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Abstract
Safety and security are key considerations in the design of critical systems. Requirements analysis methods rely on the
expertise and experience of human intervention to make critical judgements. While human judgement is essential to an
analysis method, it is also important to ensure a degree of formality so that we reason about safety and security at early stages
of analysis and design, rather than detect problems later. In this paper, we present a hierarchical and incremental analysis
process that aims to justify the design and flow-down of derived critical requirements arising from safety hazards and security
vulnerabilities identified at the system level. The safety and security analysis at each level uses STPA-style action analysis
to identify hazards and vulnerabilities. At each level, we verify that the design achieves the safety or security requirements
by backing the analysis with formal modelling and proof using Event-B refinement. The formal model helps to identify
hazards/vulnerabilities arising from the design and how they relate to the safety accidents/security losses being considered at
this level. We then re-apply the same process to each component of the design in a hierarchical manner. Thus, we use hazard
and vulnerability analysis, together with refinement-based formal modelling and verification, to drive the design, replacing the
system level requirements with component requirements. In doing so, we decompose critical system-level requirements down
to component-level requirements, transforming them from abstract system level requirements, towards concrete solutions that
we can implement correctly so that the hazards/vulnerabilities are mitigated.

Keywords Safety · Security · Hazards · Vulnerabilities · Requirements · STPA · Event-B

1 Introduction andmotivation

In an increasingly connected world of intelligent devices,
safety and security have become key issues in the develop-
ment of embedded components and cyber-physical systems.
In the avionics domain, for example, standards such as
ED202A [1] and ED203A [2] mandate a series of secu-
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rity risk assessments to be carried out at different stages of
design. Security and safety are, in many cases, interrelated.
Systems Theoretic Process Analysis (STPA) [3] is a method
for analysing safety hazards in systems while STPA-Sec [4]
adapts STPA for analysis of security vulnerabilities.

STPA is methodical in the sense that it provides a system-
atic approach to identification of hazards through analysis
of the ways in which control actions might cause failures.
STPA lacks the rigour of formality in the sense that it relies
on human judgement to assess the effect of control actions.
Formal techniques such as Event-B [5], on the other hand, are
not methodical per se in that they rely on human judgement
to make modelling choices, but can then provide a rigorous
analysis of the properties of the model through formal veri-
fication.

In previouswork [6–9], we have explored the combination
of STPA and STPA-Sec with formal modelling to exploit the
synergy between methodical informal analysis and rigorous
formal verification. While this combination is both method-
ical and rigorous, its scalability is limited by the lack of
systematic support for an incremental approach. An incre-
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Fig. 1 Fingerprint component, control abstraction diagram

mental approach supports scalability by allowing developers
to factorise the analysis of complex systems in stages rather
than addressing the analysis in a single stage.Event-Balready
supports incremental formal development through abstrac-
tion and refinement in formalmodelling.However, the hazard
analysis part of our previous STPA/Event-B approach lacks
systematic support for incremental analysis of a complex
range of system hazards, in particular, it lacks support for
abstraction and refinement in the analysis of control actions.

The current state of art lacks a methodical, rigorous and
scalable single approach to analysis of safety and security. In
this paper, we address this gap by adopting an abstraction-
based incremental approach to hazard analysis. We call the
approach Systematic Hierarchical Analysis of Requirements
for Critical Systems (SHARCS). SHARCS addresses the rig-
orous formality challenges associated with application of
STPA, the methodical challenges associated with applica-
tion of Event-B, and scalability challenges of the existing
STPA/Event-B combination [6–8].

To give the reader a flavour of what we mean by abstrac-
tion and refinement in action analysis, consider Fig. 1. This
shows a Systematic Hierarchical Analysis of Requirements
for Critical Systems (SHARCS) control abstraction diagram
for a system whose purpose is to ensure that only authorised
user are able to access a secure enclave. Details of the secure
enclave case study and of the diagrams will be presented
shortly. For now, the reader should observe of Fig. 1 that the
solid arrows represent actions (scan, show, etc.) performed
by agents (Authority, User, Gatekeeper) on components (Fin-
gerprint, Card, etc). The model in Fig. 1 involves 3 agents,
7 components, and 16 actions. Now consider Fig. 5 which is
abstraction of Fig. 1 containing 2 agents, 2 components, and

3 actions. Rather than performing hazard analysis across all
the actions of the more complex Fig. 1, we commence the
analysis on the smaller number of actions of Fig. 5. We then
incrementally consider additional components and associ-
ated actions (e.g. the Secure Door component in Fig. 9) and
analyse those additional actions for potential hazards. The
choice of the abstraction of Fig. 5 is guided by the desire to
commence the analysis with a model that succinctly captures
themain purpose of the secure enclave system, i.e. ensure that
only authorised users may enter the secure enclave. The min-
imal collection of agents, components and actions of Fig. 5
is sufficient to capture this purpose.

To our knowledge, an abstraction-based incremental
approach to STPA control action analysis has not previously
been considered. Our first attempt towards developing the
SHARCS approach was presented in [10], which investi-
gates the proposed idea on a case study but does not include
the key concept of control abstraction diagram introduced
here. In this paper, we introduce control abstraction dia-
grams, extend the security-critical enclave case study, and
introduce a safety-critical railway level-crossing case study.
We also systematically present the general development flow
of the SHARCS approach. The artefacts from the case stud-
ies are available to download from https://doi.org/10.5258/
SOTON/D2957.

The contributions described in this paper are as follows:

• For developers of critical systems, a method for rigorous
and traceable analysis that flows down critical system
requirements to derived component requirements and
provides evidence that security and safety properties are
addressed in the design.
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• For safety/security analysts, a new (but somewhat ‘STPA-
like’) abstraction-based, hierarchical component analysis
method that uses formal models and proof to provide
rigorous verification to the analysis at and between each
refinement level.

• For users of refinement-based formalmethods, amethod-
ical approach to the difficult problem of finding an
effective refinement strategy by selecting abstractions
and requirements that should be modelled in each refine-
ment.

• For stakeholders such as domain experts, progressive
validation via scenarios executed on abstract models at
different levels of requirements.

• A new diagram type, control abstraction diagrams, that
illustrates control actions and constraints on them at dif-
ferent abstract levels.

The paper is structured as follows: Sect. 2 overviews the
SHARCS approach, outlining its application to our secure
enclave case study which is based on the Tokeneer access
control system [11]. Section3 presents the analysis andmod-
elling steps for the highest abstraction level using the case
study to demonstrate the steps in some detail. (Note: back-
ground information is provided in text boxes where needed
to aid understanding of the paper.) Sect. 4 presents the analy-
sis and modelling steps for individual refinement levels and
how they relate to the corresponding higher abstraction level.
Section5 provides a specification of the overall workflow of
the SHARCS process. We deliberately present the details of
the analysis steps prior to specifying the overall workflow
as this makes it easier for the reader to appreciate why the
workflow is as specified. Section6 discusses related and pre-
vious work. Detailed contributions of the proposed approach
is presented inSect. 7. Finally Sect. 8 concludes anddescribes
future work.

2 An introduction to SHARCS approach and
its outcomes

Our approach is based on the use of a control action analysis
(that borrows some ideas from STPA) in conjunction with
formal modelling and refinement (using Event-B) to analyse
the safety and security of cyber-physical systems by flowing
down system-level requirements to component-level require-
ments.We focus on analysis of discrete control actionswithin
a cyber-physical system. The controlled system may contain
physical components that exhibit continuous behaviour but
we assume the system handles continuous variables by dis-
cretisation. Event-B utilises a formal notion of abstraction
and refinement where properties (e.g. the absence of security
failures) can be expressed at a high level of abstraction and
incremental refinements can be made to derive more detailed

properties and verify that these respect the previously speci-
fied properties.

There is an established and documented taxonomy [12]
used in the literature when discussing dependability includ-
ing safety and security (which may impact safety and adds
confidentiality). At the system level, a failure could result in
a security loss or an unsafe accident. Hence a security loss is
a failure that results in a security property being violated and
an accident is a failure that results in a safety property being
violated. Since we provide a generic approach for both safety
and security, we simply use the term failure. In a hierarchical
approach there are advantages if the process and terminology
are self-similar throughout the levels, especially since system
or component boundaries may be relative to the viewpoint.
A system comprises a set of interacting components, each of
which may be considered to be a system in its own right. The
term, failure, works at any system boundary where we can
consider the failure of that system to provide a service that
it is responsible for. Faults in the design of a system allow it
to get into a state that could lead to a failure. A fault may be
a hazard that could lead to an accident or a vulnerability that
could lead to a loss. Hence, we use fault as a generic term
that includes hazards and vulnerabilities of a system.

In our hierarchical approach, for each system (or compo-
nent sub-system), an STPA-style analysis identifies potential
faults or vulnerabilities that could lead to service failures.
STPA does this by considering a control structure dia-
gram that identifies the structure of controlling agents and
controlled components and the control actions that can be
performed. However, we are working at multiple abstrac-
tion levels and our initial abstract models may abstract away
from designed control agents, e.g. Fig. 5 abstracts away from
the Gatekeeper control agent of Fig. 1. Instead, we propose
an alternative style of diagram, appropriate to the level of
abstraction, which shows the actors involved and in what
ways they are required to constrain each others behaviour
even if the mechanisms of that control are omitted. We call
these diagrams control abstraction diagrams.

Control abstraction diagrams help us to identify the con-
trol actions involved in the set of behaviours that make up
the service at the current abstraction level, and examine what
effect a fault in that service would have on the system and
what constraining conditions are needed to avoid it. This
helps us to assess a proposed design consisting of interacting
abstract components, each providing derived service func-
tions. This assessment aims to mitigate service failure by
strengthening the derived requirements placed on the com-
ponents. The control abstraction diagram is an outline of the
system at that level of abstraction and provides a good first
step tomaking the corresponding Event-Bmodel refinement.
Validation of the Event-B model ensures that it accurately
reflects the desired system-level service function. To do this,
the model must also embody an abstraction of the system’s
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environment, in particular, any external behaviour that could
affect the service function. Applying formal verification to
the Event-B model helps to identify faults in the design,
which could cause or allow failures to manifest at the system
level. Identification of design faults leads us to modify the
design or strengthen the specifications of the service func-
tions provided by the components. This strengthening will
typically involve constraining the conditions under which
control actions may be taken and hence strengthening guards
in the Event-B events. Alternatively, in some cases we may
revise our assumptions about the environment including user
behaviour. The verification is repeated until no such design
faults remain at this level of abstraction. We then move to the
next level, analysing the sub-components as systems in their
own right, with rigorous assurance of their derived require-
ments. In the remainder of this paper requirements means
the specified functionality of service functions provided by a
system and derived requirements means the specified func-
tionality of service functions provided by the individual
components of the system.

2.1 Overview of Tokeneer outcomes: requirements
and failures hierarchies

Background: Tokeneer Case Study: Our main case
study in this paper is the Tokeneer system (security-
critical case study). The Tokeneer system [11] consists
of a secure enclave and a set of system components,
some housed inside the enclave and some outside (Fig-
ure 2). The ID Station interfaces to four different
physical devices: fingerprint reader, smartcard reader,
door and visual display. The primary objective is to
prevent unauthorised access to the Secure Enclave. The
requirements include (1) authenticating individuals for
entry into an enclave and (2) controlling the entry to
and egress from an enclave by authenticated individu-
als. The door has four possible states: the cross-product
of open/closed and locked/unlocked. A card identifies a
particular user using a fingerprint mechanism. If a user
holds a card that identifies them via fingerprint match-
ing, they are permitted to enter the enclave. Hence cards
should only be issued to permitted users. A successful
scenario involves: arrival of a permitted user at the door
who then presents a card on the card reader and amatch-
ing finger print at the fingerprint reader. The systemwill
then unlock the door allowing the user to open it and
enter the enclave.

The Tokeneer system consists of several interlinked com-
ponents and includes several hazards that can impact func-
tionality; this makes it a practical case study to demonstrate
the SHARCS, therefore we use it as the main case study in
this paper.

Fig. 2 Tokeneer Secure Enclave

The hierarchical component design process as applied to
the Tokeneer system is illustrated in Fig. 3. Starting from
the system level purpose, the analysis of that system leads
us to the outline design of the next level in terms of sub-
components and their purpose. Some of these components
require further analysis (those shown with title and purpose)
while others (shownwith only a title) are assumed to be given,
and are therefore only analysed in so far as they are used by
their sibling components.

The purpose of theTokeneer system is to allowonly autho-
rised users to enter an enclave. Users may also leave the
enclave. High level analysis of this system leads us to the
design decision that, to achieve the system purpose, we need
some kind of secure door whose purpose is to only open for
authorised users. (Note that the prefix secure implies that
this door has some extra functionality beyond a normal door
that we have yet to design). Analysis of the secure door in
turn leads to the decision to use an ordinary (i.e. unintelli-
gent) door and a secure lock to achieve the functionality of
the secure door. However, the analysis of the secure door
also revealed a risk that the door may be left open by a user,
leading to a decision to introduce an alarm component at the
same level. The secure lock and alarm components are at
the same conceptual level but functionally independent and
can be analysed individually in consecutive analysis levels.
The alarm component analysis does not lead to any further
sub-components and the derived requirements of this com-
ponent are therefore used as input to its implementation (or
validation in case of a given component). The secure lock is
further decomposed into an ordinary lock and a secure card
componentwhich in turn is decomposed into an ordinary card
and a fingerprint component. In summary, there are five con-
trol components in the Tokeneer design structure (over three
levels): secure door, secure lock, alarm, secure card and fin-
gerprint. There are four passive environment objects that are
controlled by the Tokeneer control system: door, lock, card
reader, fingerprint reader.

Failures at the immediate sub-component level could
cause a failure at the higher level. Hence, in line with the
hierarchical component design (Fig. 3), starting from the top
level system failures, we have derived a hierarchy of failures
as illustrated in Fig. 4. The left side of Fig. 4 presents the
relations between failures leading to a breach of the system-
level security constraint. For example, if an unauthorised user
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Fig. 3 Tokeneer: hierarchical component design, flow down requirements

Fig. 4 Tokeneer: hierarchical
failures
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holds a card (FC1) this can result in the door unlocking for the
unauthorised user (FL1) followed by the door opening (FD1)
where upon the unauthorised user can enter the enclave (F1).
Security attacksmay also target denial of functionality which
is sometimesomitted in safety analysis (i.e. a system that does
nothing is often considered safe). Relations between security
failures leading to a loss of functionality are illustrated on the
right hand side on Fig. 4. For example, if an authorised user
loses their card (FC2), the enclave door is prevented from
unlocking (FL2) and opening (FD2) and hence an authorised
user is prevented fromentering the enclave (F2).Note that our
design into sub-components does not always make the fail-
ures disappear.We drive themdown, transforming them from
an abstract system level failure, towards a concrete problem
that we can address by introducing controls at an appropriate
level so that they do not manifest.

We also applied our SHARCS approach to a railway level
crossing case study. A level crossing is an intersection where
a road crosses a railway line at the same level (i.e. without
a bridge). We use this case study to show that our analysis
approach can be used on a safety-critical system. The safety
property is that cars and trains should not use the crossing
at the same time. The hierarchical component design, hierar-
chy of failures, and the last level control abstraction diagram
for the level crossing are included in the Appendix and the
full development of the level crossing, including the STPA
analysis tables and Event-Bmodels, is available to download
from https://doi.org/10.5258/SOTON/D2957. At the level of
abstraction of the Event-B modelling, the security analysis
and safety analysis are similar. In both case studies, failure
is a result of the combination of undesirable user behaviour
and vulnerabilities in the design. Security and safety are often
treated as requiring different analysis methods. We applied
our approach toboth case studies to demonstrate that the same
methods can be applied to both safety and security cases.

In the next sections, we use the Tokeneer case study to
present various steps of the SHARCS approach in more
detail. Note that Figs. 3 and 4 are produced as outputs from
the final consolidation stage of the process shown later,
Fig. 17. We have presented them here because they give a
good overview of the steps used in the analysis.

3 System level analysis

In this section, first we describe the system-level analysis
phase consisting of six steps through application to the Toke-
neer case study.

An introduction to control abstraction diagrams:
The diagrams (see example diagrams in Figures 5 and 9)
show agents, components and assumptions as nodes and
actions, conditions and input as links.
• Agents are entities in the system that can act on a
component. They could be part of the control sys-
tem or part of the environment (e.g. User). Actions
are shown as a link from the agent to the component
and labeledwith the name of the action. Agentsmay
constrain each others actions by making a condition
link to the constrained action (labelled with the con-
straint condition in square brackets). As shorthand,
when they constrain their own actions the constraint
condition is annotated on the action link. Input links
show where agents utilise information contained in
a component.

• Components are entities that are acted upon but
do not take actions themselves. However, their state
may constrain an agent’s actions via condition links
and may depend on information in other compo-
nents via input links. Components may be physical
objects in the system (e.g. enclave) or may be con-
ceptual domain entities (e.g. authorisation). They
may also represent abstract entities at this level of
the analysis (e.g. secure door). In the latter case
they will be replaced in future refinement levels
by subsystems made up of agents and components,
revealinghow they are able to impose the constraints
shown at this abstract level.

• Assumptions allowus to explicitly annotate proper-
ties or behaviours that the designed control relies on
in order to operate correctly. Assumptions can con-
strain actions via condition links in a similar way to
components.

Step 1: Control analysis The system level control abstrac-
tion diagram forTokeneer is shown inFig. 5 and is a reflection
of the system requirement: “Allow only authorised users
to enter the enclave”. In the diagram an agent, User, per-
forms the enter and leave actions on the physical component
enclave.We also include a domain component to cater for the
concept of Authorisation that imposes a constraint, [autho-
rised], on the enter action. An Authority agent can grant and
revoke this user authorisation.
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Background: Systems Theoretic Process Analysis
(STPA):
STPA [3] is a hazard analysis method which can be
applied to systems involving control structures. The
hazardous conditions are identified by considering the
absence, presence or the improper timing of control
actions. The process is followed by identifying causal
factors for unsafe control actions. The STPA process
includes the following steps:
• Identification of accidents and hazards.
• Providing a control structure diagram to identify the
major components and control actions.

• Identification of unsafe control actions and conse-
quently generating safety constraints.

• Causal factors identification to determine how
unsafe actions could occur.
While STPA is used for safety problems, STPA-

Sec [4] extends STPA to include security analysis.
Similar to STPA, STPA-Sec identifies losses and sys-
tem hazards, or in this case, system vulnerabilities.
STPA-Sec also examines the system control structure
and identifies the insecure control actions instead of the
unsafe actions. It differs from STPA in the addition of
intentional actions when identifying causal scenarios.

STPA and STPA-Sec are intended as methods for
analysing a control system. It is assumed that a con-
trol structure diagram can be constructed. That is, the
interfaces and safety constraints within the control sys-
tem and between the controller and its environment are
known and understood.

Step 2: Action analysis A system failure is a violation
of the system purpose so we identify failures by essentially
negating the purpose. For the Tokeener system negation of
purpose leads to the two failures presented in Fig. 6: F1 rep-
resents a breach of the required security property and F2
represents a denial of functionality.

Once the control abstraction diagram has been con-
structed,we analyse the control actionswith respect to system
level failures that could result from the actions. This is
presented for Tokeneer in Fig. 6 for both user actions of
Fig. 5—enter and leave. Action analysis considers whether
lack of execution of the action, or execution under the wrong
conditions, timing or ordering, could result in one or more
of the identified failures. This analysis is shown in the action
analysis table in Fig. 6. The entries in the action analysis
table identify conditions underwhich non-occurrence, occur-
rence, or incorrect timing of the action would cause a failure.
For example, the entry labelled A12 describes the condition
under which occurrence of the enter action would cause fail-
ure F1.

Background: Event-B:
Event-B [5] is a refinement-based formal method for system development.
The mathematical language of Event-B is based on set theory and first order
logic. An Event-B model consists of two parts: contexts for static data and
machines for dynamic behaviour. Contexts contain carrier sets s, constants
c, and axiomsA(c) that constrain the carrier sets and constants. Machines
contain variables v, invariant predicates I(v) that constrain the variables,
and events. In Event-B, a machine corresponds to a transition system where
variables represent the states and events specify the transitions.

An event comprises a guard denoting its enabling-condition and an
action describing how the variables are modified when the event is exe-
cuted. In general, an event e has the following form, where t are the event
parameters, G(t, v) is the guard of the event, and v := E(t, v) is the
action of the event.

e==any twhereG(t,v) then v := E(t,v)end
An Event-B model is constructed by making progressive refinements

starting from an initial abstract model which may have more general
behaviours and gradually introducing more detail that constrains the
behaviour towards the desired system. This is done by adding or refining the
variables of the previous abstract model and modifying the events so that
they use the new variables. Each refinement step is verified to be a valid
refinement of the previous step. That is, the new behaviour must have been
possible in the abstract model according to the given relationship between
the concrete and abstract variables. The detailed mathematical reasoning
processes of Event-B modelling requires expertise in the language and con-
cepts of proof, but this is achievable by most engineers. More challenging is
the choice of useful abstractions that can be arranged in a sequence of steps
to form a refinement strategy that introduces coherent issues in manageable
steps and is amenable to the automatic theorem provers.

Event-B is supported by the Rodin 11 tool set [13], an extensible open
source toolkit which includes facilities for modelling, verifying the consis-
tency of models using theorem proving and model checking techniques, and
validating models with simulation-based approaches.

In this paper we make extensive use of the following plug-in tools that
extend the Rodin toolset:

3.0.1 ProB

[14] is an animator and model checker for the B-Method. It also sup-
ports Event-B and can be installed within the Rodin tool set. The ProB
model checking facility complements Event-B theorem proving for veri-
fying Event-B models by finding invariant violations and deadlocks. ProB
also enables the validation of the model behaviour by exploring execution
traces, which can be constructed by the manual selection of enabled events.

3.0.2 Scenario Checker

[15] is an animation tool that we developed for validating systems by
recording and replaying scenarios. It extends ProB to support two new func-
tionalities: a ‘run to completion’ style execution of controller events, and
a record/replay style user interface for running test scenarios. In Event-B
we model a closed system of interacting components including the environ-
ment and any controlling devicewithout distinguishing between the different
kinds of events. However, an environment event may trigger a sequence
of controller events representing the controllers response. These internal
controller steps are not usually explicitly specified by scenarios. Hence, to
support scenario animation, we distinguish between external environment
events and internal controller events. To simplify the scenario execution,
the scenario checker records and replays the external events automatically
firing any enabled internal events until none are enabled. Then the scenario
checker will wait for the next external event to be selected by the user or by
replaying the recorded scenario.

Step 3: Formal modelling We now construct a formal
model to capture the behaviour of the identified control

1 The formal modelling tools used, are available as bundled installation
packages via https://www.uml-b.org/Downloads.html.
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Fig. 5 System level, control
abstraction diagram

Fig. 6 System level, action analysis table

actions as well as the environment around the control sys-
tem and any invariant properties capturing the purpose of the
system. The two identified actions are specified as abstract
events in the system-level Event-Bmodel (Fig. 7).We choose
to model the system state using a set inEnclave of the users
that are in the enclave. Another set authorisedUsers specifies
which users are authorised to enter the enclave. Formally, we
can express the security constraint as an invariant property;
the set of users in the enclave is a subset of the authorised
users as follows:

@inv1: inEnclave ⊆ authorisedUser

(This invariant property is from our Event-B model of the
system.)

The userEnterEnclave event has one parameter, user, and
two guards. The first guard grd1 represents an assumption
that the user is not already in the enclave, while grd2 ensures
that the user is authorised to enter the enclave. If both guards
are satisfied then the event is allowed to execute and the action
act1 updates the variable inEnclave by adding the instance
user. The action analysis in Fig. 6 helps us to identify the need
for grd2 of userEnterEnclave: this guard addresses failure

Fig. 7 (part of) Event-B model for system level

F1, since lack of this guard results in failure of a security
constraint (an unauthorised user enters enclave).
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Fig. 8 Scenario checker tool applied at system level

Step 4: Formal verification and validation: In formalmod-
els, we distinguish between safety properties (something bad
never happens) and liveness properties (something good is
not prevented from happening). Occurrence of failure F1
would represent a violation of safety since it would result
in violation of invariant inv1. Failure F2 is a denial of ser-
vice failure and, in the formal model, this failure represents
a violation of liveness.

Once the model is determined to be a valid representation
of the system, we use automatic theorem provers to verify
security constraints (such as F1 expressed as the invariant
inv1). The embedded theorem prover of the Rodin tool dis-
charges the invariant preservation proof obligation for the
userEnterEnclave event, verifying that it preserves the spec-
ified invariant. Note that grd2 is necessary to prove that the
userEnterEnclave event preserves invariant inv1.

We use the scenario checker tool in the Rodin tool for
manual validation of liveness. Figure8 shows the scenario
checker tool being used to check the F2 failure scenario; the
scenario involves two authorised users entering the enclave
and the scenario checker demonstrates that both users can
enter the enclave sequentially. Animation of the abstract
model is a usefulway for amodeller (or domain expert) to use
their judgement to validate that themodel accurately captures
the security requirements.Model checking and animation can
identify potential violations of the security invariant and vio-
lations of liveness, i.e. denial of entry for authorised users.

Step 5: Adjust the analysis and models In the case that the
scenario checking or verification identifies problems with

the formal model, we make adjustments in order to remove
the problems. These might be problems with the formalisa-
tion or might be due to problems in the informal analysis.
The analysis and formalisation of Tokeneer at this abstract
level is straightforward and does not reveal any problems.
In Sect. 4 we demonstrate how the need to formally verify
the correctness of the refined model incorporating the secure
door component leads us to revisit and clarify our assump-
tions about potential tailgating by unauthorised users.

Step 6: Mitigation and outline design for next phases The
system level requirements specify the desired behaviour but
do not say how they will be achieved. That is, unauthorised
users are prevented from entering but we do not specify how
they are prevented. Next we need to take a design step and
introduce some sub-components that take responsibility for
this behaviour. Domain knowledge (and common practice)
provides a suggestion for the next level design (mitigation):
the introduction of a door component. The action analysis of
Fig. 6 helps us derive the requirements on the door component
in that the door should mitigate the conditions (A11, A12)
under which the actions could cause failures F1 or F2. This
leads to the requirement that the door opens so that authorised
users can enter the enclave but does not open for users that are
not authorised. The derived requirement for the door compo-
nent is also shown at the bottom of Fig. 6. In Sect. 4, we will
describe further analysis of the door component leading in
turn to the identification of further components and analysis
of those components to derive their requirements.
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The interplay between the (informal) analysis in Steps 1–2
and the formal modelling (Steps 3–4) is important. The anal-
ysis identifies key properties, actions and conditions under
which actions may cause failures. These guide the con-
struction of the formal modelling in Steps 3–4, including
invariants, events (corresponding to actions) and event guards
(to prevent failures). The formal modelling in turn increases
the degree of rigour in the analysis through the automated
support for scenario checking, model checking and proof.
The formal modelling can identify gaps or ambiguities in the
informal analysis resulting in the need to adjust the informal
analysis and formal modelling to address these (Step 5).

4 Component level analysis

In this section, we describe the steps of the component anal-
ysis phase of SHARCS through application to Tokeneer. The
component analysis phase is subsequently repeated if we
identify further sub-components. For example, Fig. 3 illus-
trates how failure analysis of the secure door component leads
to identification of secure lock and alarm components. The
steps involved in the component analysis phase are similar
to those of the system-level analysis, which were explained
in the previous section. Here we highlight the differences:

• Step 1: Elaborate the control abstraction diagrams to add
the control action structure of the component(s) intro-
duced in this phase.

• Step 2: Consider the component purpose, which has
been identified as part of the previous level analysis and
identify component failures (by negating the component
purpose). For certification purposes, it is useful to record
how the potential failures of this component link, via the
control actions that this component addresses, to the pre-
vious level failures.

• Step 3: Refine the abstract formal model to capture:

– Component properties as invariants.
– Refined/new events representing component level
actions.

• Step4:Use automated theoremproving andmodel check-
ing to verify constraints including the refinement proof
obligations.

Section 4.1 describes the steps involved in the analysis
of a secure door component. Section4.2 describes the steps
involved in analysis of the secure lock and alarm compo-
nents identified in Sect. 4.1. Section4.3 describes the steps
involved in analysis of the secure card component identified
in Sect. 4.2. Section4.4 describes the steps involved in anal-
ysis of the fingerprint component identified in Sect. 4.3.

4.1 Component level: door

The secure door component, Fig. 10, addresses two of the
insecure conditions of the user actions, A11 and A12, from
the previous level (see Fig. 6), which lead to the failures, FD2
and FD1, identified in the previous level.

Step 1: The refined control abstraction diagram for the
door component is presented in Fig. 9. Here the secure door
component is introducedwith four actions for a user to open/-
close the door and approach/depart the door. Compared to
the system level control abstraction diagram (see Fig. 5), the
role of checking authorisation is shifted to the secure door
component which should open only for authorised users.

Step 2: Analysis of the door component’s actions is pre-
sented in Fig. 10. Two failures (FD1 and FD2 in Fig. 10) are
found by negating the purpose of the door component which
was identified in the previous level (see Fig. 6). The failures
FD1, FD2 are linked to failures F1 and F2, respectively, from
the previous level (for a broader illustration of the connection
between failures, see Fig. 4).

Note that the actions of the previous level are still part of
the system behaviour (and hence model) but are not analysed
further at this level since their potential failures have been
addressed by introducing the door sub-component and del-
egating their responsibilities to the new actions of the door.
The table in Fig. 10 identifies the scenarios under which the
open door and close door actions may lead to failures.

Not all control action problems can be addressed by the
design. Here mitigation is divided into two types: designmit-
igation, where there is a proposed design decision for the
problem(s), and user mitigation, where the user can con-
tribute to mitigating the problem. In the ‘wrong timing or
order’ cases, Fig. 10, (AD23: the user closes the door before
entering) and (AD43: the user leaves door with the door still
open), these are user errors which cannot be prevented by
the system. The provers detect such anomalies in temporal
behaviour that violate the invariants and we fix the system
by constraining the behaviour, either by making assumptions
about the environment (including users) or by adding features
to the control system. For these cases, Fig. 10 includes user
mitigation to address AD23 (user opens the door again) and
an assumption about user behaviour to address AD43 (user
will not leave the door while the door is open). Thus there is
no need to address these failures in the control system design.

Step 3–5: Fig. 12 presents the first refinement of the Toke-
neer Event-B model to introduce the door component. There
are two versions of this refinement, the initial refined model
(Fig. 12a), where the security constraints are more rigidly
enforced, and the adjusted model (Fig. 12b), where security
relies partly on user behaviour. These two models are not
refining each other. The adjusted model is a replacement of
the initial refined model.
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Fig. 9 Door component, control abstraction diagram

Fig. 10 Door component, action
analysis table

In the initial refinedmodel (Fig. 12a), theuserEnterEnclave
abstract event (see previous section) is refined and the check
that the user is authorised, specified in grd2, is replaced by
checking the state of the door (a user can enter enclave only
when the door is open). This guard replacement shifts the
role of checking authorisation to the door. A proof obliga-
tion is generated by the Rodin tool since guards must not be
weakened by refinement (i.e. the refined guard implies the
abstract guard). To prove that the guard is not weakened we
need an invariant property: when the door is open, then all
users by the door must be authorised since any of them could
enter the enclave. This is an example of how proof obliga-

tions associated with a formal model lead to the discovery of
necessary assumptions. To model this assumption we intro-
duced a variable atDoor to represent the subset of users by
the door and the necessary invariant property (inv2a in the
listing). To preserve this invariant, the userApproachDoor
event also checks that the door is closed before allowing a
new user to be added to the atDoor variable, act1. Specifying
that a user will only approach the door when it is closed is
a rather strong assumption and we re-visit this in our second
model of the secure door.

Thepurposeof the door component is specified formally in
themodel by a combination of an invariant inv2a and a guard,
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Fig. 11 Scenario checker tool at the door level

grd3, of the event userOpenDoor. The invariant captures our
assumption about users in the case that the door is open and
the guard checks that all users by the door are authorised
before allowing the user to open the door. The FD1 failure,
door opens for unauthorised user, is prevented by grd3 of
the userOpenDoor event which represents the requirement
that the door has some, yet to be designed, security feature.

The guard grd2 of event userLeaveDoor is needed to pre-
vent FD2, Door does not close. Without this condition an
authorised user can open the door and then leavewith the door
open so that no other user can approach the door (because of
our strong assumption that users approach the door when it
is closed) which results in a deadlock. We demonstrated this
(before adding grd2 of userLeaveDoor event) by using the
scenario checker to execute a scenario where an authorised
user leaves the door without closing it. This scenario leads
us to observe that the door must not be left open, meaning
that we need to constrain (i.e. make assumptions about) user
behaviour in our Event-B model in order to show that the
system is secure.

Another scenario (shown in Fig. 11) demonstrates that
when an authorised user is in the enclave, the presence of an
unauthorised user by the door prevents the authorised user
from opening the door to leave the enclave (trapped in the
enclave).

The model in Fig. 12a includes the assumption that when
the door is open, then all users by the door must be autho-
rised. By making this assumption we are departing from the
original specification of the Tokeneer system which has no

such prevention/checking mechanism and relies instead on
authorised users preventing tailgating. The experience gained
from the scenario checking led us to change our assumption
and relax the condition inv2a specified in the initial version
of the model. Instead we make the assumption that the pres-
ence of authorised users will deter unauthorised ones from
entering the enclave. In the adjusted model, inv2a is replaced
by inv2b (Fig. 12b): when the door is open there is either a
user in the enclave or at least one authorised user is by the
door.

This illustrates Step 7, where the formal modelling
informs the informal analysis. The assumption about tail-
gaters is modified: in the initial refined model, we assume
there is no potential tailgater by an open door; while in the
adjusted model we assume the authorised users will prevent
tailgating. The adjusted version is more realistic but relies on
stronger assumptions about user behaviour.

In order to be able to use scenarios to test whether
the model prevents unauthorised users from entering, we
deliberately model the event that we hope to prevent. The
abstract userEnterEnclave is split into two refining events:
authUserEnterEnclave and unauthUserEnterEnclave. The
guard of the latter event (which includes a conjunct that
no authorised users are at the door) must never hold,
thus preventing an unauthorised user from entering the
enclave. A contradiction between inv2b and the guard of
unauthUserEnterEnclave ensures that it is never enabled.
This is an example of a negative scenario which we do not
want to be possible in the system. These negative scenarios
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Fig. 12 Event-B model for the
door component
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involve a check that some particular events are disabled at a
particular state of the system. Note that disabledness is pre-
served by refinement since guards must not be weakened in
refinement.

In this modified version of the model, grd3 of the
userApproachDoor event is removed, so that a user can
approach the door even when the door is open. Also grd3
of userOpenDoor is changed, so that the authorisation is
only checked for the particular user that attempts to open the
door (i.e. unauthorised usersmay also be in the vicinity of the
door). These changes introduce more assumptions on human
behaviour: an authorised userwill prevent unauthorised users
from entering the enclave.

In Event-B, ordering is specified implicitly by guards on
the state conditions required for events to occur. For our
model this is quite natural, e.g. the door needs to be open
for the user to enter, and thus the event for opening the door
will have to have occurred before the user can enter. In addi-
tion, the scenario checking allows us to describe ordering
explicitly and validate that the model allows that ordering.

Step 6: We now take further design steps to elaborate
how this secure door works. We finish the door phase by
suggesting a mitigation, an outline design solution, that will
address the potential failures discussed in this phase. We will
fit the door with a secure lock component to make sure that it
can only be opened for authorised users (addressing insecure
actions AD11 and AD12) and an alarm component to detect
and warn when it is left open (addressing AD21). These new
components are then analysed in the following phases.

In the rest of this section, the remaining component levels
are briefly described omitting detailed step descriptions.

4.2 Component level: lock and alarm

In this level, we introduce two components that need to be
analysed: Secure Lock and Alarm. Since they are relatively
independent, the order in which we analyse them is arbitrary;
we chose to do the secure lock first. The control abstraction
diagram from the final analysis stage, including the lock and
the alarm, is shown in Fig. 1.

4.2.1 Component level: lock

The lock component, Fig. 13, addresses two of the insecure
control actions, AD11 and AD12, from the previous level
(see Fig. 10), which resulted in failures, FD2 and FD1 (resp.)
of the previous level.

As with the previous door level, the lock component is
modelled in two versions: a more rigidly enforced model,
where the door unlocks only when all users by the door are
authorised (specified as an invariant doorLatch = unlocked
⇒ atDoor ⊆ authorisedUser), and an adjusted model,
where, if the door is unlocked, then there is either a user

in the enclave (who, according to the security invariant, must
be authorised) or at least one authorised user is by the door. In
this version the invariant is changed todoorLatch=unlocked
⇒ inEnclave �= ∅∨ (atDoor ∩ authorisedUser) �= ∅.

4.2.2 Component level: alarm

An alarm is activated if the door is left open longer than the
time needed for a user to enter. The alarm component, Fig. 14,
addresses the insecure action, AD21, from the previous level
(see Fig. 10), which resulted in failure FD1 of the previous
level.

The assumption is that an unauthorised user would not
enter the enclave while the alarm sounds (human behaviour
assumption). If the alarm does not occur when it should,
there is no notification that the door has been left open. If it
occasionally occurs when it should not, there is no failure.
However, if the alarm sounds too often for no good reason, it
may eventually be ignored when the door has been left open.

We assume that the alarm component is designed to mit-
igate the failure conditions identified in Fig. 14 and do not
decompose this component further.

4.3 Component level: card

The card component, Fig. 15, addresses two of the insecure
control actions, AL11 andAL12, from the previous level (see
Fig. 13), which resulted in two of the failures, FL2 and FL1
(resp.), identified in the previous level. It does this by provid-
ing a mechanism for the lock to ascertain the authorisation
of a user.

The actions considered in this phase, to issue a card and
to lose a card, reveal further potential failures FC1 and FC2
where an unauthorised user holds a card or an authorised user
has lost their card. An outline solution is proposed to solve
this by introducing fingerprint detection to ensure that the
current holder of the card is the one that it was issued to.

4.4 Component level: fingerprint

The fingerprint component, Fig. 16, addresses the insecure
actions, AC12 and AC32 of the card component (see Fig. 15)
which are both linked to the failure FC1.

However, it introduces a new failure if it incorrectly does
not detect a match for a user with a valid card. This does not
relate directly to a failure at the card component level because
adding fingerprintmatching introduces a new validation step.
Sometimes this happens during the design. Also, the ‘wrong
order’ action (AF13) is a problem of the lock component
unlocking before the fingerprint has determined validity. In
this case the mitigation requires verification of a component
higher up the hierarchy to ensure it works correctly with the
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Fig. 13 Lock component, action
analysis table

Fig. 14 Alarm component,
action analysis table

component at this level. We stop at this point where we can
implement the component rigorously.

The final control abstraction diagram, including all of the
introduced components, is shown in Fig. 1. The control anal-
ysis is gradually built by introducing one component at each
step. The design components were added, in the order shown
from right to left: door, lock, alarm, card andfinger print, with
associated actions, conditions and inputs. The gatekeeper
agent was introduced at the point when the lock component
was introduced since this is the first component to have a
physical control interface. As the control abstraction diagram
is made more concrete, the checking of authorisation (autho-

rised condition arrow) is shifted in each level depending on
the role of the introduced component.

5 SHARCS workflow

In this section, we provide a specification of the workflow
for the various steps of the SHARCS process, independently
of the Tokeneer case study. Figure17 illustrates the overall
SHARCS process showing the main inputs and outputs of
each level of analysis, while Fig. 18, described later, gives
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Fig. 15 Card component, action
analysis table

Fig. 16 Fingerprint Component,
action analysis table

more detail of the process within each level (i.e. expanding
the two dashed boxes in Fig. 17)2.

Figure 17 shows the three main phases of the process:

1. System level analysis and abstract modelling
2. Component level analysis and refinement modelling
3. Consolidation

The steps of Phase 1 were described in some detail in Sect. 3
and those of Phase 2 in Sect. 4. The main input to the sys-
tem level analysis is a system requirements document. The
requirements serve as the basis for construction of con-
trol abstraction diagrams and hence identification of system
actions, potential failures, derived component and derived
requirements. These are used as input to the next compo-
nent level analysis. As demonstrated in Sect. 4, component

2 The notation used in Figs. 17 and 18 is a standard notation for describ-
ing work processes called ‘solution-patterns’, (see https://vvpatterns.
ait.ac.at/about-vv-patterns/ ).

level analysis is repeated for the various components that are
introduced, hence the self loop on Phase 2 in Fig. 17.

Phase 3 is the consolidation phase of analysis where the
outcomes are integrated to deliver the structured require-
ments and failures hierarchies, supported by illustrating
scenarios, and a verified refinement chain of Event-Bmodels.
At the consolidation stage, we have enough design to draw
a concrete control diagram which corresponds to the level at
which a standard STPA analysis is typically undertaken.

Note that, in our case studies, each analysis phase focuses
on one single component. In principle, it is also possible to
consider several components interacting in the same phase.
However, to keep each stage simple we prefer not to do
this. We introduce a single component in the refined model
alongwith enough behaviour about its environment and other
control system components that it interacts with, to be able
to validate and verify it. There may be examples where a
components interaction is so tightly coupled with another
component that it makes sense to consider them together, but
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Fig. 17 SHARCS high level workflow

so far we envisage that our linear approach will deal with
most cases.

5.1 Workflow for individual abstraction levels

Within each level of analysis (i.e. the box 1 (system level) and
box 2 (component level) in Fig. 17), we perform the process
shown in Fig. 18. There are slight differences for the system
level and the component level process. The differences are
outlined here and also highlighted previously in Sect. 4.

The inputs to the process for a level are 1) the system or
sub-system (component) requirements, and for sub-systems
only: 2) the control abstraction diagram and 3) formal model
from the previous level.

The steps involved in system/component analysis (Steps
1 to 6 in Fig. 18) are as follows:

1. Control analysis: The system requirements and outline
design from the previous phase (if any) are used to con-
struct a control abstraction diagram showing the actors
involved and the information flow and control between
them.This diagram identifies the control actions needed in
the next step. Except for the top-level system, the diagram
is an elaboration of the previous level control abstraction
diagram.

2. Action analysis: The control abstraction diagram is used
to identify behavioural actions which are analysed to

identify potentially insecure or unsafe actions. An action
analysis table is constructed to analyse all the possible
actions that can occur at the system/component level
and identifies the resulting failures caused by that action
occurring, not occurring or occurring with the wrong tim-
ing or order. This leads to identification of conditions for
controls that are intended to prevent failures in the system.

3. Formal modelling: The actions identified in the control
abstraction diagram are then formalised in an Event-
B model. For sub-systems, this is done by refining the
abstract model from the previous level and altering it to
reflect the introduction of the component sub-system (the
subject of this phase) in accordancewith the outline design
from the previous phase. Control actions are modelled
by events that alter the state of the environment (includ-
ing other components) and conditions are modelled as
guards of these events. Note that, as well as modelling the
component itself, we need to extend the model to exer-
cise its interfaces with the environment including other
component sub-systems. It is important to ensure that
we introduce enough of the component’s environment
(including abstract models of other sub-systems) in order
to validate and verify the component under analysis. Cor-
rectness of Event-B refinement ensures that the abstract
properties are preserved by a refined model.
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Fig. 18 Workflow for a single level of abstraction

4. Formal validation and verification:

• Validation using scenarios. The formal model is
validated using model animation, visualisation and
scenario playing tools (ProBand theScenarioChecker
described earlier). This validation stage ensures that
themodel behaves as expected by domain experts. The
model should include all relevant external (environ-
ment) behaviour scenarios (including relevant exter-
nal faults) as well as the internal system functionality.

• Verification using theorem provers.When themodel
behaves in an appropriate way it is verified (using the-
orem provers supported by model checking) to ensure
that the critical invariant properties of the system (rep-
resenting safety and security properties for example)
are maintained. Any remaining verification failures
represent design faults. Note that some design faults
will only cause system failures in the presence of envi-
ronmental faults, which is why it is important to first
validate the model to ensure it embodies such scenar-
ios.

5. Adjust the analysis and models: Design faults are
corrected and the model is revised accordingly so that
verification failures are eliminated. In most cases, these
improvements will involve strengthening the functional-
ity, and hence derived requirements, allocated to compo-
nent sub-systems, or in some cases introducing additional
component sub-systems.

6. Mitigation and outline design for next phases: In this
stage, each insecure or unsafe control action is considered
and addressed as follows.Mitigating actions are proposed
to prevent that action from leading to a failure. In some
cases the mitigation might be to focus verification or val-
idation activities in order to provide a particular safety

or security argument. In other cases, the mitigation will
be addressed by the next level design of the system. For
these cases, an outline design is proposed to address the
potentially insecure/unsafe control actions. The design
may either be invented (in the pure case) or given (in
the pragmatic case). The outline design identifies the
sub-system components and provides their broad derived
requirements which are used as inputs to the next phase
when the relevant sub-system is analysed. Alternatively,
we may have reached a stage where we feel this com-
ponent does not need sub-components; it is manageable
enough for us to implement without further sub-division.
In this case the design consists of the derived require-
ments which have been validated and are verified to meet
the safety and security constraints of this component.

5.2 Consolidation phase

In this phase, we collate the results of the hierarchical anal-
ysis to produce an overview of the derived control structure
and the verified derived requirements. This results in the hier-
archical component structure, Fig. 3, which has already been
introduced and discussed in Sect. 2.1.

The final refined version of scenarios used in the hierar-
chical validation form an important output from the analysis
as they illustrate scenarios that could potentially lead to a
failure, and provide verification evidence that the design is
robust enough to mitigate them. These are required items in
ED203A [2], for example.

6 Related work

In this section, we discuss previous studies in the veri-
fication of Tokeneer (Sect. 6.1), informal approaches for
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developing safe and secure systemsbasedonSTPA(Sect. 6.2),
and other approaches combining formal methods with STPA
(Sect. 6.3).

6.1 Previous studies in verification of Tokeneer

The Tokeneer system is the subject of a case study by
Capgemini (formerly Praxis) for developing high quality
secure systems [16] using a correctness-by-construction
approach. In particular, a requirements analysis process
(called REVEAL) was used to produce a System Require-
ments Specification (SRS). An important reason for produc-
ing the SRS was to identify the system boundaries and an
agreement on the system requirements with all stakehold-
ers. In addition, the security target of the system was defined
which is the basis for developing the system security prop-
erties. Based on the SRS and the security target, the formal
system specification and design were written in the Z nota-
tion [17] and formal properties were verified in Z. In the
approach of [16], the full SRS incorporating all the sys-
tem components was constructed prior to the development
of formal specifications. With our approach, we elide many
of the components in the higher levels of abstraction in both
requirements analysis and formal modelling, then introduce
system components in an incremental and hierarchical man-
ner, analysing component requirements in more depth and
refining formal models in tandem. Thus, in our approach,
the iterative interactions between formal modelling and
requirements analysis help to derive the requirements of
the sub-components from the design and high-level require-
ments.

Rivera et al. [18] remodelled the Tokeneer specifications
in Event-B based on the Z specification of [16]. Rodin was
used to discharge the proof obligations and the EventB2Java
plug-in to Rodin was used to translate the final model into
Java code. The work is focussed on assessing the capabil-
ity of Rodin and its associated plug-ins to verify a formal
model and generate executable code. Our work addresses
the interactions between critical requirements analysis and
formal modelling, and showing the link between properties
of the components and system properties through a hierarchy
of abstractions.

Similarly, Foster et al [19] relied on the security require-
ments of [16] and verified security properties against the
functional formal specification of the Tokeneer system using
Isabelle/SACM. The work focuses on the use of formal proof
in building an assurance case for developing secure systems
and utilises Goal Structure Notation (GSN) for integrat-
ing formal proof into the assurance case. Our consolidation
phase plays a similar role by linking the flow of component
requirements up to system requirements together with veri-
fied formal models at each abstraction level.

6.2 Safety and security in STPA

Young and Leveson [20] proposed an analysis method called
an STPA-Sec, which is based on the top-down safety analy-
sis method (STPA). This method uses an incorporative team
involving security engineers, operations, and domain experts
of a target system, in order to identify the potential secu-
rity constraints for preventing a target system from entering
vulnerable states that results in threats/losses. Although it
is similar to traditional STPA, each control action is exam-
ined under the sort of conditions that identify a loss/threat
scenario. Specifically, STPA-Sec focuses on identifying vul-
nerable states with a global system structure in order to
prevent and avoid threats that might be exploited and even-
tually lead to losses.

Friedberg et al. [21] developed an analysis methodol-
ogy for both security and safety based on STPA [3] and
STPA-Sec [20], called STPA-SafeSec. The main aim of
STPA-SafeSec is to choose effective mitigation strategies
in order to ensure system safety and security. Therefore,
the unified form of safety and security would be identified
while choosing possible mitigation strategies, e.g. a possible
security-related vulnerability might not be resolved when a
piece of system equipment cannot be replaced, and based on
the vulnerability, the control system can enforce the related
safety constraint and mitigate the violation of a loss/threat.

Pereira et al. [22] argue that STPA-Sec [20] and STPA-
SafeSec [21] both have a lack of extensive experience in
real case studies. Therefore, they propose an approach that
combines STPA and guidelines obtained from the safety
assessment framework called NIST SP800-30 [23]. In addi-
tion, they claim that this standard should be considered
because many organisations in the United States align to it.
More specifically, the aimof this approach is to address safety
at the high-level of components (system), while threats and
vulnerabilities would be considered at the low-level of com-
ponents (subsystem). This way of viewing a system would
help to identify the safety and security workflows and where
they may need to overlap.

6.3 Combining formal methods with STPA

Based on the hybridmethodology of STPA andNIST SP800-
30 [24] proposed by Pereira et al. [22], Howard et al. [8]
develop a method to demonstrate and formally analyse secu-
rity and safety properties. The goal is to augment STPA
with formal modelling and verification via the use of the
Event-B formal method and its Rodin toolset. Identification
of security requirements is guided by STPA, while the formal
models are constructed in order to verify that those security
requirements mitigate against the vulnerable system states.
Dghaym et al. [25] also apply a similar approach to [8]
for generating safety and security requirements. Event-B has
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previously been combined with STPA by Colley and But-
ler [6] for safety analysis, again using STPA to guide the
identification of safety requirements and Event-B to verify
mitigation against hazardous states. [6, 8, 25] only support
requirements analysis at a single abstraction level rather than
the hierarchical approach that we support.

STPA has also been combined with other formal meth-
ods. In [26], Abdulkhaleq et al. propose a safety engineering
approach that uses STPA to derive the safety requirements
and formal verification to ensure the software satisfies the
STPA safety requirements. The STPA-derived safety require-
ments can be formalised and expressed using temporal logic.
For verification, a behaviour model corresponding to the
controller’s behaviour and constrained by the STPA require-
ments is constructed, which can be verified against the
formalised STPA requirements using model checking. Hata
et al. [27] formally model the critical constraints derived
from STPA as pre and post conditions in VDM++. Thomas
and Leveson [28] have also defined a formal syntax for
hazardous control actions derived from STPA. This for-
malisation enables the automatic generation of model-based
requirements as well as detecting inconsistencies in require-
ments. Unlike our approach, these approaches do not support
an incremental, hierarchical analysis approach.

6.4 Combining designmethods with Event-B

Event-B has been used together with other design methods
to formally ensure the safety and security of systems. In [29],
the authors proposed an approach where designs written in
AADL are translated to Event-B models to prove their con-
sistency, in particular, using refinement to break down the
complexity of the systems. Compared to our approach, the
method in [29] structured the refinement based on features of
AADL, rather than the actual systems under development.

In [30], a lightweight approach for connecting SysML and
Event-B is proposed. The approach includes a requirement
interchange system that supports the development of SysML
and Event-B models iteratively. Compared to this paper,
refinement is not yet incorporated into the approach in [30]
for the gradual introduction of the model details. Similarly,
in [31], the authors present a monolithic framework contain-
ing two phases: (1) requirements analysis including threat
modelling using STRIDE and (2) design and verification for-
mally using Event-B. The main challenge with monolithic
approaches like the one in [31] is scalability, i.e. managing
the models when the systems become more complex. On the
other hand, in [32], the authors propose a methodology for
constructing safety cases from hazard analysis techniques
and Event-B. However, the link between the hazard analysis
techniques (e.g. HAZOP, FMEA, etc.) and formal modelling
in Event-B is simply by the set of requirements (output of
the hazard analysis techniques) and assumed to be complete.

We showed here in our paper that the link between analysis
techniques (here STPA) can be embedded deeply within the
framework and benefit from the formal modelling steps as
well.

7 Contributions

7.1 Hierarchical and traceable

Our aims are twofold. Firstly the hierarchical approach to the
analysis introduces component sub-systems that are designed
to address and mitigate insecure control actions that have
been revealed by the analysis of the parent component.
As a result, we provide an analysis method for deriving
component sub-system level requirements from parent sys-
tem level requirements. Secondly the analysis provides a
traceable argument that the design satisfies the higher level
requirements while addressing safety hazards and secu-
rity vulnerabilities. For example, consider a high-security
enclave consisting of several components including a secure
door, a card reader and a fingerprint reader. The system-level
security requirement is that only authorised users are allowed
to access the enclave; a derived requirement on the finger-
print component is that it should determine whether a user
fingerprint corresponds to the fingerprint stored on an access
card. The abstraction-based hierarchical approach is a key
contribution of this paper. We believe that the analysis and
resulting evidence may be suited to the certification demands
of standards such as the EUROCAE ones cited above.

7.2 Incremental, control abstraction diagrams

While STPA requires consideration of a complete closed
system (which may consist of a hierarchical control struc-
ture given in a control structure diagram), it is based on the
concrete design of the system. In contrast, by shifting the
boundaries of the component sub-system being considered,
we abstract away from the lower level internal details and
analyse the constraint requirements of control abstractions
before refining these with the next level of sub-component
design. To apply the analysis at an abstract level we need
the ability to model control structures abstractly and we
introduced a new kind of diagram, control abstraction dia-
grams, that help visualise the entities involved at a particular
abstraction level along with their information and control
relationships and the constraints that they make on each oth-
ers actions.

The analysis is applied incrementally with different
abstraction levels until reaching the complete concrete con-
trol structure, thus factorising the complexity of the analysis
across multiple abstraction levels in an incremental manner.
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A control system can be thought of as a system that makes
constrained actions. Our new control abstraction diagrams
make clear, what the necessary constraints on actions are
and which entities in the system are responsible for making
them. As we incrementally introduce the design of a system
we replace abstract constraints by adding new components
that take on that responsibility and implement the constraint
in an equivalent way. This matches very closely with our
approach to system refinement in Event-B.

7.3 Refinement strategy

Weutilise theEvent-Bmodelling language and theRodin tool
set for formal modelling to verify and validate the SHARCS
analysis. Event-B with its associated automatic verification
tools, is ideal for the detailedmodelling of each level because
it supports abstract modelling of systems with progressive
verified refinements. One of the most difficult tasks in con-
structing an Event-Bmodel consisting of several refinements
is finding useful abstractions and deciding the progressive
steps of refinement; the so-called refinement strategy. From
an Event-B perspective therefore, SHARCS helps the mod-
eller by providing a method to guide the refinement strategy.
Although the Event-B supports refinement-based modelling,
the modeller needs to make decisions about which sys-
tem requirements to model at different stages of refinement.
SHARCS helps the modeller to derive the requirements for
different refinement levels; the requirements are driven by
the incremental introduction of system components into the
analysis. The control abstraction diagrams help visualise the
formal Event-B model at a particular level.

7.4 Traceable evidence

Initially, we envisaged that SHARCS analysis could be per-
formed in the early stages of a new design when no prior
conception exists concerning the components that will be
involved. In this situation the hierarchical analysis could be
used to drive the design with suitable components being cre-
ated at each level to address the requirements derived for
that level. However, we imagine that this purist approach is
rarely seen in practice and it is more likely that, by the time
a detailed analysis such as the one we propose is performed,
the system structure will at least have been outlined in terms
of potential components and their requirements. For this,
more pragmatic, situation we see the analysis as an essen-
tial verification process, firming up the allocation of derived
requirements to components and providing rigorous justifica-
tion for the design alongwith traceable evidence. For the case
studies in the paper, requirements exist and already identify
some of the components and what they will do. However, the
analysis raises some issues with requirements and depend-

ing on the design choices made, this could result in revised
requirements leading to different designs.

7.5 Evidence for certification

Validation and verification artefacts (system requirements,
component requirements, action analysis, formal models,
validation scenarios, proofs) and traceability links between
them provide important evidence for certification purposes.
The ED-202A / DO-326A standard [1] for specifying the
airworthiness security process specification requires the
security development activities to include security require-
ments generated as part of the system requirements. These
system security requirements should be subject to the same
development requirements and assurance actions as safety
related mechanisms. Our hierarchical approach supports the
derivation and verification of system security requirements
using analysis and formal methods that are well known in the
safety requirements assurance domain.

7.6 Human behaviour

Systems often involve significant interaction with human
users who are expected to behave in a certain way. Conse-
quently any safety or security analysis has to make assump-
tions about user behaviour. In our examples we illustrate how
human behaviour can be incorporated into the STPA-based
analysis and formalised in the Event-B models. Analysing
and formalising user behaviour in this way, makes explicit
the extent to which it is relied on and the consequences of
unexpected or deviant behaviour. Again this is useful as jus-
tifying evidence for the certification of systems.

Our case study led us to consider security related to human
behaviour, emphasising the need to make assumptions about
user behaviour. In contrast to protocols where only machines
communicate with each other and precisely follow the pro-
tocol specification, new opportunities for attacks arise when
humans are involved [33]. It is possible that users do not
understand what they should and should not do and even
knowledgeable users may neglect to perform some protocol
steps due to carelessness.We examined our formal model for
the secure door component of Tokeneer in two ways: rigid
conditions and relaxed conditions, where rigid conditions
result in less assumptions about user behaviour and relaxed
conditions rely on more assumptions about user behaviour
to prevent attacks.

8 Conclusion and future works

We have presented an analysis method that starts from the
top level system requirements and identifies potential failures
that could lead to unsafe accidents or security losses. The
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informal STPA analysis is used in conjunction with formal
modelling to systematically and rigorously uncover vulner-
abilities in a proposed design that could allow external fault
scenarios to result in a failure. The formal modelling gives
precision and a better understanding of the behaviours that
are involved and lead to these failures. Themodel verification
and validation provide strong evidence to back up the analy-
sis. The identified vulnerabilities then drive the process as we
design sub-components that can address the threats. In this
way we flow down the requirements to derived requirements.
Our experience with the Tokeneer case study highlighted that
assumptions about user behaviour are critical and can be
incorporated into the analysis. The formal verification and
validation processes are beneficial in making these assump-
tions and consequent reliance explicit and clear. We suggest
that our analysis method provides rigorous evidence (i.e. pre-
cisewith clear hierarchical links and formal arguments) of the
the security or safety requirements and how they are achieved
in the design.

Although STPA supports hierarchical control structures,
it does not support an incremental approach through abstrac-
tion/refinement. In contrast, SHARCS provides a systematic
incremental and hierarchical approach supporting abstrac-
tions followed by refining those abstractions. Investigating
the hierarchy of control structure and associated failures
using the STPA control diagrams is based only on the human
judgement, while SHARCS control abstraction diagrams
supports incremental introduction of components and asso-
ciated failures based on the suggested mitigation(s) at the
earlier stage. Also SHARCS control abstraction diagrams
support extra notations, like condition arrows, to provide the
base for rigour translation to the corresponding entities in the
formal model, like action guards in the Event-B model.

Currently the proposed abstraction control diagrams are
not interpreted formally; they help to represent the actors,
components and the interactions/conditions between them in
a succinct visual way, and the formality is provided in the
Event-B model. In the future work, we intend to address a
rigorous approach to translation of the diagrams into Event-
B formal entities. We will also investigate partitioning of the
diagrams to focus on relevant components to further support
scalability. For this purpose, we believe we can benefit from
the decomposition technique [34] already supported by the
Event-B.

One of our motivations is to provide a rigorous security
risk analysis method for the avionics domain. The Eurocae
standard, ED203A [2] gives guidance on what is needed
in security risk assessment methods to gain certification.
The standard avoids mandating any particular method but
gives STPA-SEC as an example (see Appendix G of [2]).
It suggests that the intial steps of STPA, such as identifica-
tion of losses and accidents, contribute to process activities
required by ED202A [1], such as definition of security scope,

identification of assets, definition of security perimeter and
specification of security environment. The identification of
insecure control actions, their causes, scenarios and mitiga-
tion address the ED202A process requirements for security
risk assessment, threat condition evaluation and threat sce-
nario identification. Our approach of supporting the STPA
analysis with formal modelling strengthens these activities
and hence should aid certification. Furthermore, by extend-
ing the analysis into sub-system components we provide a
deeper explanation of a security threat in terms of its effect on
the system, giving strong and traceable evidence of how the
derived requirements address security threats. In the future
work, we intend to illustrate in more detail how our proposed
method relates to the required activities of ED202A.

One of our outputs from the consolidation phase is the
structured failure hierarchy, similar to a fault tree. One differ-
ence of this hierarchy with a fault tree is that our structured
failure hierarchy (e.g. Fig. 4) is derived in an incremental
manner in tandem with the hierarchical analysis while the
components are gradually introduced. A typical fault-tree
analysis is applied to a detailed design where all of the com-
ponents of the design and their interactions are alreadyknown
before the analysis is performed. For future work, we will
investigate how our approachmay provide a incremental way
of deriving fault trees.

We have evaluated the method using two case studies; one
focussing on security and the other on safety. The hypothesis
is that the method provides an effective analysis of critical
systems to ensure that threats and hazards aremitigated in the
design by derived component requirements. The case studies
support this hypothesis. The main threat to validity, as with
any case study, is whether the case studies are representa-
tive of problems in general and have fully tested the method.
The case studies are realistic problems representative of the
domain, but do they test the kinds of properties addressed in
themethod? Themethod covers two kinds of property; safety
(i.e. something bad does not happen) and enabledness as a
restricted formof liveness (i.e. some things should not be pre-
vented, but we do not deal with eventuality). The Tokeneer
case study covers both kinds of property; unauthorised users
can not enter the enclave and authorised users are not pre-
vented from entering the enclave. In the level crossing case
studywe only discussed the safety property, “avoid collisions
between trains and cars”, but the full analysis also deals with
enabledness since cars must be able to pass when there is no
train coming. The case studies are both well known so the
results may be affected by prior knowledge of the systems. In
the future, we will seek to apply the method to less familiar
problems.

For our case studies, influenced by the Event-B refinement
method, we used a linear sequence of analyses, consider-
ing one component after another and making corresponding
refinements to our formal model. While this formalisation
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and proof approach was effective, in future work, we will
explore more flexible strategies. For example, the lock and
alarm components could be analysed in parallel by differ-
ent teams making separate refinements from the door level.
These could be merged back to a single refinement (if certain
conditions are met in the refinements) or left as independent
analyses. Different case studies may be found where sibling
components interact more strongly. In this case, it may still
be possible to focus on one component first by providing
sufficient abstraction of the other or in some cases the com-
ponents may be so interdependent that separate analyses are
not feasible. Existing techniques for composition of Event-B
models [35] will be important in addressing this challenge.
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Appendix—Level crossing SHARCS analysis

See Figs. 19, 20 and 21.

Fig. 19 Level crossing: hierarchical component design, flow down requirements

Fig. 20 Level crossing:
hierarchical failures for one of
the system level failures
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Fig. 21 Level crossing: last level abstraction control diagram
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