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Abstract
Purpose  Increasing access to marker-less technology has enabled practitioners to obtain kinematic data more quickly. How-
ever, the validation of many of these methods is lacking. Therefore, the validity of pre-trained neural networks was explored 
in this study compared to reflective marker tracking from sagittal plane cycling motion.
Methods  Twenty-six cyclists were assessed during stationary cycling at self-selected cadence and moderate intensity exer-
cise. Standard video from their sagittal plane was obtained to extract joint kinematics. Hip, knee, and ankle angles were 
calculated from marker digitisation and from two deep learning-based approaches (TransPose and MediaPipe).
Results  Typical errors ranged between 1 and 10° for TransPose and 3–9° for MediaPipe. Correlations between joint angles 
calculated from TransPose and marker digitalization were stronger (0.47–0.98) than those from MediaPipe (0.25–0.96).
Conclusion  TransPose seemed to perform better than MediaPipe but both methods presented poor performance when tracking 
the foot and ankle. This seems to be associated with the low frame rate and image resolution when using standard video mode.

Keywords  Biomechanics · Technology · Quantitative study · Kinesiology

Introduction

Bicycles have been used as a form of active transportation 
due to the known benefits in terms of health and reduced 
environmental impact than motor vehicles [1]. In addi-
tion, cycling is a very popular sport with strong history of 
scientific engagement to improve performance and reduce 
the risk of injuries [2]. Among the most used methods to 
alter movement order to reduce risk of injuries and improve 
performance is video analysis [3]. Modern systems enable 
three-dimensional assessment of human movement but are 
limited to laboratorial environment or are prohibitively 
expensive, which limits their use in most clinics and recrea-
tional sports settings. Some systems utilise wearable sensors 
(e.g. LEOMO®) or a dual-camera setting which integrates 

data in the three-dimensional space (i.e. RETUL®). How-
ever, RETUL® does not disclose the cost of the system if you 
do not take part of their training module and extracts pre-
determined variables that have not been based on scientific 
data. The LEOMO® has shown to produce moderate levels 
of agreement (ICC = 0.52–0.71) for some outcomes [4], 
which are also not supported by robust scientific evidence.

Traditionally, analysis of movement of cyclists has been 
undertaken on a stationary ergometer/trainer using two-
dimensional (2D) video footage [5–7]. Markers are attached 
to the cyclist’s body and should be visible in the video frame 
to enable tracking in real time or after the video is recorded. 
This method enables clinicians and coaches to explore 
sensitivity of joint angles to changes in exercise intensity, 
pedalling cadence, fatigue, and body position on the bicy-
cle [8–10]. However, tracking markers is time consuming 
and depends on skill level of the practitioner palpating the 
appropriate bony landmarks [11]. This element limits the 
large scale use of quantitative movement analysis to clinical 
settings.

The rapid development of trained neural networks to iden-
tify key human joint locations has provided an opportunity 
to streamline the analysis of videos (e.g. marker tracking). 
Neural network approaches to 2D human pose estimation are 
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based around training a large model with input/output pairs, 
where the input is an RGB image and the output is a com-
plete set of 2D joint locations. After training is complete, the 
model approximates a function for mapping images to joint 
locations. Even though studies have explored the validity of 
marker-less methods in determining joint angles [12, 13], 
only two studies explored the validity of pre-trained neural 
networks for cycling movement [14, 15]. Data from these 
studies suggest that a popular convolutional neural network 
(CNN) method for pose estimation proposed by Microsoft 
Research Asia [16] results in errors between 3 and 12° whilst 
OpenPose [17] led to errors of 4–22° in relation to a crite-
rion measure [14, 15]. These errors would be potentially 
larger than the range proposed to determine body position 
on the bicycle [i.e. 10 deg. [18, 19]. In addition, data from 
Bini et al. [15] demonstrated that utilising a statistical para-
metric mapping method (i.e. SPM; [20]) provides a temporal 
comparison between the marker-less and a marked dataset 
to fully determine sections of the crank cycle where a given 
method is less accurate. This method should be implemented 
when assessing the validity of other marker-less methods.

With this in mind, this study examined the validity of 
two neural networks pre-trained to track key human joint 
locations in images (i.e. TransPose and MediaPipe) with 
potential ability to improve tracking of body segments. 
TransPose-R-A4 [21] was selected as a model representa-
tive of state-of-the-art accuracy in 2D human pose estima-
tion. This model architecture incorporates a ResNet back-
bone [22] with a Transformer encoder [23] and requires a 
computer equipped with a GPU device for timely inference. 
MediaPipe BlazePose GHUM Heavy [24] was selected as a 
model representative of state-of-the-art efficiency in human 
pose estimation, since its optimised architecture enables 
inference in a range of computational environments includ-
ing on smartphones and within web browsers. For validation 
of joint angles calculated using data from these networks, 
tracked reflective markers (reference) were utilised with the 
hypothesis that both networks would provide acceptable 
agreement in relation to the reference data.

Materials and methods

Twenty-six cyclists (four females and twenty-two males) 
with 37 ± 10  years of age, 178 ± 9  cm of stature and 
80 ± 11  kg of body mass ranging from recreational to 
competitive were assessed in a single session using their 
own bicycles. Before data collection, all cyclists signed 
an informed consent to participate in the study, which 
was approved by the University Human Ethics Committee 
(AUTEC09/178). The sample size was calculated utilising 
a correlational model aiming for an effect size of ρ > 0.55 
(large effect) with α < 0.05 and power of 0.80 using G*Power 

statistical package [25]. We based our calculations on the 
test–retest reliability of joint angles in cycling indicating 
that a coefficient of determination of 0.30 (i.e. effect size of 
0.55) would be detectable when 21 samples are utilised [26]. 
The rationale for adding five cyclists was to ensure that any 
issues with processing video files would not result in less 
than 21 cyclists with all data available for statistical analysis.

After measurements of stature and body mass, cyclists 
performed 2 min of cycling on their own bicycles attached 
to a cycle trainer (Kingcycle, Buckinghamshire, UK) at self-
selected cadence using their cycling shoes and cleats. Par-
ticipants were instructed to sustain an intensity equivalent to 
long duration flat cycling. A digital camera (Samsung ES15, 
Seoul, South Korea) positioned at the height of their saddle, 
4-m away from the bicycles recorded movement in the sagit-
tal plane. Reflective markers were positioned at the greater 
trochanter, lateral femoral epicondyle, lateral malleolus, and 
pedal spindle (Fig. 1). Videos were recorded for 20 s at the 
end of the 2 min of exercise at 30 fps (640 × 480 of frame 
resolution) using automated quick shutter and anti-shake set-
tings to minimise blur. The option for standard video rather 
than high speed was selected  to simulate specifications of 
most smartphone video cameras, which are widely used in 
clinics and sports settings.

Fig. 1   Illustration of the kinematic model used to calculate hip (H), 
knee (θK) and ankle (θA) angles. Inset illustrates model used for 
TransPose (TP) and MediaPipe (MP)
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Comparison between the TransPose and the MediaPipe 
methods in relation to reference data (marker tracking) was 
performed. Pre-trained model weights were obtained from 
each method’s respective public code release and incorpo-
rated into a customised evaluation framework. In this con-
text, the term “pre-trained model weights” refers to the fact 
that the neural network was previously trained on a separate 
dataset (as opposed to training the models on our cycling 
data). Since the existing TransPose model weights were not 
trained with detailed foot keypoints, this model was further 
fine-tuned using the Human Foot Keypoint Dataset [17]. 
The cycling video files were then imported to a customised 
programme which first located the cyclist using an object 
detection model (YOLOv5) and then inferred joint centres. 
An object detection model predicts bounding boxes for 
objects in an image (these are also referred to as “detec-
tions”). Whereas a pose estimation model maps an image to 
joint keypoints, an object detection model maps an image to 
object bounding boxes. In the context of this work, we use an 
object detector to locate the cyclist within the broader image. 
Separate fine-tuning and detection steps were not necessary 
for the MediaPipe model. Predicted joint centres (i.e. key-
points) were obtained from both methods and utilised to 
calculate hip, knee and ankle angles, as shown in Fig. 1. 

Keypoints were gap filled using a median filter and a mov-
ing average was utilised to reduce noise from the automated 
digitisation prior to angular calculations.

As a criterion measure, hip, knee and ankle angles were 
also calculated using reflective markers digitised from each 
frame. Semi-automatic digitisation was performed using 
a motion analysis software (Skill Spector, Video4Coach, 
Denmark). The median filter and moving average were 
also applied to the digitised joint centres to reduce filtering 
effects to comparisons with the marker-less methods. An 
offset was applied to ankle angles from the marker-less out-
puts because these angles were measured differently to the 
criterion method, where the ankle was determined using the 
pedal axle (see Fig. 1). Data from the two methods and the 
criterion were sectioned into ten consecutive crank cycles, 
with the mean temporal series from each cyclist obtained 
for further analysis.

Comparison of temporal patterns were performed 
between methods using statistical parametric analyses within 
spm1d statistical package (www.​spm1d.​org), in MATLAB. 
Paired samples t-tests were conducted to compare each 
marker-less method in relation to the reference data. Typical 
errors were calculated for the whole crank cycle for com-
parisons between methods as the ratio between the standard 

Fig. 2   Top panel: Hip angle temporal comparison between criterion 
(Tracked—blue), TransPose (TP—red). Bottom panel presents SPM 
1-d statistics. Solid lines in the top panel are the mean values whilst 

dashed areas represent standard deviations. Solid lines in the bottom 
panel present the t statistic outputs whilst the dashed red lines show 
the critical t value for significant differences (colour figure online)

http://www.spm1d.org
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Fig. 3   Top panel: Knee angle temporal comparison between criterion 
(Tracked—blue), TransPose (TP—red). Bottom panel presents SPM 
1-d statistics. Solid lines in the top panel are the mean values whilst 

dashed areas represent standard deviations. Solid lines in the bottom 
panel present the t statistic outputs whilst the dashed red lines show 
the critical t value for significant differences (colour figure online)

Fig. 4   Top panel: Ankle angle 
temporal comparison between 
criterion (Tracked—blue), 
TransPose (TP—red). Bot-
tom panel presents SPM 1-d 
statistics. Solid lines in the top 
panel are the mean values whilst 
dashed areas represent standard 
deviations. Solid lines in the 
bottom panel present the t statis-
tic outputs whilst the dashed 
red lines show the critical t 
value for significant differences 
(colour figure online)
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deviation of the differences by the square root of ‘2’ [27]. 
Correlation coefficients (with 95% confidence intervals) 
were also calculated between waveforms in MATLAB. R 
values were ranked as poor (0–0.5), moderate (0.5–0.75), 
good (0.75–0.90), and excellent (> 0.9) [28].

Results

Correlation coefficients for hip angles between the Trans-
Pose method and the reference were 0.97 [excellent, 
0.97–0.98, p < 0.01]. For knee angles, correlation coef-
ficients between the TransPose method and the reference 
were 0.98 [excellent, 0.98–0.99, p < 0.01]. For the ankle 
angle, correlation coefficients between the TransPose 
method and the reference were 0.47 [poor, 0.46–0.49, 
p < 0.01]. For the hip angle, significantly less flexion was 
observed for TransPose than the reference between 90 and 
129° and more flexion was observed between 304 and 331° 
of the crank cycle (Fig. 2). Significantly less flexion was 
also observed for TransPose compared to the criterion 
between 50 and 110° of the crank cycle (Fig. 3). For the 

ankle, significantly more plantar flexion was observed for 
TransPose between 44 and 59° of the crank cycle (Fig. 4).

Correlation coefficients for hip angles between the 
MediaPipe method and the reference were 0.91 [excel-
lent, 0.90–0.91, p < 0.01]. For knee angles, correlation 
coefficients between the MediaPipe method and the refer-
ence were 0.96 [excellent, 0.95–0.96, p < 0.01]. For the 
ankle angle, correlation coefficients between the Media-
Pipe method and the reference were 0.25 [poor, 0.23–0.27, 
p < 0.01]. For the hip angle, significantly less flexion was 
observed for MediaPipe than the reference between 90 and 
129° and more flexion was observed between 304 and 331° 
of the crank cycle (Fig. 5). Significantly more flexion was 
observed for MediaPipe between 0 and 36° and between 
175 and 360° of the crank cycle (Fig. 5). The knee was 
also more flexed for MediaPipe between 147 and 272° of 
the crank cycle (Fig. 6). For the ankle, significantly more 
plantar flexion was observed for MediaPipe throughout the 
crank cycle (Fig. 7).

Typical errors are presented in Figs. 8 (TransPose) and 
Figs. 9 (MediaPipe). For the hip angle differences ranged 
between 1 and 3° for the TransPose method in relation 

Fig. 5   Top panel: Hip angle temporal comparison between criterion 
(Tracked—blue), MediaPipe (TP—red). Bottom panel presents SPM 
1-d statistics. Solid lines in the top panel are the mean values whilst 

dashed areas represent standard deviations. Solid lines in the bottom 
panel present the t statistic outputs whilst the dashed red lines show 
the critical t value for significant differences (colour figure online)
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to the criterion, whilst the MediaPipe presented errors of 
3–6°. For the knee angle, typical errors ranged between 2 
and 3° for the TransPose method and 3–6° for the Media-
Pipe method, as illustrated in Fig. 5. For the ankle angle, 
typical errors between the TransPose and the criterion 
ranged between 3 and 10°, whilst the MediaPipe method 
differed between 5 and 9°.

Discussion

This study demonstrated that TransPose presented stronger 
agreement and lower difference to the reference method 
than the MediaPipe method, which partially supports our 
hypothesis. Major differences between both marker-less 
methods and the reference data were at the ankle joint. 
This information is important because, MediaPipe is gain-
ing popularity as a result of its versatility, which enables 
deployment in smartphones and web browsers. However, 
the magnitude of errors from MediaPipe should be taken 
into consideration depending on the application.

In prior studies involving walking gait, marker-less meth-
ods presented differences between < 1° [12] and 6° [13], 
which is comparable to findings from the current study for 
the hip and knee joints. For cycling, Bini et al. observed 
3–12° of difference between the MSRA and the reference 
data [14], which suggests that TransPose and MediaPipe 
may perform better than the MSRA. It is also important to 
highlight that these methods seem to perform well when 
tracking the hip and knee joints but struggled to track foot 
markers. This is why both TransPose and MediaPipe pro-
duced poor agreement in determining the ankle angle. Visual 
inspection of the videos generated by these methods suggest 
that this was potentially due to increased blur at the foot 
from lower shutter speed, which challenged the marker-less 
methods in accurately detecting the toes. An increased shut-
ter speed and higher quality image sensor should improve 
the accuracy of these methods in future application.

There are multiple factors that influence joint angles 
during cycling, including exercise intensity, cadence, 
fatigue, etc. Prior research observed that the ankle range 
of motion increases by ~ 4° and mean ankle angle reduces 
by ~ 3° when intensity is increased during cycling [29], 

Fig. 6   Top panel: Knee angle temporal comparison between criterion 
(Tracked—blue), MediaPipe (TP—red). Bottom panel presents SPM 
1-d statistics. Solid lines in the top panel are the mean values whilst 

dashed areas represent standard deviations. Solid lines in the bottom 
panel present the t statistic outputs whilst the dashed red lines show 
the critical t value for significant differences (colour figure online)
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Fig. 7   Top panel: Ankle angle temporal comparison between crite-
rion (Tracked—blue), MediaPipe (TP—red). Bottom panel presents 
SPM 1-d statistics. Solid lines in the top panel are the mean values 
whilst dashed areas represent standard deviations. Solid lines in the 

bottom panel present the t statistic outputs whilst the dashed red lines 
show the critical t value for significant differences (colour figure 
online)

Fig. 8   Typical errors for the hip (HA), knee (KA) and ankle (AA) angles through the crank cycle between TransPose (TP) and the reference data 
(Tracked)
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which suggests that none of the marker-less methods tested 
in the current study would be sensitive to detect these 
changes. Another application of joint kinematics is as an 
input in musculoskeletal modelling. Simulating changes in 
knee angle of 3–6° in terms of the moment-arm of the vas-
tus lateralis in a public available model [30] would result 
in errors of 0.14–0.30 cm, which could be deemed small. 
Therefore, it seems possible that both marker-less meth-
ods could offer an open-source alternative to subscribed 
marker-less software, but further research is required to 
fully determine the magnitude of these errors in terms of 
internal loads. There are potential implications for bicycle 
fitting because most studies recommend a range of knee 
angles to optimise saddle position (e.g. 30–40 deg.; [31]), 
which should be detectable by TransPose and MediaPipe. 
In addition, knee forces do not seem to be sensitive to 
changes in knee angles of ~ 10–14° [32], which suggests 
that large changes in cycling kinematics could be detect-
able particularly by both the  methods.

The option for using pre-trained neural networks required 
amendments to TransPose as this was not initially prepared 
to identify foot keypoints. In addition, neither of the marker-
less methods have been extensively exposed to cycling 
images or poses taken purely from the sagittal plane [33]. It 
is probable that fine-tuning TransPose and MediaPipe with 
sagittal plane cycling images would further improve their 
accuracy, particularly when tracking the foot.

The use of two-dimensional video analysis limited data 
from this study due to possible parallax errors. The choice 
for using a two-dimensional model was based on a larger 
use of this method in most clinical settings and bike fitting 
practices, due to the low cost of video recording devices. 
Even though data from walking gait demonstrated good 
agreement between two-dimensional marker-less vs. three-
dimensional marker [34], it is important to assume that 
there would be ~ 2.2–10° of error in relation to the true 
movement of cyclists detected using three-dimensional 
data [35, 36]. Our choice for using standard frame rate 
(i.e. 30 fps) and standard video resolution (640 × 480 pix-
els) was also in line with the fact that most commercial 
cameras will be limited in terms of frame rate. Results may 
improve if frame rate and image resolution are higher than 
the currently used in this study.

Conclusions

In summary, the TransPose method presented stronger 
agreement in determining joint angles compared to a crite-
rion method than the MediaPipe method. Poor correlation 
though was observed for the ankle joint for both marker-
less methods, which limits their accuracy in tracking this 
joint.

Fig. 9   Typical errors for the hip (HA), knee (KA) and ankle (AA) angles through the crank cycle between MediaPipe (MP) and the reference 
data (Tracked)



135Sport Sciences for Health (2024) 20:127–136	

1 3

Acknowledgements  The authors thank all cyclists who volunteered 
to be part of this study.

Author contributions  Rodrigo Bini was involved in the data collection, 
analysis and writing of the paper. Vitor Nascimento and Aiden Nibali 
contributed during data analysis and with edits to the paper. All authurs 
reviewed and approved the paper prior to submission.

Funding  Open Access funding enabled and organized by CAUL and 
its Member Institutions.

Data availability  Data will be provided upon request.

Declarations 

Conflict of interest  The authors declare no conflict of interest with the 
content of this paper.

IRB approval  AUTEC09/178.

Ethical approval  All methods have complied with the Helsinki dec-
laration

Human and animal rights  This study’s methods have been approved 
by the local ethics committee (AUTEC09/178).

Informed consent  All participants provided written consent to take 
part in this study.

Open Access   This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Sommar JN, Johansson C, Lövenheim B, Schantz P, Markstedt 
A, Strömgren M et al (2021) Overall health impacts of a potential 
increase in cycle commuting in Stockholm Sweden. Scand J Pub-
lic Health. 50(5):552–564. https://​doi.​org/​10.​1177/​14034​94821​
10100​24

	 2.	 Atkinson G, Davison R, Jeukendrup A, Passfield L (2003) Science 
and cycling: current knowledge and future directions for research. 
J Sports Sci 21(9):767–787

	 3.	 Grassi A, Smiley SP, Di Sarsina TR, Signorelli C, Muccioli 
GMM, Bondi A et al (2017) Mechanisms and situations of 
anterior cruciate ligament injuries in professional male soccer 
players: a YouTube-based video analysis. Eur J Orthop Surg 
Traumatol 27(7):967–981

	 4.	 Plaza-Bravo JM, Mateo-March M, Sanchis-Sanchis R, Perez-
Soriano P, Zabala M, Encarnacion-Martinez A (2022) Validity 
and reliability of the leomo motion-tracking device based on 
inertial measurement unit with an optoelectronic camera system 
for cycling pedaling evaluation. Int J Environ Res Public Health. 
https://​doi.​org/​10.​3390/​ijerp​h1914​8375

	 5.	 García-López J, del Blanco PA (2017) Kinematic analysis of 
bicycle pedalling using 2d and 3d motion capture systems. ISBS 
Proc Arch 35(1):125

	 6.	 Bini RR, Jacques TC, Lanferdini FJ, Vaz MA (2015) Com-
parison of kinetics, kinematics, and electromyography during 
single-leg assisted and unassisted cycling. J Strength Cond 
Res 29(6):1534–1541. https://​doi.​org/​10.​1519/​jsc.​00000​00000​
000905

	 7.	 Fonda B, Sarabon N, Li FX (2014) Validity and reliability of 
differentkinematics methods used for bike fitting. J Sports Sci. 
32(10):940–946. https://​doi.​org/​10.​1080/​02640​414.​2013.​868919

	 8.	 Bini R, Priego-Quesada J (2022) Methods to determine saddle 
height in cycling and implications of changes in saddle height 
in performance and injury risk: a systematic review. J Sports Sci 
40(4):386–400. https://​doi.​org/​10.​1080/​02640​414.​2021.​19947​27

	 9.	 Bini RR, Senger D, Lanferdini FJ, Lopes AL (2012) Joint kin-
ematics assessment during cycling incremental test to exhaus-
tion. Isokinet Exerc Sci 20(1):99–105. https://​doi.​org/​10.​3233/​
IES-​2012-​0447

	10.	 Bini RR, Rossato M, Diefenthaeler F, Carpes FP, Dos Reis DC, 
Moro ARP (2010) Pedaling cadence effects on joint mechanical 
work during cycling. Isokinet Exerc Sci 18(1):7–13. https://​doi.​
org/​10.​3233/​IES-​2010-​0361

	11.	 Szczerbik E, Kalinowska M (2011) The influence of knee marker 
placement error on evaluation of gait kinematic parameters. Acta 
Bioeng Biomech 13(3):43–46

	12.	 Ong A, Harris IS, Hamill J (2017) The efficacy of a video-based 
marker-less tracking system for gait analysis. Comput Methods 
Biomech Biomed Engin 20(10):1089–1095. https://​doi.​org/​10.​
1080/​10255​842.​2017.​13347​68

	13.	 Kanko RM, Laende EK, Davis EM, Selbie WS, Deluzio KJ (2021) 
Concurrent assessment of gait kinematics using marker-based and 
markerless motion capture. J Biomech 127:110665. https://​doi.​
org/​10.​1016/j.​jbiom​ech.​2021.​110665

	14.	 Bini R, Serrancolí G, Santiago PRP, Moura F (2021). In: Archive 
IP (ed) Assessment of a markless motion tracking method to 
determine body position on the bike. ISBS, 2021, Canberra

	15.	 Bini RR, Serrancoli G, Santiago PRP, Pinto A, Moura F (2023) 
Criterion validity of neural networks to assess lower limb motion 
during cycling. J Sports Sci 41(1):36–44

	16.	 Xiao B, Wu H, Wei Y (2018) Simple baselines for human pose 
estimation and tracking. In: Ferrari V, Hebert M, Sminchisescu 
C, Weiss Y (eds) Computer vision—ECCV 2018. Springer Inter-
national Publishing, Cham, pp 472–487

	17.	 Cao Z, Hidalgo G, Simon T, Wei SE, Sheikh Y (2021) Open-
Pose: Realtime multi-person 2D pose estimation using part affinity 
fields. IEEE Transact Pattern Anal Mach Intell. 43(1):172–186. 
https://​doi.​org/​10.​1109/​TPAMI.​2019.​29292​57

	18.	 Millour G, Duc S, Puel F, Bertucci W (2019) Comparison of static 
and dynamic methods based on knee kinematics to determineopti-
mal saddle height in cycling. Acta Bioeng Biomech 21(4):93–99

	19.	 Swart J, Holliday W (2019) Cycling biomechanics optimiza-
tion-the (R) evolution of bicycle fitting. Curr Sports Med Rep 
18(12):490–496. https://​doi.​org/​10.​1249/​JSR.​00000​00000​000665

	20.	 Pataky TC, Robinson MA, Vanrenterghem J (2013) Vector field 
statistical analysis of kinematic and force trajectories. J Biomech 
46(14):2394–2401. https://​doi.​org/​10.​1016/j.​jbiom​ech.​2013.​07.​
031

	21.	 Yang S, Quan Z, Nie M, Yang W. Transpose: Keypoint localiza-
tion via transformer. Proceedings of the IEEE/CVF International 
Conference on Computer Vision2021. p. 11802–12

	22.	 He K, Zhang X, Ren S, Sun J. Deep residual learning for image 
recognition. Proceedings of the IEEE conference on computer 
vision and pattern recognition2016. p. 770–8

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/14034948211010024
https://doi.org/10.1177/14034948211010024
https://doi.org/10.3390/ijerph19148375
https://doi.org/10.1519/jsc.0000000000000905
https://doi.org/10.1519/jsc.0000000000000905
https://doi.org/10.1080/02640414.2013.868919
https://doi.org/10.1080/02640414.2021.1994727
https://doi.org/10.3233/IES-2012-0447
https://doi.org/10.3233/IES-2012-0447
https://doi.org/10.3233/IES-2010-0361
https://doi.org/10.3233/IES-2010-0361
https://doi.org/10.1080/10255842.2017.1334768
https://doi.org/10.1080/10255842.2017.1334768
https://doi.org/10.1016/j.jbiomech.2021.110665
https://doi.org/10.1016/j.jbiomech.2021.110665
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1249/JSR.0000000000000665
https://doi.org/10.1016/j.jbiomech.2013.07.031
https://doi.org/10.1016/j.jbiomech.2013.07.031


136	 Sport Sciences for Health (2024) 20:127–136

1 3

	23.	 Parmar N, Vaswani A, Uszkoreit J, Kaiser L, Shazeer N, Ku 
A, et al. 2018 Image transformer. International conference on 
machine learning: PMLR. p. 4055–64

	24.	 Lugaresi C, Tang J, Nash H, McClanahan C, Uboweja E, Hays 
M et al (2019) Mediapipe: A framework for building perception 
pipelines. https://​doi.​org/​10.​48550/​arXiv.​1906.​08172

	25.	 Faul F, Erdfelder E, Lang A-G, Buchner A (2007) G*Power 3: a 
flexible statistical power analysis program for the social, behavio-
ral, and biomedical sciences. Behav Res Methods 39(2):175–191. 
https://​doi.​org/​10.​3758/​BF031​93146

	26.	 Burnie L, Barratt P, Davids K, Worsfold P, Wheat J (2020) Bio-
mechanical measures of short-term maximal cycling on an ergom-
eter: a test-retest study. Sports Biomech. https://​doi.​org/​10.​1080/​
14763​141.​2020.​17739​16

	27.	 Hopkins WG (2000) Measures of reliability in sports medicine 
and science. Sports Med 30(1):1–15. https://​doi.​org/​10.​2165/​
00007​256-​20003​0010-​00001

	28.	 Dancey C, Reidy J (2004) Statistics without maths for psychology 
with psychology dictionary. Pearson Education, Limited, London

	29.	 Bini RR, Diefenthaeler F (2010) Kinetics and kinematics analysis 
of incremental cycling to exhaustion. Sports Biomech 9(4):223–
235. https://​doi.​org/​10.​1080/​14763​141.​2010.​540672

	30.	 Catelli DS, Wesseling M, Jonkers I, Lamontagne M (2019) A 
musculoskeletal model customized for squatting task. Comput 
Methods Biomech Biomed Engin 22(1):21–24. https://​doi.​org/​
10.​1080/​10255​842.​2018.​15233​96

	31.	 Bini R, Priego-Quesada J (2022) Methods to determine saddle 
height in cycling and implications of changes in saddle height in 

performance and injury risk: a systematic review. J Sports Sci. 
40(4):386–400.https://​doi.​org/​10.​1080/​02640​414.​2021.​19947​27

	32.	 Bini RR, Hume PA. 2014 Effects of saddle height on knee forces 
of recreational cyclists with and without knee pain. International 
SportMed Journal. 15(2):188–99. https://​www.​resea​rchga​te.​net/​
publi​cation/​26358​7378_​EFFEC​TS_​OF_​SADDLE_​HEIGHT_​
ON_​KNEE_​FORCES_​OF_​RECRE​ATION​AL_​CYCLI​STS_​
WITH_​AND_​WITHO​UT_​KNEE_​PAIN

	33.	 Bazarevsky V, Grishchenko I, Raveendran K, Zhu T, Zhang F, 
Grundmann M. 2020 BlazePose: On-device real-time body pose 
tracking. arXiv. arXiv preprint arXiv:200610204

	34.	 D’Antonio E, Taborri J, Mileti I, Rossi S, Patané F (2021) Valida-
tion of a 3D markerless system for gait analysis based on Open-
Pose and two RGB Webcams. IEEE Sens J 21(15):17064–17075. 
https://​doi.​org/​10.​1109/​JSEN.​2021.​30811​88

	35.	 Fonda B, Sarabon N, Li F-X (2014) Validity and reliability of 
different kinematics methods used for bike fitting. J Sports Sci 
32(10):940–946. https://​doi.​org/​10.​1080/​02640​414.​2013.​868919

	36.	 Umberger BR, Martin PE. 2001 Testing the planar assumption 
during ergometer cycling. Journal of Applied Biomechanics. 
17(1):55–62. http://​journ​als.​human​kinet​ics.​com/​jab

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.48550/arXiv.1906.08172
https://doi.org/10.3758/BF03193146
https://doi.org/10.1080/14763141.2020.1773916
https://doi.org/10.1080/14763141.2020.1773916
https://doi.org/10.2165/00007256-200030010-00001
https://doi.org/10.2165/00007256-200030010-00001
https://doi.org/10.1080/14763141.2010.540672
https://doi.org/10.1080/10255842.2018.1523396
https://doi.org/10.1080/10255842.2018.1523396
https://doi.org/10.1080/02640414.2021.1994727
https://www.researchgate.net/publication/263587378_EFFECTS_OF_SADDLE_HEIGHT_ON_KNEE_FORCES_OF_RECREATIONAL_CYCLISTS_WITH_AND_WITHOUT_KNEE_PAIN
https://www.researchgate.net/publication/263587378_EFFECTS_OF_SADDLE_HEIGHT_ON_KNEE_FORCES_OF_RECREATIONAL_CYCLISTS_WITH_AND_WITHOUT_KNEE_PAIN
https://www.researchgate.net/publication/263587378_EFFECTS_OF_SADDLE_HEIGHT_ON_KNEE_FORCES_OF_RECREATIONAL_CYCLISTS_WITH_AND_WITHOUT_KNEE_PAIN
https://www.researchgate.net/publication/263587378_EFFECTS_OF_SADDLE_HEIGHT_ON_KNEE_FORCES_OF_RECREATIONAL_CYCLISTS_WITH_AND_WITHOUT_KNEE_PAIN
https://doi.org/10.1109/JSEN.2021.3081188
https://doi.org/10.1080/02640414.2013.868919
http://journals.humankinetics.com/jab

	Validity of neural networks in determining lower limb kinematics in stationary cycling
	Abstract
	Purpose 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Results
	Discussion
	Conclusions
	Acknowledgements 
	References




