
Innovations in Systems and Software Engineering (2022) 18:455–469
https://doi.org/10.1007/s11334-022-00450-w

S . I . : ATVA 2021

Compositional synthesis of modular systems

Bernd Finkbeiner1 · Noemi Passing1

Received: 21 October 2021 / Accepted: 25 February 2022 / Published online: 1 April 2022
© The Author(s) 2022

Abstract
In contrast to the breakthroughs in reactive synthesis of monolithic systems, distributed synthesis is not yet practical. Com-
positional approaches can be a key technique for scalable algorithms. Here, the challenge is to decompose a specification
of the global system into local requirements on the individual processes. In this paper, we present and extend a sound and
complete compositional synthesis algorithm that constructs for each process, in addition to the strategy, a certificate that
captures the necessary interface between the processes. The certificates define an assume-guarantee contract that allows for
formulating individual process requirements. By bounding the size of the certificates, we then bias the synthesis procedure
towards solutions that are desirable in the sense that they have a small interface. We have implemented our approach and
evaluated it on scalable benchmarks: It is much faster than standard methods for distributed synthesis as long as reasonably
small certificates exist. Otherwise, the overhead of synthesizing additional certificates is small.

Keywords Compositional synthesis · Bounded synthesis · Reactive systems · Distributed systems

1 Introduction

In spite of the recent advances in practical reactive synthe-
sis for monolithic systems, no scalable tools for the synthesis
fromarbitrary distributed systemarchitectures exist. In verifi-
cation, compositionality, i.e., breaking down the verification
of a complex system into several smaller tasks over individ-
ual components, proved to be a key technique for scalable
algorithms [8].

Developing compositional approaches for synthesis, how-
ever, is much more challenging: In practice, an individual
process can rarely guarantee the satisfaction of the specifica-
tion alone. Typically, there are input sequences preventing
a process from satisfying the specification and the other
processes in the system ensure that these sequences are

This work was partially supported by the German Research
Foundation (DFG) as part of the Collaborative Research Center
“Foundations of Perspicuous Software Systems” (TRR 248,
389792660), and by the European Research Council (ERC) Grant
OSARES (No. 683300).

B Noemi Passing
noemi.passing@cispa.de

Bernd Finkbeiner
finkbeiner@cispa.de

1 CISPA Helmholtz Center for Information Security,
Saarbrücken, Germany

not produced. Thus, a process needs information about the
behavior of the other processes and therefore distributed
synthesis cannot easily be broken down into tasks over the
individual processes.

In this paper, we present and extend certifying syn-
thesis [14], a compositional synthesis algorithm that con-
structs additional guarantees on the behavior of every
process. These so-called certificates then define an assume-
guarantee contract: A strategy is only required to satisfy the
specification if the other processes do not deviate from their
guaranteed behavior. This allows for considering a process
independent of the other processes’ strategies. Our algorithm
is an extension of bounded synthesis [16] that incorporates
the search for certificates into the synthesis task for the strate-
gies.

Synthesizing additional certificates has several benefits:
Since the strategies only depend on the other processes’
certificates and not on their particular strategies, certifying
synthesis enables modularity of the system: The certificates
form a contract between the processes. Once the contract has
been synthesized, strategies can be exchanged safely with
other ones respecting the contract. Thus, strategies can be
adaptedflexiblywithout synthesizing a solution for thewhole
system again if requirements that do not affect the contract
change.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11334-022-00450-w&domain=pdf
http://orcid.org/0000-0002-4280-8441
http://orcid.org/0000-0001-7781-043X

456 B. Finkbeiner and N. Passing

Moreover, the certificates capture which information a
process needs about the behavior of the other processes to
be able to satisfy the specification while abstracting from
their irrelevant behavior. Certifying synthesis thus allows for
analyzing strategies locally and for recognizing the system’s
interconnections.

Certifying synthesis introduces bounds on the sizes of
the certificates. Hence, it bounds the size of the interface
between the processes. By starting with small bounds and
by only increasing them if the specification is unrealizable
for the given ones, our algorithm restricts synthesis to search
for solutions with small interfaces which are often desired
in practice. Thus, certifying synthesis guides the synthesis
procedure.

We present two representations of certificates, as LTL
formulas and as labeled transition systems. We prove sound-
ness and completeness of certifying synthesis for both of
them. Moreover, we extend the latter representation with
nondeterminism, permitting smaller certificates for certain
specifications. We present an optimization of certifying syn-
thesis that reduces the number of considered certificates by
determining relevant processes for each process. Soundness
and completeness are preserved. Focusing on transition sys-
tem certificates, both deterministic and nondeterministic, we
present an algorithm for synthesizing certificates that is based
on a reduction to a SAT constraint system.

We implemented the algorithm and compare it to an exten-
sion [2] of the bounded synthesis toolBoSy [10] to distributed
systems and to a compositional synthesis algorithm based
on dominant strategies [7]. The results clearly demonstrate
the advantage of synthesizing certificates: If solutions with
a small interface between the processes exist, our algo-
rithm outperforms the other ones significantly. Otherwise,
the overhead of synthesizing certificates is small. Permitting
nondeterminism can reduce the strategy and certificate sizes
notably.
Related work There are several compositional synthesis
approaches for monolithic systems [11–13,18,19]. We, how-
ever, focus on distributed synthesis algorithms. Assume-
guarantee synthesis [5] is closest to our approach. There,
each process provides a guarantee on its own behavior and,
in return, makes an assumption on the behavior of the other
processes. If, for each process, there is a strategy that satisfies
the specification under the hypothesis that the other pro-
cesses respect the assumption, and if the guarantee implies
the assumptions of the other processes, a solution for the
whole system is found. In contrast to our approach, most
assume-guarantee synthesis algorithms [1,3–5] either rely on
the user to provide the assumptions or require that a strategy
profile onwhich the strategies can synchronize is constructed
prior to synthesis.

Assume-guarantee distributed synthesis [21] synthesizes
assume-guarantee contracts using a negotiation algorithm. In

contrast to our approach, the synthesized guarantees do not
necessarily imply the assumptions of the other processes.
Thus, the assumptions and guarantees need to be iteratively
refined until a valid contract is found and therefore the algo-
rithm is not complete. This iteration is circumvented in our
approach since the assumptions are constructed from the cer-
tificates.

Using a weaker winning condition for synthesis, re-
morse-free dominance [6], avoids the explicit construction
of assumptions and guarantees [7]. Yet, the implicit assump-
tions do not always suffice. Thus, although a dependency
analysis of the specification allows for solutions for further
systems and specifications [13], compositional solutions do
not always exist.

2 Running example

In many modern factories, autonomous robots are a crucial
component in the production line. Since the correctness of
their implementation is essential, they are a natural target for
synthesis. Consider a factory with two robots that carry pro-
ductionparts fromonemachine to another. There is a crossing
that is used by both robots. The robots are required to pre-
vent a crash at the crossing: ϕsafe := ¬((at_c1 ∧ go1) ∧
(at_c2 ∧ go2)), where at_ci is an input variable denot-
ing that robot ri arrived at the crossing, and goi is an output
variable of robot ri denoting that ri moves ahead. Moreover,
both robots need to cross the intersection at some point in
time after arriving there: ϕcrossi := (at_ci → goi).
In addition, both robots have further objectives ϕaddi that are
specific to their area of application. For instance, they may
capture which machines have to be approached.

None of the robots can satisfy ϕsafe ∧ ϕcrossi alone: No
matter when ri enters the crossing, r j might enter it at the
same time. Thus, strategies cannot be synthesized individu-
ally without information on the other robot’s behavior. Due
toϕaddi , the parallel composition of the strategies can be large
and complex. Hence, understanding why the overall speci-
fication is met and recognizing the individual strategies is
challenging.

If the robots commit to their behavior at crossings, how-
ever, individual solutions can be found. For instance, if r2
guarantees to always give priority to r1, a strategy for r1 that
enters crossings regardless of r2 satisfies ϕsafe ∧ϕcross1 since
r1 may assume that r2 will not deviate from its certificate. If r1
guarantees to not block crossings, r2 can satisfy ϕsafe∧ϕcross2
as well. Since the assumptions of the robots are constructed
from the certificates and thus from the guaranteed behav-
ior, the parallel composition of the robots’ strategies satisfies
the whole specification as long as the strategies satisfy the
additional requirements ϕaddi as well.

123

Compositional synthesis of modular systems 457

Furthermore, we then know that the robots solely inter-
fere at crossings. Thus, the certificates provide insight in the
required communication of the robots and abstract away the
irrelevant behavior, i.e., the behavior aside from crossings, of
the other robot. Particularly for large ϕaddi , this significantly
increases the understandability of why ri ’s strategy satisfies
ϕi . Moreover, the certificates form a contract of safe behavior
at crossings: If ϕaddi changes, it suffices to synthesize a new
strategy for ri . Provided ri does not change its behavior at
crossings, r j ’s strategy can be left unchanged.

Throughout this paper,we explain the introduced concepts
and formalisms using the above example. The individual
explanations, that are all marked with “running example”,
can then be used to retrace the whole synthesis procedure for
the manufacturing robots. Furthermore, we provide a sum-
mary of the individual steps for certifying synthesis with
deterministic certificates togetherwith the synthesized strate-
gies and certificates at the end of Sect. 5.

3 Preliminaries

Notation.We denote the prefix of length t of an infinite word
σ = σ1σ2 . . . ∈ (2V)ω by σ|t := σ1 . . . σt . For a set X and
an infinite word σ = σ1σ2 . . . ∈ (2V)ω, we define σ ∩ X =
(σ1 ∩ X)(σ2 ∩ X) . . . ∈ (2X)ω.
LTL. Linear-time temporal logic (LTL) [22] is a specification
language for linear-time properties. For a finite set of atomic
propositions � and a ∈ �, the syntax of LTL is given by

ϕ,ψ ::= a | true | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕ U ψ.

We define the temporal operators ϕ = trueU ϕ and ϕ =
¬ ¬ϕ and use the standard semantics. The language L(ϕ)

of a formula ϕ is the set of infinite words that satisfy ϕ.
The atomic propositions in ϕ are denoted by prop(ϕ). We
represent a formula ϕ = ξ1 ∧ . . . ∧ ξk also by the set of its
conjuncts, i.e., ϕ = {ξ1, . . . , ξk}.
Automata. Given a finite alphabet �, a universal co-Büchi
automaton A = (Q, q0, δ, F) over � consists of a finite
set of states Q, an initial state q0 ∈ Q, a transition relation
δ : Q × 2� × Q, and a set F ⊆ Q of rejecting states.
For an infinite word σ = σ0σ1 . . . ∈ (2�)ω, a run of σ

on A is an infinite sequence q0q1 . . . ∈ Qω of states with
(qi , σi , qi+1) ∈ δ for all i ≥ 0. A run is called accepting
if it contains only finitely many visits to rejecting states. A
accepts a word σ if all runs of σ on A are accepting. The
language L(A) of A is the set of all accepted words. An
LTL formula ϕ can be translated into an equivalent universal
co-Büchi automaton Aϕ , i.e., and automaton with L(ϕ) =
L(Aϕ), with a single exponential blow up [20].
Architectures. An architecture A is a tuple (P, V , I , O),
where P is a set of processes consisting of the environment

process env and a set of n system processes P− = P\{env},
V is a set of variables, I = 〈I1, . . . , In〉 assigns a set
I j ⊆ V of input variables to each system process p j , and
O = 〈Oenv, O1, . . . On〉 assigns a set Oj ⊆ V of output
variables to each process p j . For all p j , pk ∈ P− with
j �= k, we have I j ∩ Oj = ∅ and Oj ∩ Ok = ∅. The
variables Vj of p j ∈ P− are its inputs and outputs, i.e.,
Vj = I j ∪ Oj . The variables V of the whole system are
defined by V = ⋃

p j∈P−Vj . We define inp = ⋃
p j∈P− I j

and out = ⋃
p j∈P− Oj . An architecture is called distributed

if |P−| ≥ 2 and monolithic otherwise. In the remainder of
this paper, we assume that a distributed architecture is given.
Labeled Transition Systems. For sets I and O of input and
output variables, a Moore transition system (TS) T =
(T , t0, τ, o) consists of a finite set of states T , an initial
state t0, a transition function τ : T × 2I → T , and a
labeling function o : T → 2O . For an input sequence
γ = γ0γ1 . . . c ∈ (2I)ω, T produces a path

π = (t0, γ0 ∪ o(t0))(t1, γ1 ∪ o(t1)) . . . c ∈ (T × 2I∪O)ω,

where (t j , γ j , t j+1) ∈ τ . The projection of a path to the
variables is called trace. The parallel composition of two TS
T1 = (T1, t10 , τ1, o1) and T2 = (T2, t20 , τ2, o2), is given by
T1 || T2 = (T , t0, τ, o), with

• T = T1 × T2,
• t0 = (t10 , t20)

• τ((t, t ′), i) = (τ1(t, i ∩ I1), τ2(t ′, i ∩ I2)), and
• o((t, t ′)) = o1(t) ∪ o2(t ′).

A TS T1 = (T1, t10 , τ1, o1) over I and O1 simulates a TS
T2 = (T2, t20 , τ2, o2) over I and O2 with O1 ⊆ O2, denoted
T2 � T1, if there exists a simulation relation R : T2 × T1
with

– (t20 , t10) ∈ R,
– o2(t2) ∩ O1 = o1(t1) for all (t2, t1) ∈ R, and
– For all t ′2 ∈ T2, i ∈ 2I , if τ2(t2, i) = t ′2, then there is

some t ′1 ∈ T1 such that τ1(t1, i) = t ′1 ∧ (t ′2, t ′1) ∈ R.

Strategies. We model a strategy si of process pi ∈ P− as a
Moore transition system Ti over Ii and Oi . The trace pro-
duced by Ti on γ ∈ (2Ii)ω is called the computation of si
on γ , denoted comp(si , γ). For an LTL formula ϕ over V , si
satisfies ϕ, denoted si |� ϕ, if we have comp(s, γ)∪ γ ′ |� ϕ

for all γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω.
Synthesis. Given a formal specification ϕ, synthesis derives
strategies s1, . . . , sn for the system processes such that
s1 || · · · || sn |� ϕ holds. If such strategies exist, ϕ is called
realizable. Bounded synthesis [16] additionally bounds the
size of the strategies. The search for strategies of a certain

123

458 B. Finkbeiner and N. Passing

size is encoded into a constraint system that is satisfi-
able if, and only if, ϕ is realizable for the bound. There
are SMT, SAT,QBF, andDQBF encodings formonolithic [9]
and distributed [2] architectures.

4 Compositional synthesis with certificates

In this section, we present a sound and complete composi-
tional synthesis algorithm for distributed systems. The main
idea is to synthesize strategies for the system processes
individually. Thus, in contrast to classical distributed syn-
thesis, where strategies s1, . . . , sn are synthesized such that
s1 || · · · || sn |� ϕ holds, we require that si |� ϕi holds for all
pi ∈ P−. Here, ϕi is a subformula of ϕ that captures the parts
of ϕ affecting pi . As long as ϕi contains all parts of ϕ that
restrict the behavior of si , the satisfaction of ϕ by s1 || · · · || sn
is guaranteed. Computing specification decompositions is
not the main focus of this paper; in fact, our algorithm can
be used with any decomposition fulfilling the above require-
ment. There is work on obtaining small subspecifications,
e.g., [12], we, however, use an easy decomposition in the
following for simplicity:

Definition 4.1 (Specification decomposition) Let ϕ = ξ1 ∧
. . . ∧ ξk be an LTL formula. The decomposition of ϕ is a
vector 〈ϕ1, . . . , ϕn〉 of LTL formulas with ϕi = {ξ j ∈ ϕ |
prop(ξ j) ∩ Oi �= ∅ ∨ prop(ξ j) ∩ out = ∅}.

Intuitively, the subspecification ϕi contains all conjuncts
of ϕ that contain outputs of pi as well as all input-only con-
juncts. In the remainder of this paper, we assume that both
prop(ϕ) ⊆ V andL(ϕ) ∈ (2V)ω hold for all specifications ϕ.
Then, every atomic proposition occurring in ϕ is an input or
output of at least one systemprocess and thus

∧
pi∈P− ϕi = ϕ

holds.

Running example Recall the robots from Sect. 2 and assume
for simplicity that both do not have any additional objectives
ϕaddi . Thus, the overall specification is given by ϕ = ϕsafe ∧
ϕcross1 ∧ ϕcross1 . Then, we obtain the subspecifications ϕi =
ϕsafe ∧ ϕcrossi with Definition 4.1 since ϕcross1−i does not
contain any output variables of ri , while ϕsafe and ϕcrossi
clearly do.

Although we decompose the specification, a process pi
usually cannot guarantee the satisfaction of ϕi alone; rather,
it depends on the cooperation of the other processes. For
instance, robot r1 from Sect. 2 cannot guarantee that no crash
will occur when entering the crossing since r2 can enter it
at the same point in time. Thus, we additionally synthesize
a guarantee on the behavior of each process, the so-called
certificate. The certificates then provide essential informa-
tion to the processes: If pi commits to a certificate, the other

processes can rely on pi ’s strategy to not deviate from this
behavior. In particular, the strategies only need to satisfy the
specification as long as the other processes stick to their
certificates. Thus, a process is not required to react to all
behaviors of the other processes but only to those that truly
occur when the processes interact. In this section, we repre-
sent the certificate of a process pi by an LTL formula ψi .

Running example If robot r2 guarantees to always give pri-
ority to r1 at crossings, its LTL certificate can be given by
ψ2 = (at_c1 → ¬go2), for instance. Since r1 can
assume that r2 does not deviate from its certificate ψ2, a
strategy for r1 that enters crossings regardless of r2 satisfies
ϕsafe ∧ ϕcross1 .

To ensure that pi does not deviate from its own certificate
ψi , we require its strategy si to satisfy ψi . To model that
si only has to satisfy its specification if the other processes
stick to their certificates, it has to satisfy �i → ϕi , where
�i = {ψ j | p j ∈ P−\{pi }}, i.e., �i is the conjunction of
the certificates of the other processes. Using this, we define
certifying synthesis:

Definition 4.2 (Certifying synthesis) Let ϕ be an LTL for-
mula. Certifying synthesis for ϕ derives vectors S =
〈s1, . . . , sn〉 and � = 〈ψ1, . . . , ψn〉 of strategies and LTL
certificates, respectively, for the system processes such that
si |� ψi ∧ (�i → ϕi) for all pi ∈ P−, where �i = {ψ j |
p j ∈ P−\{pi }}. Then, (S, �) realizes ϕ.

Classical algorithms for distributed synthesis reason glob-
ally about the satisfaction of the specification by the parallel
composition of the synthesized strategies. Certifying syn-
thesis, in contrast, reasons locally about the satisfaction of
the subspecifications for the individual processes, i.e., with-
out considering the composition of the strategies. Hence the
strategies can be considered separately, greatly improving
the understandability of the synthesized solutions.Moreover,
local reasoning is sound and complete. Intuitively, soundness
follows from the fact that every system process is required
to satisfy its own certificate. Completeness is obtained since
every strategy can serve as its own certificate. Formally:

Theorem 4.1 Let ϕ be an LTL formula. Moreover, let S =
〈s1, . . . , sn〉 be a vector of strategies. There is a vector � =
〈ψ1, . . . , ψn〉 of LTL certificates such that (S, �) realizes ϕ

if, and only if s1 || · · · || sn |� ϕ holds.

Proof Suppose that (S, �) realizes ϕ for some �. Let
�i = {ψ j | p j ∈ P−\{pi }}. Let γ ∈ (2Oenv)ω and
σ = comp(s1 || . . . || sn, γ). Since processes do not share
outputs, comp(si , σ ∩ Ii) ∪ (σ ∩ (V \Vi)) = σ holds for all
pi ∈ P−. By assumption, si |� ψi ∧ (�i → ϕi) holds for
all pi ∈ P−. Hence, σ |� ∧

1≤i≤n ψi and thus σ |� �i for

123

Compositional synthesis of modular systems 459

all 1 ≤ i ≤ n. Therefore, σ |� ∧
1≤i≤n ϕi follows. Since∧

1≤i≤n ϕi = ϕ, we obtain s1 || · · · || sn |� ϕ.
Let s1 || · · · || sn |� ϕ. We construct LTL formulas ψi that

describe exactly the behavior of si , i.e., such that L(ψi) =
{comp(si , γ)∪γ ′ | γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω}. Since strate-
gies are modeled with finite-state TS, such LTL formulas
exist. Let�i = {ψ j | p j ∈ P−\{pi }}. It remains to show that
si |� ψi ∧ (�i → ϕi) holds for all 1 ≤ i ≤ n. Let pi ∈ P−.
By construction ofψi , clearly si |� ψi holds. Let γ ∈ (2Ii)ω,
γ ′ ∈ (2V \Vi)ω and let σ = comp(si , γ) ∪ γ ′. If σ |� ¬�i ,
then σ |� �i → ϕi follows directly. Otherwise, i.e., if σ |�
�i holds, we have σ |� ∧

1≤i≤n ψi by construction of �i

and since si |� ψi . Thus, σ = comp(s1 || · · · || sn, σ ∩ Oenv)

follows by construction of ψi . By definition, Oi ∩ Oenv = ∅
holds and thus σ ∩ Oenv = (γ ∪ γ ′) ∩ Oenv. Hence,
σ = comp(s1 || · · · || sn, (γ ∪ γ ′). By assumption and since∧

1≤i≤n ϕi = ϕ, we thus have σ |� ϕi and, in particular,
σ |� �i → ϕi . Therefore, si |� �i → ϕi and hence,
together with the previous result that si |� ψi holds, we
obtain si |� ψi ∧ (�i → ϕi) for all pi ∈ P−. ��

Certifying synthesis thus enablesmodularity and increases
the understandability of the system due to local reasoning,
while ensuring to find solutions for all specifications that are
realizable in the architecture. Moreover, the parallel compo-
sition of the synthesized strategies is a correct solution for
the whole system.

5 Synthesis with deterministic certificates

There are several quality measures for certificates, for
instance their size. We focus on certificates that are easy
to synthesize in the sense that certifying synthesis can be
integrated into existing synthesis algorithms. Therefore, we
model certificates with labeled transition systems in the
following. In this section, we restrict certificates to be
deterministic. This avoids an exponential blowup due to
determinization [23] when determining whether a strategy
sticks to its own certificate. In Sect. 8, we lift this restric-
tion and consider certificates modeled by nondeterministic
transition systems. Note that while enforcing determinism
may yield larger certificates, it does not rule out any strategy
that can be found with nondeterministic certificates: Since
strategies are per se deterministic, there exists at least one
deterministic certificate for them: The strategy itself.

We model the certificate gi of a system process pi as
a TS T G

i , called guarantee transition system (GTS), over
inputs Ii and guarantee output variables OG

i ⊆ Oi . The
computation of a GTS is the trace produced by it. Only
considering a subset of Oi as output variables allows the
certificate to abstract from outputs of pi whose valuation is
irrelevant for all other processes. In the following, we assume

the guarantee output variables of pi to be both an output of
pi and an input of some other process, i.e., OG

i : = Oi ∩ inp.
Intuitively, a variable v ∈ Oi\OG

i cannot be observed by
any other process. Thus, a guarantee on its behavior does
not influence any process and hence it can be omitted. The
variables VG

i of the GTS of pi are given by VG
i : = Ii ∪OG

i .
In certifying synthesis, it is crucial that a strategy only

needs to satisfy the specification if the other processes do not
deviate from their certificates. For LTL certificates, we use an
implication in the local objective to model this. When repre-
senting certificates as GTS, we use so-called valid histories
to determine whether a sequence matches the certificates of
the other processes.

Definition 5.1 (Valid history) Let Gi be a set of GTS. A valid
history of length t with respect to Gi is a finite sequence
σ ∈ (2V)∗ of length t , where for all g j ∈ Gi , σk ∩ OG

j =
comp(g j , σ̂ ∩ I j)k ∩ OG

j holds for all points in time k with
1 ≤ k ≤ t and all infinite extensions σ̂ of σ . The set of
all valid histories of length t with respect to Gi is denoted
byHt

Gi
.

Intuitively, a valid historywith respect to a setGi ofGTS is
a finite sequence that is a prefix of a computation of all GTS
in Gi . Thus, a valid history can be produced by the parallel
composition of the GTS. Note that since strategies cannot
look into the future, a finite word satisfies the requirements
of a valid history either for all of its infinite extensions or for
none of them.

Running example Suppose that robot r2 guarantees to give
priority to r1 at crossings and to move forward if r1 is not
at the crossing. A GTS g2 for r2 is depicted in Fig. 1. Since
r2 never outputs go2 if r1 is at the crossing (left state), the
finite sequence {at_c1}{go2} is no valid history with respect
to {g2}. Since r2 outputs go2 otherwise (right state), e.g.,
{at_c2}{go2} is a valid history with respect to {g2}.

Since valid histories determine whether the other pro-
cesses deviate from their certificates, a strategy is required to
locally satisfy the specification in certifying synthesis with
GTS if its computation is a valid history respecting the GTS
of the other processes:

∅ {go2}

¬
¬

∅ {go2}

¬at–C
at–C

at–C

¬at–C1

1

1

1

Fig. 1 GTS for robot r2. The labels of the states denote the output of
the TS in the respective state

123

460 B. Finkbeiner and N. Passing

{go1} ∅

¬go2 ∧ ¬at–C

¬go2 ∧ at–C

go2 ∧ at–C

go2 ∧ ¬at–C

go2 ∧ at–C

¬go2 ∧ at–C

go2 ∧ ¬at–C

¬go2 ∧ ¬at–C1

1

1

1

11

11

Fig. 2 Strategy for robot r1. The labels of the states denote the output
of the TS in the respective state

Definition 5.2 (Local satisfaction) Let Gi be a set of GTS.
A strategy si for pi ∈ P− locally satisfies an LTL formula
ϕi with respect to Gi , denoted si |�Gi ϕi , if comp(si , γ) ∪
γ ′ |� ϕi holds for all γ ∈ (2Ii)ω and γ ′ ∈ (2V \Vi)ω with
comp(si , γ)|t ∪ γ ′|t ∈ Ht

Gi
for all t .

Intuitively, requiring a strategy to locally satisfy a specifi-
cation allows us to formulate the implication �i → ϕi used
in certifying synthesis with LTL certificates also for certifi-
cates represented by GTS.

Running example If r2 sticks to its certificate g2 depicted in
Fig. 1, r1 can enter crossings regardless of r2. Such a strategy
s1 for r1 is shown in Fig. 2. Since neither σ : = {at_c1}{go2}
nor any finite sequence containing σ is a valid history with
respect to g2, no transition for input go2 has to be considered
for local satisfaction when r1 is at the crossing (left state).
Therefore, these transitions are depicted in gray. Similarly,
no transition for ¬go2 has to be considered when r1 is not at
the crossing (right state). The other transitions match valid
histories and thus they are taken into account. Since no crash
occurs when considering the black transitions only, s1 |�{g2}
ϕsafe ∧ ϕcrossi holds.

Using local satisfaction, we define certifying synthesis
with GTS: Given a specification ϕ, certifying synthesis for ϕ
derives strategies s1, . . . , sn and guarantee transition sys-
tems g1, . . . , gn for the system processes. For all pi , si
needs to locally satisfy its specification ϕi with respect to
the GTS of the other processes, i.e., si |�Gi ϕi , where
Gi = {g j | p j ∈ P−\{pi }}. To ensure that a strategy does
not deviate from its certificate, gi is required to simulate si ,
i.e., si � gi needs to hold.

In the following, we show that solutions of certifying syn-
thesis with LTL certificates can be translated into solutions
with GTS and vice versa. Intuitively, we construct LTL cer-
tificates from GTS that capture the exact behavior of the
corresponding GTS:

Lemma 5.1 Let ϕ be an LTL formula. Let S and G be vectors
of strategies andGTS for the systemprocesses, respectively. If

(S,G) realizes ϕ, then there is a vector � of LTL certificates
such that (S, �) realizes ϕ.

Proof Let S = 〈s1, . . . , sn〉, G = 〈g1, . . . , gn〉. For pi , let
Gi : = {g j | p j ∈ P−\{pi }}. Suppose that (S,G) real-
izes ϕ. For pi , let ψi be an LTL formula describing the
exact behavior of pi ’s GTS gi , i.e., an LTL formula with
L(ψi) = {comp(gi , γ) ∪ γ ′ | γ ∈ (2Ii)ω, γ ′ ∈ (2V \VG

i)ω}.
Since the state space of gi is finite, ψi always exists. Let
� : = 〈ψ1, . . . , ψn〉 and �i : = {ψ j | p j ∈ P−\{pi }}. We
claim that (S, �) realizes ϕ. We show that for all pi ∈ P−,
si |� ψi ∧ (�i → ϕi) holds. Let pi ∈ P−.

First, we prove si |� ψi : Since si � gi holds by
assumption, we have comp(si , γ) ∩ VG

i = comp(gi , γ)

for all γ ∈ (2Ii)ω. Hence, by construction of ψi , for all
γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω, comp(si , γ) ∪ γ ′ ∈ L(ψi) and
thus comp(si , γ) ∪ γ ′ |� ψi . Therefore, si |� ψi follows.

Next, we prove si |� �i → ϕi . Let γ ∈ (2Ii)ω and
γ ′ ∈ (2V \Vi)ω. If comp(si , γ)|t ∪ γ ′|t ∈ Ht

Gi
holds for

all t , then we have comp(si , γ) ∪ γ ′ |� ϕi since si |�Gi ϕi
holds by assumption. Thus, comp(si , γ) ∪ γ ′ |� �i → ϕi .
Otherwise, there is a t with comp(si , γ)|t ∪ γ ′|t /∈ Ht

Gi
.

Let σ : = comp(si , γ)|t ∪ γ ′|t . Then, there exists a GTS
g j ∈ Gi and an infinite extension σ̂ of σ such that we
have σk ∩ Oj �= comp(g j , σ̂ ∩ I j)k ∩ Oj for some k with
1 ≤ k ≤ t . Since strategies cannot look into the future,
the above holds for all infinite extensions of σ and thus
in particular for comp(si , γ) ∪ γ ′. Hence, by construction
of ψ j , we have comp(si , γ) ∪ γ ′ /∈ L(ψ j) and therefore
comp(si , γ) ∪ γ ′ /∈ L(�i). Thus, comp(si , γ) ∪ γ ′ �|� �i

and hence comp(si , γ) ∪ γ ′ |� �i → ϕi follows. Thus,
comp(s′

i , γ) ∪ γ ′ |� �i → ϕi holds for all γ ∈ (2Ii)ω,
γ ′ ∈ (2V \Vi)ω and therefore si |� �i → ϕi follows.

Hence it follows that (S, �) indeed realizes ϕ. ��
Given a solution of certifying synthesis with LTL certifi-

cates, we intuitively construct GTS that match the strategies
of the given solution:

Lemma 5.2 Let ϕ be an LTL formula. LetS and� be vectors
of strategies and LTL certificates, respectively, for the system
processes. If (S, �) realizes ϕ, then there exists a vector G
of GTS such that (S,G) realizes ϕ.

Proof Let S = 〈s1, . . . , sn〉, � = 〈ψ1, . . . , ψn〉. For pi , let
�i : = {ψ j | p j ∈ P−\{pi }}. Suppose that (S, �) realizes
ϕ. We construct a GTS gi from si : gi is a copy of si , where
the labels of gi ignore outputs v ∈ Oi that are not contained
in OG

i , i.e., ogi (q, i) = oi (q, i) ∩ OG
i for all states q and all

inputs i ∈ 2Ii , where ogi is the labeling function of gi and
oi is the labeling function of si . Let G : = 〈g1, . . . , gn〉 and
Gi : = {g j | p j ∈ P−\{pi }}. We claim that (S,G) realizes
ϕ. We show that si � gi and si |�Gi ϕi hold for all pi ∈ P−.
Let pi ∈ P−.

123

Compositional synthesis of modular systems 461

First, we prove si � gi : By construction of gi , si and gi
only differ in their labels and the labels agree on the variables
inOG

i . Since the variables inOG
i are the only output variables

that are shared by si and gi and, in particular,OG
i ⊆ Oi holds,

si � gi follows.
Next, we prove si |�Gi ϕi , i.e., we show that for all γ ∈

(2Ii)ω, γ ′ ∈ (2V \Vi)ω with comp(si , γ)|t ∪ γ ′|t ∈ Ht
Gi

for

all t , comp(si , γ) ∪ γ ′ |� ϕi holds. Let γ ∈ (2Ii)ω and
γ ′ ∈ (2V \Vi)ω. Let σ : = comp(si , γ) ∪ γ ′. By assumption,
si |� ψi ∧ �i → ϕi and hence, in particular, σ |� �i → ϕi
holds. If σ |� �i , then σ |� ϕi follows. Otherwise, there
is a process p j ∈ P−\{pi } such that σ �|� ψ j . Hence, σ /∈
L(ψ j) holds. Then, by construction of ψ j , we have σ �=
comp(g j , σ ∩ I j) ∪ (σ ∩ (V \VG

j)) and therefore σ ∩ OG
j �=

comp(g j , σ ∩ I j) ∩ OG
j since OG

j ⊆ V . Thus, there is a

k with σk ∩ OG
j �= comp(g j , σ ∩ I j)k ∩ OG

j and hence
σ /∈ Ht{g j } holds for all t > k. Since p j ∈ P−\{pi }, we have
g j ∈ G j and thus comp(si , γ)|t ∪ γ ′|t /∈ Ht

Gi
holds for all

t > k. Therefore, si |�Gi ϕi follows.
Hence, it follows that (S,G) indeed realizes ϕ. ��
Since we can translate solutions of certifying synthesis

with LTL certificates and solutions of certifying synthesis
with GTS into each other, we can reuse the results from
Sect. 4. Thus, soundness and completeness of certifying syn-
thesiswithGTS follows fromTheorem4.1with Lemmas 5.1,
5.2:

Theorem 5.1 Let ϕ be an LTL formula. Furthermore, letS =
〈s1, . . . , sn〉 be a vector of strategies. Then, there exists a
vector G of GTS such that (S,G) realizes ϕ if, and only if,
s1 || · · · || sn |� ϕ holds.

Hence, similar to LTL certificates, certifying synthe-
sis with GTS allows for local reasoning and thus enables
modularity of the system while it still ensures that correct
solutions are found for all realizable specifications. In par-
ticular, enforcing certificates to be deterministic does not rule
out strategies that can be obtained with certifying synthesis
with nondeterministic certificates such as certificates given
by LTL formulas.

Running example (Synthesizing Certificates) As an exam-
ple of the synthesis procedure of a distributed system with
certifying synthesis and GTS, consider the manufacturing
robots from Sect. 2. For simplicity, suppose that the robots
do not have individual additional requirements ϕaddi . Hence,
the full specification is given by ϕsafe∧ϕcross1 ∧ϕcross2 . Since
goi is an output variable of robot ri , we obtain the subspecifi-
cations ϕi = ϕsafe∧ϕcrossi . A solution of certifying synthesis
is then given by the strategies depicted in Figs. 2, 3 and GTS
depicted in Figs. 1 and 4. Note that s2 only locally satisfies
ϕcross2 with respect to g1 when assuming that r1 is not imme-
diately again at the intersection after crossing it. However,

∅ {go2}

go1 ∧ ¬at–C
go1 ∧ at–C

¬go1 ∧ at–C

¬go1 ∧ ¬at–C

¬go1 ∧ at–C

¬go1 ∧ ¬at–C

go1 ∧ ¬at–Cgo1 ∧ at–C

1 1

1

1

1

1 11

Fig. 3 Strategy for r2. The labels of the states denote the output of the
TS in the respective state

{go1} ∅

at–C at–C

at–C

at–C

1

1

1

1

Fig. 4 GTS for r1. The labels of the states denote the output of the TS
in the respective state

{go1} {go2}

¬at–C
at–C

at–C

¬at–C1

1

1

1

Fig. 5 Parallel composition of the strategies s1 and s2 for r1 and r2,
depicted in Figs. 2 and 3, respectively. The labels of the states denote
the output of the TS in the respective state

there are solutionswith slightlymore complicated certificates
that do not need this assumption. The parallel composition
of s1 and s2 is depicted in Fig. 5. It is a strategy that allows
r1 to move forwards if it is at the crossing and that allows r2
to move forwards otherwise.

6 Computing relevant processes

Both variants of certifying synthesis introduced in the pre-
vious sections consider the certificates of all other system
processes in the local objective of a process pi . This is not
always necessary since ϕi might be satisfiable even if another
process deviates from its guaranteed behavior. In this sec-
tion, we present an optimization of certifying synthesis that
reduces the number of considered certificates. For every pi ,

123

462 B. Finkbeiner and N. Passing

we compute a set of relevant processes Ri ⊆ P−\{pi }.
Certifying synthesis then only considers the certificates of
the relevant processes: Let �R

i = {ψ j ∈ � | p j ∈ Ri },
GR
i = {g j ∈ G | p j ∈ Ri }. For LTL certificates, we require

si |� ψi ∧ (�R
i → ϕi). For GTS, si � gi and si |�GR

i
ϕi

need to hold.Wedenote such solutions of certifying synthesis
with (S, �)R and (S,G)R.

The construction of the set of relevant processesRi has to
ensure that certifying synthesis is still sound and complete. In
the following, we introduce a syntactic definition of relevant
processes that does so. It excludes processes from pi ’s set of
relevant processes Ri whose output variables do not occur
in the subspecification ϕi :

Definition 6.1 (Relevant processes)Let ϕ be an LTL formula
with decomposition 〈ϕ1, . . . , ϕn〉. The relevant processes
Ri ⊆ P−\{pi } of process pi ∈ P− are given by Ri =
{p j ∈ P−\{pi } | Oj ∩ prop(ϕi) �= ∅}.

Intuitively, since Oj ∩ prop(ϕi) = ∅ holds for a process
p j ∈ P−\Ri with i �= j , ϕi does not restrict the satisfying
valuations of the output variables of p j . Thus, if a sequence
satisfies ϕi , then it does so for any valuations of the vari-
ables in Oj . Hence, the guaranteed behavior of p j does not
influence the satisfiability of ϕi and thus pi does not need to
consider it:

Theorem 6.1 Let ϕ be an LTL formula. Moreover, let S =
〈s1, . . . , sn〉 be a vector of strategies.

1. If (S, �)R realizes ϕ for some vector � of LTL certifi-
cates, then s1 || · · · || sn |� ϕ. If s1 || · · · || sn |� ϕ holds,
then there exist vectors S ′ and � ′ of strategies and LTL
certificates such that (S ′, � ′)R realizes ϕ.

2. If (S,G)R realizes ϕ for some vector G of GTS, then
s1 || · · · || sn |� ϕ. If s1 || · · · || sn |� ϕ holds, then there
exist vectors S ′ and G′ of strategies and GTS such that
(S ′,G′)R realizes ϕ.

Proof For both LTL certificates and GTS, soundness follows
immediately from the fact thatRi ⊆ P−\{pi } holds and thus
we have both �R

i ⊆ �i and GR
i ⊆ Gi .

Next, we show the completeness of certifying synthe-
sis with LTL certificates. Suppose that s1 || · · · || sn |� ϕ

holds. Then, by Theorem 4.1, there exists a vector � of
LTL certificates such that (S, �) realizes ϕ. In particu-
lar, this holds for the certificates � : = 〈ψ1, . . . , ψn〉 with
L(ψi) = {comp(si , γ) ∪ γ ′ | γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω}.
Let �i = {ψ j | p j ∈ P−\{pi }}. We construct strategies
s′
i as follows: For all γ ∈ (2Oenv)ω, γ ′ ∈ (2V \Oenv)ω, let

σγ,γ ′ = (comp(s1 || · · · || sn, γ) ∩ Oi) ∪ ((γ ∪ γ ′) ∩ Ii).
Then, we define comp(s′

i , (γ ∪ γ ′) ∩ Ii) : = σγ,γ ′ . Let
S ′ : = 〈s′

1, . . . , s
′
n〉. Let ψ ′

i be an LTL formula with L(ψ ′
i) =

{comp(s′
i , γ) ∪ γ ′ | γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω}. Let

� ′ : = 〈ψ ′
1, . . . , ψ

′
n〉 and � ′

i,R : = {ψ ′
j | p j ∈ Ri }. Then,

(S ′, � ′)R realizes ϕ. The proof is given in [15].
Next, we consider certificates represented by GTS. Sup-

pose that s1 || · · · || sn |� ϕ holds. Let S ′ and � be the
vectors of strategies and LTL certificates constructed as in
the first part of this proof such that (S ′, �)R realizes ϕ. Let
�i = {ψ j | p j ∈ P−\{pi }}, �R

i : = {ψ j | p j ∈ Ri }. We
construct a GTS gi as follows: gi is a copy of s′

i , yet, the
labels of gi ignore output variables v ∈ Oi that are not con-
tained in OG

i , i.e., ogi (t, i) = oi (t, i) ∩ OG
i for all states t

and all inputs i ∈ 2Ii , where ogi is the labeling function of gi
and oi is the labeling function of s′

i . Let G : = 〈g1, . . . , gn〉,
Gi : = {g j | p j ∈ P−\{pi }}, GR

i : = {g j | p j ∈ Ri }. Then,
(S ′,G)R realizes ϕ. For the proof, we refer to [15]. ��

For certifying synthesis with relevant processes, we can
only guarantee that for every vector of strategies s1, . . . , sn
with s1 || · · · || sn |� ϕ, there are some strategies that are part
of a solution of certifying synthesis. These strategies are not
necessarily s1, . . . , sn : A strategy si may make use of the
certificate of a process p j outside of Ri . That is, it may
violate ϕi on an input sequence γ that does not stick to g j

although ϕi is satisfiable for γ . Strategy si is not required
to satisfy ϕi on γ , a strategy that may only consider the
certificates of the relevant processes, however, is. As long as
the definition of relevant processes allows for finding some
solution of certifying synthesis, like the one introduced in
Definition 6.1 does as a result of Theorem 6.1, certifying
synthesis is nevertheless sound and complete.

7 Synthesizing certificates

In this section, we describe an algorithm for practically syn-
thesizing strategies and certificates represented by GTS. Our
approach is based on bounded synthesis [16] and bounds the
size of the strategies and of the certificates. This allows for
producing size-optimal solutions in either terms of strategies
or certificates. Like for monolithic bounded synthesis [9,16],
we encode the search for a solution of certifying synthesis of
a certain size into a SAT constraint system. We reuse parts
of the constraint system for monolithic systems.

An essential part of bounded synthesis is to determine
whether a strategy si satisfies an LTL formula ϕi . To do
so, we construct an equivalent universal co-Büchi automa-
ton Ai with L(Ai) = L(ϕi). Then, we check whether Ai

accepts comp(si , γ) ∪ γ ′ for all γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω,
i.e., whether all runs of Ai induced by comp(si , γ) ∪ γ ′
contain only finitely many visits to rejecting states. So far,
we used local satisfaction to formalize that in compositional
synthesis withGTS a strategy only needs to satisfy its specifi-
cation as long as the other processes stick to their guarantees,
i.e., we changed the satisfaction condition. To reuse existing

123

Compositional synthesis of modular systems 463

algorithms for bounded synthesis, however, we now incor-
porate this property of certifying synthesis into the strategy
instead: We utilize the observation that a finite run of an
ω-automaton can never visit rejecting states infinitely often.
Hence, by ensuring that the automaton produces finite runs
on all sequences that deviate from a certificate, checking
whether a strategy satisfies a specification can still be done
by checking whether the runs of the automaton induced by
the computations of the strategy visit rejecting states only
finitely often.

In the following, we therefore model strategies with
incomplete transition systems. The domain of definition of
their transition function is defined such that the computation
of a strategy is infinite if, and only if, the other processes
stick to their guarantees:

Definition 7.1 (Local strategy) A local strategy si for pi ∈
P− with respect to a set Gi of GTS is represented by a TS
Ti = (T , t0, τ, o) with a partial transition function τ : T ×
2Ii ⇀T . The domain of definition of τ is defined such that
comp(si , γ) is infinite for γ ∈ (2Ii)ω if, and only if, there
exists γ ′ ∈ (2V \Vi)ω such that comp(si , γ)|t ∪ γ ′|t ∈ Ht

Gi
holds for all points in time t .

Intuitively, a local strategy thus omits all transitions that
are invoked by an input that may only occur if the other
processes deviate from their certificates.

Running example Consider strategy s1 for robot r1 and
GTS g2 for r2, depicted in Figs. 1 and 2, respectively. From
s1, we can construct a local strategy s′

1 for robot r1 with
respect to {g2} by eliminating the gray transitions.

Given a specification ϕ, certifying synthesis with local
strategiesderivesGTS g1, . . . , gn and local strategies s1, . . . ,
sn respecting these guarantees, such that for all pi ∈ P−,
si � gi holds and all runs ofAi induced by comp(si , γ)∪γ ′
contain only finitely many visits to rejecting states for all
γ ∈ (2Ii)ω, γ ′ ∈ (2V \Vi)ω, whereAi is a universal co-Büchi
automaton with L(Ai) = L(ϕi).

Every solution of certifying synthesis for a specification
ϕ with local strategies can be translated into a solution of
certifying synthesis for ϕ with local satisfaction and vice
versa: We can extend the local strategy of pi with pi ’s guar-
anteed behavior, i.e., we obtain a complete strategy from the
local one by reconstructing the missing transitions from the
corresponding GTS. Vice versa, we can restrict a complete
strategy obtained by certifying synthesis with local satisfac-
tion to those transitions that match the GTS of the other
processes, i.e., we delete all transitions of the strategy that can
only be taken if the other processes deviate from their speci-
fications. For the formal constructions of the translations and
their proofs of correctness, we refer to [15].

Yet, local strategies obtained by restricting complete
strategies only realize ϕ if the satisfaction of each sub-

specification ϕi solely depends on the variables that the
corresponding process can observe. This is due to a slight
difference in the satisfaction of ϕi with local strategies and
local satisfactionwith complete strategies: The latter requires
a strategy si to satisfy ϕi if all processes stick to their guar-
antees. The former, in contrast, requires si to satisfy ϕi if all
processes producing observable outputs stick to their guar-
antees. Hence, if pi cannot observewhether p j deviates from
its guarantee, satisfaction with local strategies requires si to
satisfy ϕi even if p j deviates, while local satisfaction does
not.

Thus, while soundness of certifying synthesis with local
strategies follows from the corresponding result for certifying
synthesis with local satisfaction and the fact that the parallel
composition of local strategies coincides with the parallel
composition of their extensions, we only obtain conditional
completeness:

Theorem 7.1 Let ϕ be an LTL formula. If there are vectors
S = 〈s1, . . . , sn〉 and G of local strategies and GTS such
that (S,G) realizes ϕ, then s1 || · · · || sn |� ϕ. If there is
a vector S = 〈s1, . . . , sn〉 of complete strategies such that
s1 || · · · || sn |� ϕ and if prop(ϕi) ⊆ Vi holds for all pi ∈ P−,
then there are vectors S ′, G of local strategies and GTS such
that (S ′,G) realizes ϕ.

The slight difference between local strategies and local
satisfaction yielding only conditional completeness for cer-
tifying synthesis with local strategies is needed in order to
technically incorporate the requirements of certifying syn-
thesis into the strategy and thus to be able to reuse existing
bounded synthesis frameworks. Although this is at general
completenesses expanse, we experienced that in practice
many distributed systems indeed satisfy the condition that is
needed for completeness. In fact, all benchmarks described
in Sect. 9 satisfy it.

We encode the search for local strategies and GTS sat-
isfying the requirements of certifying synthesis with local
strategies into a SAT constraint system:

Theorem 7.2 Let A be an architecture, let ϕ be an LTL for-
mula, and let B be the size bounds. There is a SAT constraint
system CA,ϕ,B such that (1) if CA,ϕ,B is satisfiable, then ϕ is
realizable in A, (2) if ϕ is realizable in A for the bounds B
and additionally prop(ϕi) ⊆ Vi holds for all pi ∈ P−, then
CA,ϕ,B is satisfiable.

The constraint systemCA,ϕ,B consists ofn slightly adapted
copies of the SAT constraint system for monolithic systems
[9,16], one for each system process. For each copy, we add
variables encoding the GTS representing the certificates as
well as constraints that ensure that the local strategies and
certificates indeed fulfill the conditions of certifying synthe-
sis:

123

464 B. Finkbeiner and N. Passing

u∈Gj i∈Ij u ∈Gj

τG,j
u,i,u ∧

u ∈Gj u ∈Gj

u =u

¬τG,j
u,i,u ∨ ¬τG,j

u,i,u ∧
t∈Tj i∈Ij

⎛
⎝vj(t, i) ↔

t ∈Tj

τj
t,i,t

⎞
⎠ ∧

t ∈Tj t ∈Tj

t =t

¬τj
t,i,t ∨ ¬τj

t,i,t

S→G,j

tj0,u
j
0

∧
t∈Tj u∈Gj

⎛
⎝ S→G,j

t,u →
⎛
⎝

v∈OG
j

ojt,v ↔ oG,j
u,v ∧

i⊆Ij t ∈Tj

⎛
⎝τj

t,i,t →
u ∈Gj

τG,j
u,i,u

S→G,j
t ,u

⎞
⎠
⎞
⎠
⎞
⎠

∧
pk∈Rj

⎛
⎜⎜⎜⎝

G→S,k,j

uk
0 ,t

j
0

∧
u∈Gk t∈Tj

⎛
⎜⎜⎜⎝

G→S,k,j
u,t →

i⊆Ik i ⊆Ij

i∩Ij=i ∩Ik

⎛
⎜⎝vj(t, i) →

⎛
⎜⎝

u ∈Gk

⎛
⎝τG,k

u,i,u →
t ∈Tj

τj
t,i ,t

G→S,k,j
u ,t

⎞
⎠ ∧

v∈ORj
∩OG

k

oG,k
u,v ↔ ojt,v

⎞
⎟⎠

⎞
⎟⎠

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠

∧ λj,B

tj0,q
j
0

∧
q∈Qj t∈Tj

⎛
⎝λj,B

t,q →
q ∈Qj i⊆Ij

⎛
⎝

o⊆Oj

δjt,q,i∪o,q →
t ∈Tj

τj
t,i,t → λj,B

t ,q ∧ λj,#
t ,q q λj,#

t,q

⎞
⎠
⎞
⎠

Fig. 6 SAT constraint system CA,ϕ,B encoding the search for a local strategy TS T j = (Tj , t
j
0 , τ j , o j) and a guarantee TS T G

j = (G j , u
j
0, τ

G
j , oGj)

of process p j satisfying the requirements of certifying synthesis with local strategies for ϕ. Variable δ
j
q,i,q ′ encodes the transition function of the

universal co-Büchi automaton A j for ϕ j . τ
j
t,i,t ′ and τ

G, j
u,i,u′ encode the transition functions of the strategy and the GTS of p j , respectively. o

j
t,v and

oG, j
u,v encode their labeling functions. λ j,B

t,q and λ
j,#
t,q encode the reachability and the annotation of a state in the run graph needed for encoding the

existence of a valid annotation. �S→G, j
t,u and �G→S,k, j

u,t encode the simulation relation from T j to T G
j and from T G

k to T j , respectively. v j (t, i) is

syntactic sugar for
∧

v∈OR j
(v ∈ i ′ ↔ o j

t,v)

To ensure that s j � g j holds, we add a constraint that
explicitly encodes the existence of a simulation relation. To
encode that the local strategies respect the GTS, we need to
encode that s j only produces infinite sequences if the other
processes do not deviate from their guarantees. To recog-
nize whether the other processes stick to their guarantees, we
extend s j with associated outputs: Variables that are inputs
of p j and outputs of a relevant process pk ∈ R j of p j . Then,
we require that s j simulates gk for every relevant process
pk ∈ R j of p j with respect to the variables in I j ∩ Ok . Note
that we use a slightly more general definition of simulation
here than introduced in the preliminaries: We do not require
that I j = Ik and Oj ⊆ Ok holds. Instead, we only consider
successors for inputs that agree on shared variables and that
may occur if the other processes stick to their guarantees.
Then, we only require that the successors agree on the vari-
ables in I j ∩ Ok . Moreover, we add a constraint encoding
that the transition system representing si only has an out-
going transition with a certain input if the valuations of si ’s
associated outputs in itmatch the valuations of si ’s associated
outputs in the current state. The constraint system CA,ϕ,B is
presented in Fig. 6. A more detailed description of the single
constraints is given in [15].

Note that we build a single constraint system for the whole
certifying synthesis task. Thus, the strategies and certificates
of the individual processes are not synthesized completely
independently. This is one of the main differences of our
approach to the negotiation-based assume-guarantee synthe-
sis algorithm [21]. While this prevents separate synthesis
tasks and thus parallelizability, it eliminates the need for a
negotiation between the processes. Moreover, it allows for
completeness of the synthesis algorithm. Although the syn-

thesis tasks are not fully separated, the constraint system
CA,ϕ,B is in most cases still significantly smaller and easier
to solve than the one of classical distributed synthesis.

8 Adding nondeterminism to GTS

We focused on certifying synthesis with guarantee tran-
sition systems in the previous two sections, and in [14],
since representing certificates with GTS ensures determin-
istic guarantees. This avoids the blowup of determinizing
the certificate in order to check whether a strategy satisfies
its own certificate. In this section, we investigate the effect of
permitting nondeterminism in GTS. We first define nonde-
terministic guarantee transition systems (NGTS), adapt the
notion of valid histories to NGTS, and define certifying syn-
thesis with NGTS, both in the setting with local satisfaction
and with local strategies. We establish soundness and com-
pleteness of certifying synthesis with NGTS. Moreover, we
present the changes in the constraint system CA,ϕ,B that are
needed to search forNGTS insteadofGTS.Lastly,wediscuss
the advantages anddisadvantages of permittingnondetermin-
ism in the GTS.

We model the certificate gi of a process pi as a nonde-
terministic TS T G

n,i = (T , t0, τ, o), called nondeterministic
guarantee transition system (NGTS), over inputs Ii and guar-
antee outputs OG

i ⊆ Oi . The NGTS is nondeterministic in
the sense that both nondeterministic transitions and nonde-
terministic labelings are allowed. Thus, τ : T × 2Ii × T is

a transition relation and o : T × 2O
G
i is a labeling rela-

tion. A nondeterministic TS T1 = (T1, t10 , τ1, o1) over I
and O1 simulates a deterministic TS T2 = (T2, t20 , τ2, o2)

123

Compositional synthesis of modular systems 465

over I and O2 with O1 ⊆ O2, denoted T2 � T1, if there
is a simulation relation R : T2 × T1 with (t20 , t10) ∈ R,
∀(t2, t1) ∈ R. (t1, o2(t2) ∩ O1) ∈ o1, ∀t ′2 ∈ T2.∀i ∈ 2I .
(t2, i, t ′2) ∈ τ2 → (∃t ′1 ∈ T1. τ1(t1, i) = t ′1 ∧ (t ′2, t ′1) ∈ R).
The computation compn(g j , γ) of a NGTS gi on input
γ ∈ (2Ii)ω is the set of traces produced by g j on γ .

For NGTS, valid histories are similar to those for GTS.
Yet, we require that one trace in the computation of theNGTS
satisfies the requirements:

Definition 8.1 (Valid history for NGTS) Let Gi be a set of
NGTS. A valid history of length t with respect to Gi is a finite
sequence σ ∈ (2V)∗ of length t , where for all g j ∈ Gi , there
is someσ ′ ∈ compn(g j , σ̂∩I j) such thatσk∩OG

j = σ ′
k∩OG

j
holds for all k with 1 ≤ k ≤ t and all infinite extensions σ̂ of
σ . Ht

Gi
denotes the set of all valid histories of length t with

respect to Gi .

Utilizing valid histories for NGTS, the definition of cer-
tifying synthesis with GTS directly carries over to NGTS:
For ϕ, we derive strategies s1, . . . , sn and NGTS g1, . . . , gn
such that both si |�Gi ϕi and si � gi hold for all pi ∈ P−.
Soundness and completeness for NGTS then follows from
Theorem 5.1 and the fact that we can resolve the nondeter-
ministic choices in anNGTSwhilemaintaining theproperties
of certifying synthesis:

Theorem 8.1 Let ϕ be an LTL formula. Furthermore, let
S = 〈s1, . . . , sn〉 be a vector of strategies for the system
processes. Then, there exists a vector G of NGTS such that
(S,G) is a solution of certifying synthesis for ϕ if, and only
if, s1 || · · · || sn |� ϕ holds.

Proof Since every GTS is an NGTS as well, completeness
follows immediately from Theorem 5.1. Next, suppose that
there is a vector G = 〈g1, . . . , gn〉 of NGTS such that (S,G)

realizes ϕ. Let g′
i be the GTS obtained by resolving nondeter-

minism in gi while maintaining the simulation requirements:
g′
i is a copy of gi , yet, in every state we keep only a single

label and, for every input, a single outgoing edge that satisfies
the simulation requirements. Since si � gi holds by assump-
tion, such a GTS always exists. Let G′ : = 〈g′

1, . . . , g
′
n〉 and

pi ∈ P−. By construction of g′
i , si � g′

i holds and si |�G′
i
ϕi

since all valid histories with respect to G′
i are valid histories

with respect to Gi as well. Thus, (S,G′) realizes ϕ and hence
s1 || · · · || sn |� ϕ follows with Theorem 5.1. ��

Nondeterministic GTS are particularly beneficial if a pro-
cess only needs information about the behavior of another
process in a certain step. For instance, consider a systemwith
two processes p1, p2 with specifications ϕ1 = a ↔ b ∧ a ∧
a ∧ a ∧ ¬a ∧ a and ϕ2 = a ↔ b,

where O1 = I2 = {a}, I1 = O2 = {b}. Process p2 only
needs information about p1’s behavior in the very first step,
the other steps are irrelevant. The certificates for p1 with
GTS and NGTS are depicted in Fig. 7. With deterministic
GTS, p1’s certificate consists of five states, while the NGTS
only has two states. Thus, the certificate size can be reduced
significantly for certain specifications when using NGTS.

Moreover, permitting nondeterminism compensates over-
approximations in the set of relevant processes: If knowledge
on the behavior of a process is not needed although it is
relevant according to the syntactic criterion stated in Def-
inition 6.1, we can derive a single-state NGTS, while a
deterministic GTS needs to describe the processes’ full
behavior on the guarantee outputs.

Similar to Theorem8.1, certifying synthesiswithGTS and
local strategies carries over to NGTS. With the very same
construction as for local satisfaction, soundness and condi-
tional completeness follows:

Theorem 8.2 Let ϕ be an LTL formula. If there are vectors
S = 〈s1, . . . , sn〉 and G of local strategies and NGTS such
that (S,G) realizes ϕ, then s1 || · · · || sn |� ϕ. If there is a
vector S = 〈s1, . . . , sn〉 of complete strategies such that
s1 || · · · || sn |� ϕ and if prop(ϕi) ⊆ Vi holds for all pi ∈ P−,
then there are vectorsS ′,G of local strategies andNGTS such
that (S ′,G) realizes ϕ.

To practically synthesize a solution of certifying synthesis
with NGTS, we encode the search for strategies and certifi-
cates into a SAT constraint system. We reuse most of the
constraint system for certifying synthesis with GTS shown
in Fig. 6, and only need to adapt a few variable encodings and
constraints: The labeling function of the NGTS in state u for
output v is not encoded by a single variable oG, j

u,v anymore,
but with two variables denoting that v is true or false in u,
respectively, enabling that v can be both true and false. All
constraints using the labeling function are adapted accord-
ingly. Moreover, we drop the constraint encoding that there
is at most one outgoing edge for every state and input, i.e.,
the constraint encoding determinism.

Due to the nondeterminism in the GTS, the search space
clearly gets larger. However, it also allows for certificates

{a} {a} {a} ∅ {a}

(a) GTS for p1.

{a} {a} ∨ ∅

(b) NGTS for p1.

Fig. 7 GTS and NGTS for p1. The labels of the states denote the output of the TS in the respective state

123

466 B. Finkbeiner and N. Passing

with fewer states, enabling us to find solutions with smaller
bounds and thus to reduce the search space again. To inves-
tigate this trade-off on different benchmarks, we compare
certifying synthesis with GTS and NGTS experimentally in
the next section.

9 Experimental results

We have implemented certifying synthesis with local strate-
gies and both deterministic and nondeterministic GTS. Our
implementation expects an LTL formula and its decompo-
sition as well as the system architecture and bounds on the
strategy and certificate sizes as input. Specification decom-
position can easily be automated by, e.g., implementing
Definition 4.1.Our implementation extends the bounded syn-
thesis tool BoSy [10] for monolithic systems to certifying
synthesis for distributed systems. In particular, we extend
and adapt BoSy’s SAT encoding [9] as described in Sect. 7.

We compare our deterministic approach to two extensions
of BoSy: One for distributed systems [2] and one for synthe-
sizing dominant process strategies separately, implementing

Table 1 Results on scalable benchmarks

Benchmark Par. Cert. Dist. Dom.

n-ary Latch 2 0.89 41.26 4.75

3 0.91 TO 6.40

4 0.92 TO 8.46

5 0.94 TO 10.74

6 12.26 TO 13.89

7 105.69 TO 15.06

Gen. Buff. 1 1.20 6.59 5.23

2 2.72 3012.51 10.53

3 122.09 TO 961.60

Load Bal. 1 0.98 1.89 2.18

2 1.64 2.39 –

Shift 2 1.10 1.99 4.76

3 1.13 4.16 7.04

4 1.14 TO 11.13

5 1.29 TO 13.68

6 2.20 TO 16.01

7 9.01 TO 16.08

8 71.89 TO 19.38

R.-C. Adder 1 0.878 1.83 –

2 2.09 36.84 –

3 106.45 TO –

Reported is the parameter (Par.) and the running time in seconds for cer-
tifying synthesis (Cert.), distributedBoSy (Dist.), and dominant strategy
synthesis (Dom.)
Bold values highlight the lowest (and thus best) running time in the
comparison depicted

Table 2 Results for the manufacturing robots benchmark

Strategy size
Par. Cert. Dist. Cert. Dist.

2, 3 2, 6 6 1.59 2.91

2, 4 2, 4 4 1.18 2.43

2, 5 2, 10 10 3.97 299.11

2, 6 2, 6 6 1.40 3.25

2, 7 2, 14 14 76.32 TO

2, 8 2, 8 8 2.47 5.28

2, 9 2, 18 18 1832.53 TO

2, 10 2, 10 10 7.78 106.34

3, 4 6, 4 12 1.44 TO

3, 5 6, 10 30 32.83 TO

3, 6 6, 6 6 2.04 3.43

3, 7 6, 14 42 373.90 TO

3, 8 6, 8 24 8.82 TO

3, 9 6, 18 18 TO TO

3, 10 6, 10 30 30.92 TO

4, 5 4, 10 20 11.66 TO

4, 6 4, 6 12 2.04 TO

4, 7 4, 14 28 221.17 TO

4, 8 4, 8 8 3.28 6.06

4, 9 4, 18 36 2911.26 TO

4, 10 4, 10 20 7,93 TO

5, 6 10, 6 30 26.16 TO

5, 7 10, 14 35 TO TO

5, 8 10, 8 40 26.164 TO

5, 9 10, 18 45 TO TO

5, 10 10, 10 10 89.87 335.98

Reported are the parameters (Par.), the implementation sizes of certify-
ing synthesis (Cert.) and distributed BoSy (Dist.), and the running time
in seconds
Bold values highlight the lowest (and thus best) running time in the
comparison depicted

the compositional synthesis algorithm presented in [7]. The
results are shown in Tables 1 and 2. We used a machine with
a 3.1GHz Dual-Core Intel Core i5 processor and 16GB of
RAM, and a timeout of 60min. We use the SMT encoding of
distributed BoSy since the other ones either do not support
most of our architectures (QBF), or cause memory errors
frequently (SAT). Since the running times of the underly-
ing SMT solver vary immensely, we report on the average
running time of 10 runs. Synthesizing dominant strategies
separately is incomplete and thus we cannot report on results
for all benchmarks. We could not compare our algorithm to
the iterative distributed synthesis tool Agnes [21], since it
currently does not support most of our architectures or spec-
ifications.

Four benchmarks stem from the synthesis competition
[17]. The latch is parameterized in the number of bits, the

123

Compositional synthesis of modular systems 467

generalized buffer in the number of senders, the load bal-
ancer in the number of servers, and the shift in the number of
inputs. The fifth benchmark, a ripple-carry adder, is param-
eterized in the number of bits. The last benchmark describes
the robots from Sect. 2 and is parameterized in the size of the
objectives ϕaddi . The system architectures are given in [15].

For the latch, the generalized buffer, the ripple-carry adder,
and the shift, certifying synthesis clearly outperforms dis-
tributed BoSy. For many parameters, the latter does not
terminate within 60min, while certifying synthesis solves
the tasks in less than 13s. Here, a process does not need to
know the full behavior of the relevant processes. Thus, the
certificates are notably smaller than the strategies. A process
of the adder, for instance, only needs information about the
carry bit of the previous process, the sum bit is irrelevant.

In contrast, the load balancer requires the certificates to
contain the full behavior of the processes. Thus, the benefit
of the compositional approach lies solely in the specification
decomposition. This advantage suffices to produce a solu-
tion faster than distributed BoSy. Yet, for other benchmarks
with full certificates, the overhead of synthesizing certifi-
cates dominates the benefit of specification decomposition
for larger parameters, showcasing that certifying synthesis is
particularly beneficial if a small interface between the pro-
cesses exists.

The robot benchmark is designed such that the interface
stays small for all parameters. Thus, it demonstrates the
advantage of abstracting away irrelevant behavior. We scale
ϕaddi , while ϕsafe and ϕcrossi are not changed: ki denotes that
ri needs to visit a machine in every ki th step. Certifying syn-
thesis clearly outperforms distributed BoSy on all instances.
The size of the solutions of certifying synthesis only depends
on the parameter of the respective robot and the size of the
other robot’s certificate, which is two for all parameters,
while the size of the solution with distributed BoSy depends
on the parameters for both robots. Therefore, the solution
sizes and thus the running times do not grow in parallel. This
demonstrate that certifying synthesis is extremely beneficial
for specifications where small certificates exist. This directly
corresponds to the existence of a small interface between
the processes of the system. Hence, bounding the size of the
certificates indeed guides the synthesis procedure in finding
solutions fast.

The weaker winning condition dominance [6] poses
implicit assumptions on the behavior of the other processes.
These assumptions do not always suffice: There are no
independent dominant strategies for the load balancer, the
ripple-carry adder, and the robots. While certifying synthe-
sis performs better for the generalized buffer, the overhead
of synthesizing explicit certificates becomes clear for the
latch and the shift: For larger parameters, synthesizing dom-
inant strategies outperforms certifying synthesis. However,
the implicit assumptions do not encapsulate the required

interface between the processes and thus they do not increase
the understandability of the system’s interconnections.

In a third line of experiments, we compared our imple-
mentations with GTS and NGTS. We synthesized solutions
with NGTS for the benchmarks presented in Table 1. Note
that there is no smaller NGTS for any of these benchmarks,
i.e., there is no advantage in permitting nondeterminism. In
contrast to GTS, the running times vary widely with NGTS.
Most likely, permitting nondeterminism increases the degree
of freedom and thus the possibility for the underlying SAT
solver to “take a wrong path”, yielding the varying running
times. Hence, we consider the average running time over 10
runs. For smaller parameters, the running times of certify-
ing synthesis with NGTS are similar to those with GTS. For
larger parameters, the overhead increases: For the 7-ary latch,
we have an overhead of 12%, for the generalized parameter
with three senders of 11%, and for the shift with eight inputs
of 23%.

To analyze the advantage of nondeterministic certificates,
we consider a benchmark with two processes, where, simi-
lar to the example in Sect. 8, the NGTS for p1 stays small,
while the size of the GTS increases with the parameter. Here,
due to the larger GTS certificate the strategy sizes for both
p1 and p2 also increase. The results are shown in Table 3.

Table 3 Comparison of GTS and NGTS

Strat. and Cert. Size
Par. GTS NGTS GTS NGTS

3 6, 6-3 4, 3-2 1.30 1.03

4 4, 4-4 4, 2-2 1.17 0.96

5 10, 10-5 6, 3-2 31.67 1.25

6 6, 6-6 6, 2-2 4.35 1.01

7 14, 14-7 8, 3-2 TO 1.23

8 8, 8-8 8, 2-2 TO 1.34

9 18, 18-9 10, 3-2 TO 1.91

10 10, 10-10 10, 2-2 TO 1.30

11 22, 22-11 12, 3-2 TO 3.44

12 12, 12-12 12, 2-2 TO 3.34

13 26, 26-13 14, 3-2 TO 13.88

14 14, 14-14 14, 2-2 TO 10.52

15 30, 30-15 16, 3-2 TO 30.48

16 16, 16-16 16, 2-2 TO 28.86

17 34, 34-17 18, 3-2 TO 398.56

18 18, 18-18 18, 2-2 TO 168.19

19 38, 38-19 20, 3-2 TO 299.80

20 20, 20-20 20, 2-2 TO 428.82

Reported is the parameter, the strategy and certificate sizes (of the form:
size strat. p1, size strat. p2 – size cert. p1), and the running time in sec-
onds. For the second process, the certificate is of size 2 for all parameters
Bold values highlight the lowest (and thus best) running time in the
comparison depicted

123

468 B. Finkbeiner and N. Passing

Permitting nondeterminism has a clear benefit on the run-
ning time:With GTS, certifying synthesis does not terminate
within 60min from k = 7 on, while we still synthesize a
solution with NGTS in less than 8min up to k = 20. The
fact that not only the certificate sizes but also the strategy
sizes increase for GTS has a great impact on this significant
difference. For benchmarks where only the certificate sizes
differ, the running times do not differ as much. Oftentimes,
however, large certificates yield an increase in the strategy
size as well. Hence, the experiment demonstrates again that
certifying synthesis strives when solutions with small certifi-
cates exist.

10 Conclusion

We have presented a sound and complete synthesis algo-
rithm that reduces the complexity of distributed synthesis
by decomposing the global specification into local require-
ments on the individual processes. It synthesizes additional
certificates that capture a certain behavior a process commits
to. The certificates then form an assume-guarantee contract,
allowing a process to rely on the other processes to not devi-
ate from their guaranteed behavior. The certificates increase
the understandability of the system and the solution since the
certificates capture which agreements the processes have to
establish. Moreover, the certificates form a contract between
the processes: The synthesized strategies can be exchanged
safely as long as the new strategy still complies with the con-
tract, i.e., as long as it does not deviate from the certificate,
enabling modularity.

We have introduced two representations of the certificates,
asLTL formulas and as labeled transition systems. For the lat-
ter one, we presented an encoding of the search for strategies
and certificates into a SAT constraint solving problem.More-
over,we have introduced a technique for reducing the number
of certificates that a process needs to consider by determin-
ing relevant processes. We have implemented the certifying
synthesis algorithm and compared it to two extensions of
the synthesis tool BoSy to distributed systems. Furthermore,
we analyzed the advantage of permitting nondeterminism in
the certificates. The results clearly show the advantage of
compositional approaches as well as of guiding the synthesis
procedure by bounding the size of the certificates: For bench-
marks where small interfaces between the processes exist,
certifying synthesis outperforms the other algorithms signif-
icantly. If no solutionwith small interfaces exist, the overhead
of certifying synthesis is small. Permitting nondeterminism
can reduce the strategy and certificate sizes significantly.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Alur R, Moarref S, Topcu U (2015) Pattern-based refinement of
assume-guarantee specifications in reactive synthesis. In: Baier C,
Tinelli C (eds) Tools and algorithms for the construction and anal-
ysis of systems - 21st international conference, TACAS 2015, held
as part of the European joint conferences on theory and practice of
software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings, Lecture Notes in Computer Science, vol. 9035, pp. 501–516.
Springer. https://doi.org/10.1007/978-3-662-46681-0_49

2. Baumeister JE (2017) Encodings of bounded synthesis for dis-
tributed systems. Bachelor’s thesis, Saarland University

3. Bloem R, Chatterjee K, Jacobs S, Könighofer R (2015) Assume-
guarantee synthesis for concurrent reactive programs with partial
information. In Tools and algorithms for the construction and anal-
ysis of systems - 21st international conference, TACAS 2015, held
as part of the European joint conferences on theory and practice of
software, ETAPS 2015, London, UK, April 11-18, 2015. Proceed-
ings, Lecture Notes in Computer Science, vol. 9035, pp 517–532.
Springer. https://doi.org/10.1007/978-3-662-46681-0_50

4. Brenguier R, Raskin J, Sankur O (2017) Assume-admissible syn-
thesis. Acta Inform 54(1):41–83. https://doi.org/10.1007/s00236-
016-0273-2

5. Chatterjee K, Henzinger TA (2007) Assume-guarantee synthesis.
In: Grumberg O, Huth M (eds) Tools and algorithms for the con-
struction and analysis of systems, 13th international conference,
TACAS 2007, held as part of the joint European conferences on
theory and practice of software, ETAPS 2007 Braga, Portugal,
March 24 - April 1, 2007, Proceedings, Lecture Notes in Com-
puter Science, vol. 4424, pp 261–275. Springer. https://doi.org/10.
1007/978-3-540-71209-1_21

6. DammW, Finkbeiner B (2011) Does it pay to extend the perimeter
of a world model? In FM 2011: formal methods - 17th inter-
national symposium on formal methods, Limerick, Ireland, June
20-24, 2011. Proceedings, Lecture Notes in Computer Science,
vol. 6664, pp 12–26. Springer. https://doi.org/10.1007/978-3-642-
21437-0_4

7. Damm W, Finkbeiner B (2014) Automatic compositional synthe-
sis of distributed systems. In: Jones CB, Pihlajasaari P, Sun J (eds)
FM 2014: formal methods - 19th international symposium, Singa-
pore, May 12-16, 2014. Proceedings, Lecture Notes in Computer
Science, vol. 8442, pp 179–193. Springer. https://doi.org/10.1007/
978-3-319-06410-9_13

8. de Roever WP, Langmaack H, Pnueli A (eds) (1998) Compo-
sitionality: the significant difference, international symposium,
COMPOS’97, Bad Malente, Germany, September 8-12, 1997.
Revised Lectures, Lecture Notes in Computer Science, vol. 1536.
Springer. https://doi.org/10.1007/3-540-49213-5

9. Faymonville P, Finkbeiner B, Rabe MN, Tentrup L (2017) Encod-
ings of bounded synthesis. In: LegayA,Margaria T (eds) Tools and

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-3-662-46681-0_49
https://doi.org/10.1007/978-3-662-46681-0_50
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/s00236-016-0273-2
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-540-71209-1_21
https://doi.org/10.1007/978-3-642-21437-0_4
https://doi.org/10.1007/978-3-642-21437-0_4
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/978-3-319-06410-9_13
https://doi.org/10.1007/3-540-49213-5

Compositional synthesis of modular systems 469

algorithms for the construction and analysis of systems - 23rd inter-
national conference, TACAS 2017, held as part of the European
joint conferences on theory and practice of software, ETAPS 2017,
Uppsala, Sweden, April 22-29, 2017, Proceedings, Part I, Lecture
Notes in Computer Science, vol. 10205, pp 354–370. https://doi.
org/10.1007/978-3-662-54577-5_20

10. Faymonville P, Finkbeiner B, Tentrup L (2017) BoSy: an exper-
imentation framework for bounded synthesis. In: Majumdar R,
Kuncak V (eds) Computer aided verification - 29th international
conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II, Lecture Notes in Computer Science, vol.
10427, pp 325–332. Springer. https://doi.org/10.1007/978-3-319-
63390-9_17

11. Filiot E, Jin N, Raskin J (2010) Compositional algorithms for
LTL synthesis. In: Bouajjani A, Chin W(eds) Automated technol-
ogy for verification and analysis - 8th international symposium,
ATVA2010, Singapore, September 21-24, 2010. Proceedings, Lec-
ture Notes in Computer Science, vol. 6252, pp 112–127. Springer.
https://doi.org/10.1007/978-3-642-15643-4_10

12. Finkbeiner B, Geier G, Passing N (2021) Specification decompo-
sition for reactive synthesis. In: Dutle A, Moscato MM, Titolo L,
Muñoz CA, Perez I (eds) NASA formal methods - 13th interna-
tional symposium, NFM 2021, virtual event, May 24-28, 2021,
Proceedings, Lecture Notes in Computer Science, vol. 12673, pp
113–130. Springer. https://doi.org/10.1007/978-3-030-76384-8_8

13. Finkbeiner B, Passing N (2020) Dependency-based compositional
synthesis. In: Hung DV, Sokolsky O (eds) Automated technology
for verification and analysis - 18th international symposium, ATVA
2020, Hanoi, Vietnam, October 19-23, 2020, Proceedings, Lecture
Notes in Computer Science, vol. 12302, pp 447–463. Springer.
https://doi.org/10.1007/978-3-030-59152-6_25

14. Finkbeiner B, Passing N (2021) Compositional synthesis of modu-
lar systems. In: Automated technology for verification and analysis
- 19th international symposium, ATVA 2021, Gold Coast, Aus-
tralia, October 18-22, 2021

15. Finkbeiner B, Passing N (2021) Compositional synthesis of mod-
ular systems (Full Version). CoRR arXiv: abs/2106.14783

16. Finkbeiner B, Schewe S (2013) Bounded synthesis. STTT pp 519–
539

17. Jacobs S,BloemR,ColangeM, Faymonville P, FinkbeinerB,Khal-
imov A, Klein F, Luttenberger M, Meyer PJ, Michaud T, Sakr M,
Sickert S, Tentrup L, Walker A (2019) The 5th reactive synthe-
sis competition (SYNTCOMP 2018): benchmarks, participants &
results. CoRR arXiv:abs/1904.07736

18. Kugler H, Segall I (2009) Compositional synthesis of reactive sys-
tems from live sequence chart specifications. In: Kowalewski S,
Philippou A (eds) Tools and algorithms for the construction and
analysis of systems, 15th international conference, TACAS 2009,
held as part of the joint European conferences on theory and prac-
tice of software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, Lecture Notes in Computer Science, vol. 5505, pp
77–91. Springer. https://doi.org/10.1007/978-3-642-00768-2_9

19. Kupferman O, Piterman N, Vardi MY (2006) Safraless compo-
sitional synthesis. In: Ball T, Jones RB (eds) Computer aided
verification, 18th international conference,CAV2006, Seattle,WA,
USA, August 17-20, 2006, Proceedings, Lecture Notes in Com-
puter Science, vol. 4144, pp 31–44. Springer. https://doi.org/10.
1007/11817963_6

20. Kupferman O, Vardi MY (2005) Safraless decision procedures.
In: 46th annual IEEE symposium on foundations of computer sci-
ence (FOCS 2005), 23-25 October 2005, Pittsburgh, PA, USA,
Proceedings, pp 531–542. IEEEComputer Society. https://doi.org/
10.1109/SFCS.2005.66

21. Majumdar R, Mallik K, Schmuck A, Zufferey D (2020) Assume-
guarantee distributed synthesis. IEEE Trans Comput Aided Des
Integr Circuits Syst. 39(11):3215–3226. https://doi.org/10.1109/
TCAD.2020.3012641

22. Pnueli A (1977) The temporal logic of programs. In: 18th annual
symposium on foundations of computer science, Providence,
Rhode Island, USA, 31 October - 1 November 1977, pp 46–57.
IEEE Computer Society. https://doi.org/10.1109/SFCS.1977.32

23. Safra S (1988) On the complexity of omega-automata. In: 29th
annual symposium on foundations of computer science, White
Plains, New York, USA, 24-26 October 1988, pp. 319–327. IEEE
Computer Society. https://doi.org/10.1109/SFCS.1988.21948

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-662-54577-5_20
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-319-63390-9_17
https://doi.org/10.1007/978-3-642-15643-4_10
https://doi.org/10.1007/978-3-030-76384-8_8
https://doi.org/10.1007/978-3-030-59152-6_25
http://arxiv.org/abs/2106.14783
http://arxiv.org/abs/1904.07736
https://doi.org/10.1007/978-3-642-00768-2_9
https://doi.org/10.1007/11817963_6
https://doi.org/10.1007/11817963_6
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1109/SFCS.2005.66
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/TCAD.2020.3012641
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1988.21948

	Compositional synthesis of modular systems
	Abstract
	1 Introduction
	2 Running example
	3 Preliminaries
	4 Compositional synthesis with certificates
	5 Synthesis with deterministic certificates
	6 Computing relevant processes
	7 Synthesizing certificates
	8 Adding nondeterminism to GTS
	9 Experimental results
	10 Conclusion
	References

