1 if all Hj s are equal. Then using the design matrices A1, . . . ,A4
from equation (20) (see Appendix D), the marginal model for equal item coefficients is

g(m) = A5
(
exp

(
A4 log

(
A3 exp

(
A2 log(A1m)

)))) = 0J−1. (23)

Using the marginal model in equation (23), the null hypothesis that H1 = H2 = H3 = H4 =
H5 was tested for each of the five balance-task scales. It may be noted that if all Hj s are equal,
then equation (11) implies that H = Hj . For each scale, Table 7 shows the estimated total-scale
H and its standard error, under the marginal model of equal Hj s, and the likelihood ratio statistic
G2 and corresponding p-value. For Conflict Weight the null model of equal Hj s was rejected.
For the other four scales the null model was not rejected, thus providing support for equal item
contributions to the person ordering.
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TABLE 7.

For the marginal model defining H1 = · · · = H5: For each of five balance-task scales, estimated coefficient H

with standard error between parentheses (upper panel); and fit statistic G2, p-value (lower panel).

Scales

Conflict Conflict Conflict
Weight Distance Weight Distance Balance

H .571 (.027) .416 (.039) .509 (.031) .690 (.027) .191 (.062)

G2 3.015 4.850 25.039 9.114 4.119
p .555 .303 .000 .058 .390

5.5. Multiple-Group Hypotheses

Mokken (1971, pp. 164–169) provided the asymptotic sampling theory for testing the null
hypothesis that the H values for the same test in different groups are equal. Under this null
hypothesis, the same test orders respondents from different groups with equal accuracy. For ex-
ample, the balance-task test was administered to both boys and girls, and it may be interesting
to test if the test orders boys and girls equally well. MSP (Molenaar & Sijtsma, 2000) allows the
possibility to compare the Hj and H values of different groups, but not to test hypotheses about
(in-)equality of H in different groups.

Assume that there are G groups, and let superscript g index these groups. Then the null
hypothesis of interest is “H 1 = · · · = HG”. The recursive exp-log notation requires the following
definitions. Let A1

1, . . . ,AG
1 , A2, A3, A4, and A5 be design matrices (derived in Appendix F). Let

m∗ be a vector of length LG in which the vectors of expected frequencies from groups 1, . . . ,G

are stacked, such that m∗ = (m1,m2, . . . ,mG). The symbol
⊕

indicates the direct product (see
Appendix F). In Appendix F it is shown that

⎛

⎜
⎜
⎝

H 1

H 2

...

HG

⎞

⎟
⎟
⎠ = uG − exp

(
G⊕

g=1

A4 log

(
G⊕

g=1

A3 exp

(
G⊕

g=1

A2 log

(
G⊕

g=1

Ag

1m∗
))))

. (24)

In Appendix F it is also shown that the recursive exp-log notation for the marginal model with
“H 1 = H 2 = · · · = HG” is

g(m) =

⎛

⎜
⎜
⎝

H 1 − H 2

H 2 − H 3

...

HG−1 − HG

⎞

⎟
⎟
⎠

= A5 exp

(
G⊕

g=1

A4 log

(
G⊕

g=1

A3 exp

(
G⊕

g=1

A2 log

(
G⊕

g=1

Ag

1m∗
))))

= 0G. (25)

The marginal model in equation (25) was used to test equal H for boys (indexed g = 1)
and girls (g = 2); that is, H 1 = H 2. For each balance-task scale, Table 8 shows coefficient Hg

and its standard error, and the likelihood ratio statistic G2 and corresponding p-value. For each
scale, the sample Ĥ value was higher for girls than for boys but only for Conflict Distance was
the difference significant. Notice that for G = 2, if estimated standard errors are available, this
result can be approximated using a t-test.

A generalization of the multigroup hypothesis to coefficients Hj and Hij is straightforward
if the item ordering is the same in all subgroups. If the item ordering is different for some sub-
groups, the design matrices must be adapted.
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TABLE 8.

For the marginal model defining H 1 = H 2: For each of the five balance-task scales, scalability coefficients H for
boys and girls with standard error between parentheses (upper panel); and fit statistics G2, p-value (lower panel).

Scales

Conflict Conflict Conflict
Weight Distance Weight Distance Balance

Boys .544 (.037) .348 (.053) .439 (.044) .626 (.044) .114 (.045)

Girls .591 (.042) .467 (.059) .560 (.046) .749 (.034) .356 (.134)

G2 0.713 2.392 3.556 5.015 3.342
p .398 .122 .059 .025 .068

6. Discussion

Marginal modelling offers a framework for testing many interesting hypotheses relevant to
Mokken scale analysis that could not be tested before. In particular, new and exciting possibilities
of the marginal modelling approach are:

(1) The availability of global tests that evaluate all interitem scalability coefficients Hij simulta-
neously and all item-scalability coefficients Hj simultaneously. This offers new opportuni-
ties for assessing item and test quality.

(2) The possibility to test whether scalability coefficients are equal to a particular value. This is
important for ascertaining item and test quality at a level deemed necessary by the researcher.
This result also offers the possibility to test hypotheses about expected values of scalability
coefficients (such as those derived from previous research).

(3) The comparison of scalability coefficients between different groups. This provides the op-
portunity to assess whether the measurement quality of a test is the same in different groups.

This paper has presented several useful examples but the array of possibilities has not yet
been fully explored. Exploring these possibilities and implementing the most useful ones in user-
friendly software is the first topic for future research.

One possible limitation of the marginal modelling approach is that for the global tests
assessing all scalability coefficients simultaneously and to a lesser degree for tests of coeffi-
cient H alone, the size of the matrices can grow rapidly as the number of items increases.
The experience accumulated thus far did not reveal computational problems for tests up to
J = 15. Matrix R (equation (2)), which is required to solve the marginal modelling prob-
lem, has L = 215 = 32760 rows. For larger J , the maximum likelihood estimation of the
models becomes impractical. One solution may be to use an estimation procedure that only
evaluates the observed item-score patterns so that the size of vector m does not exceed
n. An example is the minimum information discrimination approach (e.g., Kullback, 1971;
Read & Cressie, 1988, pp. 34–40). Applying alternative estimation procedures to marginal mod-
elling of the scalability coefficients for Mokken scale analysis is the second topic for future
research.

The methods presented here are only applicable to dichotomous items. Thus, a useful
generalization is to Mokken scale analysis for polytomous items. Whereas, for dichotomous
items, some of the interesting hypotheses tested in Mokken scale analysis could also be tested
without the use of marginal models, this is often not possible for polytomous items. Exam-
ples are the computation of standard errors and testing the strength of the scale. The gen-
eralization of results for dichotomous items to polytomous items has proven to be problem-
atic in many ways (e.g., Hemker et al., 1997; Sijtsma & Meijer, 2007), and this may also be
true in the marginal modelling framework. The derivation of the design matrices for marginal
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models is more complicated and the magnitude the computational problems is more trouble-
some. The generalization of the methods to polytomous items is the third topic for future re-
search.

The syntax files for the marginal models used here are available upon request from the first
author. Currently, researchers wishing to apply the marginal models presented in this paper need
to have Mathematica installed on their computer.

Appendix A. Estimation of Marginal Models

Appendix A discusses the details of the optimization algorithm for estimating and testing
the marginal models discussed in this paper (see also Bergsma & Croon, 2005). Suppose that
a sample of n respondents provided responses to J items that are dichotomously scored. The
number of different item-score patterns (see equation (2)) is L = 2J . (In the more general case
where item j has vj ordered item scores, the number of different item-score patterns is given by
L = ∏

j vj .) Vectors n and m are both of length L, and contain the observed frequencies and
expected frequencies of the item-score patterns, respectively. The marginal models discussed
can be specified by a set of C equations that impose constraints on the theoretical expected
frequencies in m, which are collected in equation (3),

g(m) =
⎛

⎝

g1(m)
...

gC(m)

⎞

⎠ = 0.

Each constraint is defined recursively in terms of appropriate scalar functions and matrices as in
equation (4).

Bergsma (1997a, pp. 89–95) developed a Fisher scoring algorithm to find the maximum like-
lihood (ML) estimates of the constrained theoretical expected frequencies in m (or, equivalently,
the constrained cell probabilities). Assuming multinomial sampling and a vector μ that contains
C unknown Lagrangian multipliers, the augmented likelihood or Lagrangian is

L(m,μ) = nT log(m) − μTg(m).

The ML estimates of the expected frequencies in vector m are obtained by means of an iterative
procedure that determines a saddlepoint of this Lagrangian.

Let G = G(m) be the Jacobian of g(m) with respect to log m. Hence, G is a C × C matrix
with elements grs = ∂gr(m)/∂ logms . Derivation of G can be done using the same recursive
exp-log notation that was used to specify g(m) in equation (4). First, let φ(x) be a function that
either indicates an exponential (φ(x) = exp(x), φ′(x) = exp(x)), a logarithm (φ(x) = log(x),
φ′(x) = 1/x), or a translation (φ(x) = x +c, where c is some constant value, φ′(x) = 1). Second,
let f0(m), f1(m), f2(m), . . . , fq(m) be a series of q + 1 functions, in which

f0(m) = m,

fi (m) = φ[Aifi−1(m)] for i = 1, . . . , q.
(26)

The last function in equation (26) is

fq(m) = g(m)

as specified in equation (4). Third, the following recursive relationship can be derived for the
partial derivatives of the functions fi (m). Let D(v) be a diagonal matrix with vector v on its main
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diagonal, then

∂f0(m)

∂ log m
= D(m),

and

∂fi (m)

∂ log m
= D

[
φ′(Aifi−1)

]
Ai

∂fi−1(m)

∂ log m
for i = 1, . . . , q. (27)

Note that if φ indicates an exponential, then equation (27) equals

∂fi (m)

∂ log m
= D[exp(Aifi−1)]Ai

∂fi−1(m)

∂ log m
;

if φ indicates a logarithm, then equation (27) equals

∂fi (m)

∂ log m
= D−1(Aifi−1)Ai

∂fi−1(m)

∂ log m
;

and if φ indicates a translation, then equation (27) equals

∂fi (m)

∂ log m
= Ai

∂fi−1(m)

∂ log m
.

Fourth, the Jacobian can be obtained as

G = ∂fq(m)

∂ log m
.

Differentiating L(m,μ) with respect to log m yields

l(m,μ) = n − m − Gμ.

Under suitable regularity conditions, the ML estimator m̂ is a vector m for which there is a
Lagrange multiplier vector μ such that the simultaneous equations

l(m,μ) = 0

and

g(m) = 0

are satisfied.
Then the expected value of the derivative matrix of the vector (l(m,μ),g(m)) with respect

to (m,μ) is

V(m) =
(−D(m) G

GT 0

)

.

Let n+ be equal to the vector n with zeros replaced by a small positive constant (say, 10−10), and
define the Fisher scoring starting values

(
log m(0)

μ(0)

)

=
(

log n+
0

)
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and, for k = 0,1, . . . ,

(
log m(k+1)

μ(k+1)

)

=
(

log m(k)

μ(k)

)

− V
(
m(k)

)−1 ·
(

l(m(k),μ(k))

g(m(k))

)

.

Then, as k → ∞, m(k) should go to m̂. Straightforward matrix algebra yields the simplified form

log m(k+1) = log m(k) + D
(
m(k)

)−1l
(
m(k),μ(k+1)

)
,

μ(k+1) = −(
GTD

(
m(k)

)
G

)−1(GTD
(
m(k)

)−1(n − m(k)
) + g

(
m(k)

))
.

This algorithm does not always converge, and it can be helpful to introduce a step size step(k) ∈
〈0,1] as follows:

log m(k+1) = log m(k) + step(k)D
(
m(k)

)−1l
(
m(k),μ(k+1)

)
.

Note that the update of μ is left unchanged.
The step size should be chosen so that the new estimate m(k+1) is “better” than the old

estimate m(k). A criterion for deciding this is obtained by defining the following quadratic form
measuring the “distance” from convergence:

δ
(
m(k)

) = l
(
m(k),μ(k+1)

)
D

(
m(k)

)−1l
(
m(k),μ(k+1)

)
.

Convergence is reached at m if and only if δ(m) = 0 and therefore, if possible, the step size
should be chosen so that δ(m(k+1)) < δ(m(k)) for all k. This is possible if the tentative solution
is sufficiently close to the ML estimate. Otherwise, a recommendation which seems to work very
well in practice is to “jump” to another region by taking a step size equal to one.

After convergence of the estimation procedure, the null hypothesis that the model specified
by the C constraints g(m) = 0 provides an acceptable fit to the data can be tested against the
saturated model by means of a log likelihood ratio test. The test statistic is

G2 = 2nT log(n/m̂),

which asymptotically follows a chi-square distribution with df = C.

Appendix B. Definition of Paired Row Product of Two Matrices

Let A and B be matrices of order n × m, let aT
1 ,aT

2 , . . . ,aT
n be the rows of A, and let

bT
1 ,bT

2 , . . . ,bT
n be the rows of B. The paired row product of A and B is the elementwise or

Hadamard product of row i of A and row j of B for i = 1, . . . , n−1, j = i +1, . . . , n, and is de-
noted A � B. If A � B = C, then C is a 1

2n(n− 1)×m matrix with rows cT
1 , cT

2 , . . . , cT
(1/2)n(n−1).

Let k = (i − 1)n − 1
2 i(i − 1) + (j − i), then

ck = ai • bj for i = 1, . . . , n − 1, j = i + 1, . . . , n,
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where • denotes the Hadamard product. For example,

⎛

⎜
⎜
⎜
⎝

aT
1

aT
2

aT
3

aT
4

⎞

⎟
⎟
⎟
⎠

�

⎛

⎜
⎜
⎜
⎝

bT
1

bT
2

bT
3

bT
4

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

aT
1 • bT

2

aT
1 • bT

3

aT
1 • bT

4

aT
2 • bT

3

aT
2 • bT

4

aT
3 • bT

4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Appendix C. Recursive Exp-Log Notation for All Item-Pair Scalability Coefficients
Simultaneously

In Appendix C, the recursive exp-log notation for equation (16) is derived. For the purpose
of illustration, the design matrices are elaborated for a three-item test (hence, there are K = 3
item pairs and L = 8 item-score patterns). In these design matrices, dashed lines are displayed to
facilitate readability.

Let uL be a vector of length L that consists of ones; let U = uJ uT
L, and let R be the L ×

J matrix that contains all possible item-score patterns defined in equation (2). The symbol �
denotes the paired row product (Appendix B). Then, the (1 + 2J + K) × L design matrix A1 is
a concatenation of four submatrices, that is,

A1 =
⎛

⎜
⎝

uT
L

U − RT

RT

(U − RT) � RT

⎞

⎟
⎠ . (28)

It may be verified that for three items (denoted by a, b, and c) of decreasing popularity, we have
that

log(A1m) = log

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
0 0 1 1 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 0 0 1 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

m000
abc

m001
abc

m010
abc

m011
abc

m100
abc

m101
abc

m110
abc

m111
abc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= log

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n

m0
a

m0
b

m0
c

m1
a

m1
b

m1
c

m01
ab

m01
ac

m01
bc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (29)

The K × (1 + 2J + K) design matrix A2 is a concatenation of three submatrices, that is,
A2 = (uK − QT

1 IK), in which IK is the identity matrix of order K , and Q1 is a K × (2J )

matrix containing zeros and ones. The rows of Q1 correspond to K item pairs, that is, item
pair (i, j ) (with i = 1, . . . , J − 1, j = i + 1, . . . , J ) corresponds to the kth row of Q1 (k =
(i − 1)J − 1

2 i(i − 1) + (j − i), see also Appendix B). The columns of Q1 can be divided into
two sets: the first J columns and the last J columns. Each row of Q1 has 2(J − 1) zeros and two
ones; the elements with value 1 are in the j th column of the first set of columns and in the ith
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column of the last set of columns (i.e., column J + i). Using equation (29) it may be verified that
for three items (a, b, and c) of decreasing popularity, we have that exp(A2 log(A1m)) equals

exp

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
1 −1 0 0 0 −1 0 1 0 0
1 −1 0 0 0 0 −1 0 1 0
1 0 −1 0 0 0 −1 0 0 1

⎞

⎠ log

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n

m0
a

m0
b

m0
c

m1
a

m1
b

m1
c

m01
ab

m01
ac

m01
bc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎝

[n × m01
ab]/[m0

a × m1
b]

[n × m01
ac]/[m0

a × m1
c]

[n × m01
bc]/[m0

b × m1
c]

⎞

⎟
⎟
⎠ . (30)

For three items, it may be verified that substituting the term exp(A2 log(A1m)) in equation (16)
with the right-hand side of equation (30) produces coefficients Hij as defined in equation (6).

Appendix D. Recursive Exp-Log Notation for All Item Scalability Coefficients Simultaneously

In Appendix D the recursive exp-log notation for equation (19) is derived. For the purpose
of illustration, the design matrices are elaborated for a three-item test (hence, there are K = 3
item pairs and L = 8 item-score patterns). In the design matrices, dashed lines are displayed to
facilitate readability.

Design matrix A1 was derived in Appendix C (equation (28)). The (1+2K)× (1+2J +K)

design matrix A2 is the direct sum of the scalar 1, submatrix Q1 (Appendix C), and IK , that is,

A2 = 1 ⊕ Q1 ⊕ IK =
(1 0 0

0 Q1 0
0 0 IK

)

. (31)

Using equation (29) it may be verified that for three items (a, b, and c) in decreasing order of
popularity, we have that exp(A2 log(A1m)) equals

exp

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

log

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n
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a
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b
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c

m1
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b

m1
c

m01
ab

m01
ac

m01
bc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎠

⎤
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n

m0
am

1
b

m0
am

1
c

m0
bm

1
c

m01
ab

m01
ac

m01
bc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (32)
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The (1 + 2J ) × (1 + 2K) design matrix A3 is the direct sum of the scalar 1, and twice the
submatrix Q2, that is,

A3 = 1 ⊕ Q2 ⊕ Q2 =
(1 0 0

0 Q2 0
0 0 Q2

)

,

where Q2 is a J × K matrix, where the rows correspond to the J items and the columns cor-
respond to the K item pairs. Element i, j in Q2 equals 1 if the item corresponding to row i

is in the item pair corresponding to column j and 0 otherwise. Using equation (32), it may
be verified that for three items (a, b, and c) in decreasing order of popularity, we have that
log(A3 exp(A2 log(A1m))) equals

log

⎡

⎢
⎢
⎢
⎢
⎢
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⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0
0 1 1 0 0 0 0
0 1 0 1 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 1 0
0 0 0 0 1 0 1
0 0 0 0 0 1 1

⎞

⎟
⎟
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⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
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c
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⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
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⎥
⎦

= log

⎛
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⎜
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⎝

n
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1
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am
1
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1
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am

1
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m01
ab + m01

bc

m01
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⎞

⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎠

. (33)

For the general case of J items, the middle part of the vector on the right-hand side of equa-
tion (33) is a subvector of length J with element j equal to

∑j−1
i=1 m0

i m
1
j + ∑J

i=j+1 m0
jm

1
i .

Similarly, the lower part of the vector on the right-hand side of equation (33) is a subvector of
length J with element j equal to

∑j−1
i=1 m01

ij + ∑J
i=j+1 m01

ji .
The J × (1 + 2J ) design matrix A4 is a concatenation of the unit vector, the negative of the

identity matrix, and the identity matrix,

A4 = (1J −IJ IJ ) .

Using the right-hand side of equation (33), it may be verified that for three items (a, b, and c)
ordered according to decreasing popularity, we have that exp(A4 log(A3 exp(A2 log(A1m))))

equals

exp

⎡
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am
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⎞

⎟
⎟
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For the general case of J items, the vector on the right-hand side of equation (34) is a vector of
length J with element j equal to

n
(∑j−1

i=1 m01
ij + ∑J

i=j+1 m01
ji

)

∑j−1
i=1 m0

i m
1
j + ∑J

i=j+1 m0
jm

1
i

.

For three items, it may be verified that substituting the term exp(A4 log(A3 exp(A2 log(A1m))))

in equation (19) with the right-hand side of equation (34) produces coefficients Hj as defined in
equation (8).

Appendix E. Recursive Exp-Log Notation for the Scalability Coefficient for a Set of Items

In Appendix E the recursive exp-log notation for equation (21) is derived. For the purpose of
illustration, the design matrices are elaborated for the case of three items (hence, there are K = 3
item pairs and L = 8 item-score patterns). In these design matrices, dashed lines are displayed to
facilitate readability.

The recursive exp-log notation for scale coefficient H requires four design matrices, A1,
A2, A3, and A4, each consisting of submatrices. Design matrix A1 was derived in Appendix C
(equation (28)), and design matrix A2 was derived in Appendix D (equation (31)). The 3 × (1 +
2K) design matrix A3 is the direct sum of the scalar 1, and twice the row vector uT

K , that is,

A3 = 1 ⊕ uT
K ⊕ uT

K =
(1 0 0

0 uT
K 0

0 0 uT
K

)

. (35)

Using equation (32), it may be verified that for three items (a, b, and c) ordered according to
decreasing popularity, we have that log(A3 exp(A2 log(A1m))) equals

log

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝
1 0 0 0 0 0 0
0 1 1 1 0 0 0
0 0 0 0 1 1 1

⎞

⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

n

m0
am

1
b

m0
am

1
c

m0
bm

1
c

m01
ab

m01
ac

m01
bc

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= log

⎛

⎝
n

m0
am

1
b + m0

am
1
c + m0

bm
1
c

m01
ab + m01

ac + m01
bc

⎞

⎠ . (36)

For the general case of J items, the middle element of the vector on the right-hand side of equa-
tion (36) (i.e., m0

am
1
b + m0

am
1
c + m0

bm
1
c ) equals

∑J−1
i=1

∑J
j=i+1 m0

i m
1
j . Similarly, for the general

case of J items the lower element of the vector on the right-hand side of equation (36) (i.e.,
m01

ab + m01
ac + m01

bc) equals
∑J−1

i=1
∑J

j=i+1 m01
ij .

Design matrix A4 is a row vector with three elements, that is,

A4 = (1 −1 1 ) . (37)

Using equation (36), it may be verified that for three items (a, b, and c) ordered according to
decreasing popularity, we have that exp(A4 log(A3 exp(A2 log(A1m)))) equals

exp

⎡

⎣(1 −1 1 ) log

⎛

⎝
n

m0
an

1
b + m0

am
1
c + m0

bm
1
c

m01
ab + m01

ac + m01
bc

⎞

⎠

⎤

⎦ = n(m01
ab + m01

ac + m01
bc)

m0
am

1
b + m0

am
1
c + m0

bm
1
c

. (38)
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For the general case of J items, the ratio on right-hand side of equation (38) equals

n
(∑J−1

i=1
∑J

j=i+1 m01
ij

)

∑J−1
i=1

∑J
j=i+1 m0

i m
1
j

.

For three items, it may be verified that substituting the term exp(A4 log(A3 exp(A2 log(A1m))))

in equation (21) with the right-hand side of equation (38) produces coefficient H as defined in
equation (10).

Appendix F. Recursive Exp-Log Notation for the Scalability Coefficient for a Set of Items for
Several Groups Simultaneously

In Appendix F the recursive exp-log notation for equations (24) and (25) are derived. The
recursive exp-log notation for the vector containing scalability coefficients H 1, . . . ,HG, requires
four design matrices that are the same for each subgroup: A2, A3, A4, and A5, and one design
matrix that may be different for each subgroup: Ag

1 (g = 1, . . . ,G). Design matrix Ag

1 (derived
in Appendix C, equation (28)) identifies the frequencies pertaining to Guttman errors. If the sub-
group g has a different item ordering than subgroup g′ (g �= g′), then the cells in the contingency

table that pertain to Guttman errors are not the same for g and g′ and Ag

1 �= Ag′
1 .

Design matrix A2 was derived in Appendix D (equation (31)), and design matrices A3 and
A4 were derived in Appendix E (equations (35) and (37), respectively). For a single group, H 1

is given by equation (21). Using equation (21), it may be verified that, for two groups,

(
H 1

H 2

)

=
(

1
1

)

− exp

[(
A4 0
0 A4

)

× log

[(
A3 0
0 A3

)

exp

[(
A2 0
0 A2

)

log

[(
A1

1 0
0 A2

1

)(
m1

m2

)]]]]

. (39)

A generalization of equation (39) to G subgroups yields equation (24).
Let A5 be a (G − 1) × G matrix with element (g, g) equal to 1 for g = 1, . . . ,G − 1, and

element (g, g + 1) equal to −1 for g = 1, . . . ,G − 1; then

A5

⎛

⎜
⎜
⎝

H 1

H 2

...

HG

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

1 −1 0 . . . 0 0
0 1 −1 . . . 0 0
...

...
...

...
...

0 0 0 . . . 1 −1

⎞

⎟
⎟
⎠

⎛

⎜
⎜
⎝

H 1

H 2

...

HG

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

H 1 − H 2

H 2 − H 3

...

HG−1 − HG

⎞

⎟
⎟
⎠ . (40)

The marginal model that implies that the vector on the right-hand side of equation (40) equals 0
can be found by substituting the vector (H 1, . . . ,HG)T in equation (40) with the right-hand side
of equation (24), and setting it equal to 0G:

g(m∗) = A5

{

u − exp

(
G⊕

g=1

Ag

4 log

(
G⊕

g=1

Ag

3 exp

(
G⊕

g=1

Ag

2 log

(
G⊕

g=1

Ag

1m∗
))))}

= 0G. (41)

Because A5u = 0 equation (41) reduces to equation (25).
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