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Abstract
The aim of this paper is to investigate the impact of selected data augmentation techniques on the learning performance of
neural networks for dynamic signature verification. The paper investigates selected data augmentation techniques in deep
learning for verification purpose of dynamic signature. Two neural networks were used as classifiers: MLP and LSTM-FCN.
Investigation of five selected augmentation methods and experiments were performed on the open source signature database
SVC2004. The authors tested both classifiers without augmentation and then with data augmentation for three extensions of
the learning set and three sizes of the user database. They presented the results of the experiments in tabular form for each
augmentation method. The results were compared with the existing dynamic signature verification methods and given in the
paper.
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1 Introduction

Signature is a commonly used behavioral biometric feature
to verify a person’s identity. Depending on the signature type,
the data can be represented as a time series or an image. A
distinction is made between a handwritten signature and a
machine written signature. Handwriting system verification
can be categorized in two different types: online and offline.
Offline signature is represented by digitalized images mostly
taken from a document where the signature is present and
processed by the system. To obtain the online signature data
system must use special hardware for example digitalized
tablet or pen [1].

An advantage of the signature verification over other veri-
fication systems based on biometric traits is that the signature
data can be enrolment when the user is conscious and desires
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towrite, in the other hand systems based on face, for example,
can be enrolment without human awareness [2].

Manual verification of identity in the case of dynamic and
handwritten signatures is very difficult due to the ease of
forging the original signature and the requirement of exper-
tise. In order to facilitate the signature verification process,
automatic signature verification approaches were proposed.
These systems are mainly focused on biometric solutions
and artificial intelligence. Neural networks can be used for
signature identification or verification purposes.

In this article, the authors present amethodology for signa-
ture verification. The authors develop an automated signature
verification application using previously created modules to
load data from the database, preprocess the data, extract the
signature characteristics, divide the input data into learning,
validation and test sets, and select the appropriate classifier
and estimation of the results. The neural network learning
process needs a lot of data. The authors decided to use aug-
mentation methods based on [3–6] for online signature data
and then compare results with the other online signature
verification systems. The authors create new augmentation
methods modified from the existing ones. The authors mod-
ify noise addition and interpolation methods.

The paper contains a few sections: in the next chapter
the authors describe other approaches and algorithms for
online signature verification. Second section shows the neu-
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ral networks and augmentationmethods are presented. In this
one, the authors presented the architecture of chosen neu-
ral networks and five selected augmentation methods. The
penultimate chapter provides information on the experiments
performed, in particular the different augmentation methods,
performance results and the comparison with other different
approaches. Last chapter contains the conclusions, informa-
tion about used hardware in the learning process and future
work.

2 State of the art

The most popular algorithms for signature verification sys-
tems are hidden Markov models [7], dynamic time warping
[8] or neural networks [9]. DTWmethod gave the best results
in determining whether a signature is genuine or forged.
DTW approach is the top method which is using in any com-
petition for signature verification [8, 10, 11].

Themain problemwith signature verification is associated
with the intra-class variability of the signature. The signature
enrolment relies on practiced and repetitive motion, which
causes short-term signature as input. The signature trait can
evolve so signature data can lose important properties for
verification purposes [12].

Christian Gruber, Sebastian Krinninger, and Thiemo Gru-
ber created a new method for online signature verification
based on SVM using LCSS kernel [13]. Using the LCSS ker-
nel function their system determines the resemblanceswithin
two time series. The results are even better than results in sys-
tems based on DTW [14].

Dynamic time warping is more effective when resolving
problems with a small amount of data. HMM model and its
derivationwithGaussianmodel (GMM) can be considered as
a soft variant of DTW. In some cases when enough signature
data is available it can outperform the DTW approach [15,
16].

Suresh Sundaram and Abhishek Sharma created a new
model approach using DTW and GMM [17]. First of all, the
authors extract statistical properties for a given signature.
Then, the extracted data is warped and analyzed. Finally,
the author’s fusion DTW score and warped data for better
verification results [18, 19].

Lianwen Jin, Weixin Yang and Songxuan Lai proposed
to create a recurrent neural network in sequential modeling.
RNNsystem improved the performanceof dynamic signature
verification. The authors proposed a novel descriptor LNPS
(length-normalized path signature) and use it due signature
verification problem [20].

Zapata Gabriel posed the problem of small databases
within the signature verification systems. The author also
states for signatures per user limitation. Gabriel does nine
classification methods based on GMM and evaluates them.

Fig. 1 Extended a block diagram of proposed system

The author tests it using three experiments and a small
database. In conclusion of performed experiments, the author
says that the method’s performance degraded faster when
training sets include less than half of the samples [21].

3 Proposedmethodology

The authors decide to present used database, neural networks
architecture and used augmentation algorithms. Proposed
approach is presented as block diagram in Fig. 1. The high-
lighted one is the block with data augmentation step.

3.1 Database

The authors used the SVC 2004 dynamic signature database
[22]. Each genuine or forged signature is stored in a text file.
The filename has the following format "UXSY.txt",where (1)
stands for the signing user and (2) stands for one signature
of user X.

X ∈ { 1, 2, . . . , 40} (1)

Y ∈ { 1, 2, . . . , 40} (2)

The first twenty signatures are genuine, while the next
twenty signatures are signatures identified as qualified forg-
eries provided by other users. The SVC 2004 database
contains 40 users with 40 signatures each. In summary, the
entire SVC 2004 database contains 1600 signatures.

Every single file contains presented properties:

• X coordinate—position along the X-axis
• Y coordinate—position along the Y -axis
• Pressure—corrected pressure condition
• Interval—sample measurement
• Pen state—state when pen is pressed to table
• Azimuth angle—horizontal angle
• Elevation angle—vertical angle
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3.2 Data augmentation

Before data preprocessing the authors system extend input
data with augmentation methods. The authors choose five
augmentation methods based on the state of the art and each
method is invoked with×0,×10,×20,×40 times for each
signature:

1. Interpolation [23] with the authors modifications
2. Noise addition [24] to time series with the authors mod-

ifications
3. Signal scaling [3]
4. Signal rotation [3]
5. Warping time series [3, 25]

The authors describe the modified augmentation methods
due to limited pages in the paper.

For the interpolation method the authors use sinc inter-
polation. The sinc interpolation method is computationally
complex due to the large number of calculations, as a sep-
arate sinc function must be considered for each sample in
signal (3).

The authors system takes a vector of interpolation points
and duplicates it by rows as many times as there are samples
in the array. Next, it takes a column vector of sample indices
in the array and duplicates it by columns as many times as
there are interpolated points. The twomatrices are subtracted
from each other, which corresponds to shifting the sinc func-
tion. Next, it performs a matrix multiplication of the vector
of sample values in the array by the sinc values for the previ-
ously computedmatrix, this operation corresponds to scaling
the sinc function by the sample values and the sum of all sinc
functions (3).

sin c(x) � sin(πx)

πx
(3)

For the noise addition augmentation method, the authors
use Gaussian noise (4) and the SNR relation.

Fμ,σ (x) � 1

σ
√
2π

exp

(
− (x − μ)2

2σ 2

)
(4)

Extending the data just by adding noise to the signal can
distort the features, so the authors combine it with other algo-
rithms. In this method, a low-pass filter was applied before
adding noise to the dynamic signature data, and after adding
noise combined with the filter, the data was averaged using
the Locally Weighted Scatterplot Smoothing (LOWESS)
algorithm [25].

The remaining algorithms have no changes at all, so the
details can be seen in [3, 25].

3.3 Data preprocessing

Data processing layer consists of normalization step and
sends the information to the feature extraction layer. For the
normalization purpose the authors used given formula (5).

xnorm � x − xmin

X len
(5)

where xnorm—normalized sample, x—input sample,
xmin—minimum value in the signature signal, X len—length
of the signature signal.

3.4 Feature extraction

Given signatures from the database enables the creation of
new feature metrics such as signature duration, pen lead
velocity and acceleration, coordinates of discrete points
drawn from the signature line, or means and standard devi-
ations of individual signal components. All used features in
this paper are presented below.

• Coordinate x (from db)
• Coordinate y (from db)
• Pressure pr (from db)

• Velocity vel �
√

v2x (t) + v2y(t)

• Azimuth angle γ � arctan
(

vyi
vxi

)
• Speed magnitude tam �

√
v2vel +

(
vel2 ∗ v2α

)
• Velocity changing log cr � log |vel|

|v2α|

The authors remove some features given from SVC 2004
database and recalculate the data and extract new character-
istics. After feature extraction the next layer is the splitting
layer.

3.5 Split training set

In the first step in this layer the authors create two folders
with sets of training and test data signatures. Created three
datasets eachwith five, ten, and thirty-five users, respectively.
Each user in the training dataset had fifteen true signatures
and fifteen advanced forgeries, while the test dataset had ten
signatures per user with half of them being genuine, also
added the signatures of other users not in the learning dataset.

The authors conducted experiments on three sets of input
data; the names adopted, respectively, for each set are small
(5 users), medium (10 users) and large (35 users). The com-
parison of the sets is shown in Table 1, where (TR) stands
for training data and (TEST) stands for test data. The number
of signatures of other users indicates simple forgery, in this
case, it does not distinguish whether the signature is genuine
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Table 1 Training set splitting
Small Medium Large

Users 5 10 35

Genuine

signatures

(TR) (TEST)

15 5

(TR) (TEST)

15 5

(TR) (TEST)

15 5

Forged

signatures

(TR) (TEST)

15 5

(TR) (TEST)

15 5

(TR) (TEST)

15 5

Other

users 

signatures

(TR) (TEST)

0 5

(TR) (TEST)

0 10

(TR) (TEST)

0 15

All

signatures

(TR) (TEST)

150 55

(TR) (TEST)

300 110

(TR) (TEST)

1050 365

or forged because it will be verified as a forged signature in
the system.

The sum of all signatures in the training set was calculated
by formula (6), while the sum of all signatures in the test set
is defined by formula (7).

SUMATR � X ∗ (
PTR f + PTRt

)
(6)

SUMATEST � X ∗ (
PTEST f + PTESTt

)
+ Y (7)

where PTR f stands for the number of forged signatures for
training set or test set, respectively, in case of PTEST f while
PTESTt stands for the number of genuine signatures for test
set, the same for the training set is expressed by PTRt , where
X is the total amount of users in the database and Y is the
amount of signatures of the other users. After preparing the
training test the system launched a learning process.

3.6 Neural network architecture

The authors created two neural networks based on [26] pre-
sented in Figs. 2 and 3. Selected LSTM-FCN architecture
[26] consists of two networks FCN (FullyConvolutionalNet-
works) and LSTM (Long Short-Term Memory). LSTM is a
variation of the RNN. In the proposed model, FCN is aug-
mented with an LSTM block and then a dropout layer, as
shown in Fig. 2. FCNs are neural networks which contains
only convolutional layers and in addition the batch normal-
ization, dropout, or max-pooling layers.

The authors created a multilayer perceptron neural net-
work based on [26] and implemented it in the system
consisting of Dense and Dropout layers, where the output
is the Dense layer with the same amount of neurons as all the
classes.

The output layer is activated by the softmax function,
while the other layers are activated by the ReLU function.

In the neural networks shown above the input layer is a
tensor where LEN is the number of signatures, TS is the
number of samples taken over time for one signature, and
CH is the number of features taken for a given sample. The
output layer consists ofN + 1 neurons, whereN stands for the
number of classes (users), while N + 1 stands for the number
of classes (users) + forgery class.

4 Experiments

The authors have done around one thousand experiments
combining all augmentation methods. They decide to esti-
mate the results with AER metric (8) consisting of FRR (9)
and FAR (10) metrics.

AER � FAR + FRR

2
(8)

FRR � FR

FR + TA
(9)

FAR � FA

FA + TR
(10)

FAR and FRR metrics include:

• FA (Falsely Accepted)—the number of forged examples
accepted as genuine

• TR (Truly Rejected)—the number of forged examples
rejected as false

• FR (Falsely Rejected)—the number of genuine examples
accepted as forged

• TA (Truly Accepted)—the number of genuine examples
accepted as genuine
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Fig. 2 LSTM–FCN architecture
[26]

Fig. 3 MLP architecture [26]

Table 2 AER for
non-augmented input data

MLP LSTM-
FCN

Small 20.1 23.2

Medium 18.3 18.2

Large 14.1 12.3

Bold value indicates the best
result

Table 3 The best results for interpolation augmentation

MLP LSTM-FCN

Small 15.3 (×40) 16.8 (×40)

Medium 13.5 (×40) 14.3 (×40)

Large 10.1 (×20) 7.2 (× 40)

Bold value indicates the best result

The authors pick the best results for each data augmenta-
tion method for all created sets (small, medium, large). The
signature augmentation was performed additionally for 0×,
10×, 20×, 40× for each signature.

For the best visibility the authors decide to not show all
results. All brackets in cells stand for a count of augmentation
each signature for the best results.

All results are shown in Tables 2, 3, 4, 5, 6 and 7 for each
standalone augmentation. Table 8 shows overview for the
best results for each augmentation method. The best result
for data augmentation in this case is reached by noise addition
method it is equal AER � 6.2.

Table 4 The best results for noise addition augmentation

MLP LSTM-FCN

Small 16.0 (×40) 13.1 (×40)

Medium 13.4 (×40) 8.3 (×40)

Large 12.3 (×40) 6.2 (×40)

Bold value indicates the best result

Table 5 The best results for signal scaling augmentation

MLP LSTM-FCN

Small 20.3 (×40) 19.8 (×40)

Medium 17.5 (×40) 15.4 (×40)

Large 13.1 (×20) 7.4 (× 20)

Bold value indicates the best result

Table 6 The best results for signal rotating augmentation

MLP LSTM-FCN

Small 19.3 (×40) 19.1 (×40)

Medium 17.0 (×20) 17.3 (×20)

Large 11.6 (×10) 11.2 (× 10)

Bold value indicates the best result

In the last experiment the authors combine the best aug-
mentation methods. The results are shown in Table 9. The
references for used methods:
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Table 7 The best results for signal time warping augmentation

MLP LSTM-FCN

Small 15.3 (×40) 19.3 (×40)

Medium 13.5 (×40) 16.7 (×40)

Large 9.2 (× 40) 9.8 (×40)

Bold value indicates the best result

Table 8 Overview of the augmentation methods results

MLP LSTM-FCN

Interpolation (1) 10.1 (×20) 7.2 (×40)

Noise addition (2) 12.3 (×40) 6.2 (× 40)

Scaling (3) 13.1 (×20) 7.4 (×20)

Rotation (4) 11.6 (×10) 11.2 (×10)

Time warping (5) 9.2 (×40) 9.8 (×40)

Bold value indicates the best result

Table 9 The best results for combined augmentationmethodswith large
set

MLP LSTM-FCN

(1) + (2) + (3) 7.6 (×40) 2.90 (× 40)

(1) + (4) + (5) 12.3 (×40) 7.0 (×40)

(1) + (2) 13.1 (×40) 5.9 (×40)

Bold value indicates the best result

• Interpolation (1)
• Noise addition (2)
• Scaling (3)
• Rotation (4)
• Time warping (5)

The best results for signature verification used augmen-
tation methods obtained with LSTM-FCN neural network
with combined interpolation, noise addition and signal scal-
ing methods it is equal to AER � 2.90. The authors mention
that for×40 multiplication for each signature (1) + (2) + (3)
sum of all signatures it is equal to 127 050 from 1050 for
large training set.

The result of proposed methodology in comparison with
other methods for Task 2 SVC2004 is shown in Table 10.

5 Conclusions

The methodology presented in this paper was implemented
with Python 3.8. The experimentswere done on Intel Core i9-
7960X,GeForce 3080SUPERand 64GBDDR4RAM.They
were testedmore than 900 times. In this paper the experiment
is based on database from “The First International Signature

Table 10 Methods of online
signature verification for SVC
2004

Method AER

Gruber et al. [27] 6.84

Barkoula et al. [28] 5.33

Yahyatabar et al. [29] 4.58

Liu et al. [30] 2.98

Proposed method 2.90

Song et al. [31] 2.89

Sharma et al. [32] 2.53

Jia et al. [33] 2.39

Bold value indicates the best
result

Verification Competition SVC 2004” [22], in the future the
authors planned to do the next experimentwith database from
the newest competition for signature verification is called
“SVC-onGoing: Signature verification competition” [35].

Proposed methodology and the authors’ experiments
proved that right chosen augmentation techniques can
increase the accuracy of signature verification systems. The
differences between the best result with andwithout augmen-
tation are~9.4 and hence, using the augmentation methods
we can decrease the errors of the signature verification sys-
tems by four times. Two of the five augmentation methods
modified by authors have the best results compared to other
augmentationmethods used in this paper.Noise additionwith
modification have AER � 6.2 and the Interpolation method
have AER � 7.2 [34, 35].
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