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Abstract
Purpose By analyzing external workloads with machine learning models (ML), it is now possible to predict injuries, but 
with a moderate accuracy. The increment of the prediction ability is nowadays mandatory to reduce the high number of false 
positives. The aim of this study was to investigate if players’ blood sample profiles could increase the predictive ability of 
the models trained only on external training workloads.
Method Eighteen elite soccer players competing in Italian league (Serie B) during the seasons 2017/2018 and 2018/2019 
took part in this study. Players’ blood samples parameters (i.e., Hematocrit, Hemoglobin, number of red blood cells, ferritin, 
and sideremia) were recorded through the two soccer seasons to group them into two main groups using a non-supervised 
ML algorithm (k-means). Additionally to external workloads data recorded every training or match day using a GPS device 
(K-GPS 10 Hz, K-Sport International, Italy), this grouping was used as a predictor for injury risk. The goodness of ML 
models trained were tested to assess the influence of blood sample profile to injury prediction.
Results Hematocrit, Hemoglobin, number of red blood cells, testosterone, and ferritin were the most important features that 
allowed to profile players and to analyze the response to external workloads for each type of player profile. Players’ blood 
samples’ characteristics permitted to personalize the decision-making rules of the ML models based on external workloads 
reaching an accuracy of 63%. This approach increased the injury prediction ability of about 15% compared to models that 
take into consideration only training workloads’ features. The influence of each external workload varied in accordance with 
the players’ blood sample characteristics and the physiological demands of a specific period of the season.
Conclusion Field experts should hence not only monitor the external workloads to assess the status of the players, but 
additional information derived from individuals’ characteristics permits to have a more complete overview of the players 
well-being. In this way, coaches could better personalize the training program maximizing the training effect and minimiz-
ing the injury risk.

Keywords Injury risk · Training workload · GPS · Predictive model

Introduction

Preventing and predicting injuries are a hot topic for the 
sports industry due to their high impact on both economic 
and performance point of views [1, 2]. Hence, it is not sur-
prising that injury prevention and in particular prediction 
is attracting a growing interest from researchers and field 
experts [3]. In fact, the scientific literature is growing fast 
providing machine learning algorithms that permit us to 
accurately predict when players will get injured or not [4]. 
Actually, the use of multidimensional models is fundamen-
tal to injury prediction, because sports injuries are a con-
sequence of complex interactions of multiple risk factors 
[5, 6]. Moreover, in addition to prediction task, predictive 
modeling should provide injury risk factors to implement 
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interventions to minimize the level of risk maximizing the 
training effect [5–7].

Actually, the recent scientific literature is focused on 
detecting multidimensional pattern in external workloads 
related to injury incidence [3, 4], but individuals’ character-
istics, such as sleep quality, muscular strength, and morpho-
logical characteristics combined with external and internal 
workloads data, could have an impact on players’ wellness 
status and consequently on the risk of injuries. To the best of 
our knowledge, this is the first injury prediction study which 
combines training workloads and players’ individual charac-
teristics. In particular, profiling players in accordance with 
performance- and health-related status could help machine 
learning models to personalize the decision-making process 
in accordance with their physiological requests and charac-
teristics, paving the way for transfer learning techniques: so 
far, it has been hard, for a squad, to use machine learning 
models trained on different squad: initial 4–8 weeks of train-
ing data are required every time the team wants to use an 
injury prediction model. The use of an approach based on 
baseline screening tests and a one focused on continuously 
monitoring the training workload as the season goes by were 
both used as indicators of the risk of injuries [3]. In the base-
line screening test approach [8–10], the athletes were tested 
before the start of the competitive season (singular time-
point). Seow and colleagues [3] in their literature review 
demonstrated that a one-off baseline testing score may not 
be a true representation months later. Actually, the previous 
papers that use a baseline testing approach did not have a 
strong injury predictive performance [8–12], highlighting 
the fact that the use of a single time-point data recording 
may not be a true representation of the players’ status. For 
example, Ruddy et al. further reported the inability to pre-
dict hamstring injuries using the baseline testing approach 
[9]. Differently, performing tests periodically (monitoring 
approach) showed a moderate–high injury prediction accu-
racy [3]. Monitoring training workloads along the season 
permits having an overview of the players’ fitness status and 
consequently of their injury risk [7, 13–18]. As a matter of 
fact, it was demonstrated that the greater the training expo-
sure is, the greater the injury risk is [13, 19, 20]. However, 
there may also be currently unknown factors, e.g., sleep, 
nutrition, and blood markers that could have a role in injury 
prediction [3].

This study is focused on profiling players in accord-
ance with blood sample features due to the fact that blood 
analysis is a simple and powerful way to get data critical to 
anyone interested in assessing the individuals’ biomedical 
status with the aim of improving athletic and personal per-
formance [21, 22]. Actually, the decrements of hemoglobin, 
hematocrit, and red blood cell count are associated with the 
increment of training workloads [23]. As a matter of fact, 
the hematocrit “paradox” proposed by Brun et al. [24] shows 

that low values of hematocrit (< 40%) were found to be asso-
ciated with a higher aerobic capacity and isometric adduc-
tor strength, while athletes with high hematocrits (> 44.6%) 
result in a status of over-training and/or iron-deficient, and 
with an increased blood viscosity and red cell disaggregabil-
ity. Additionally, it was found a negative correlation between 
blood viscosity and fitness, while a positive one was detected 
against over-training score [21]. Moreover, it was also found 
that when hematocrit increases, there is a decrease in ath-
letes’ fitness status and ferritin, and an increment in over-
training risk [24]. Hence, based on the previous results, it 
is possible to suppose that insight derived from the blood 
sample features could provide important information on the 
athletes’ status that could be related to injury risk.

Hence, the aim of this study was to assess if the com-
bination of the periodical screening tests (player profile in 
accordance with blood sample analysis) and continuous 
monitoring of the training workloads could increase the 
accuracy of a machine learning model to injury forecasting. 
In particular, this study compares machine learning perfor-
mance models trained using only workloads data, by creat-
ing independent models for each blood sample class, and by 
adding the blood sample classes as independent features in 
the model. In this way, it was possible to obtain information 
about how much the accuracy changed by providing blood 
sample information in addition to the external workload 
features.

Methods

Subjects

Eighteen elite soccer players—age = 24.7 (4.3) yrs; 
height = 183.73 (7.16) cm; weight = 78.81 (7.32) kg—com-
peting in the Italian league (Serie B) during the seasons 
2017/2018 and 2018/2019 took part in this study—128 (36) 
sessions per player. Before starting the data recording, the 
soccer player signed the informed consent with the soccer 
club giving their consent to the collection and use of their 
data for research purposes. The soccer club recorded the data 
during its daily routine and shared it with the researchers 
involved in this study through a Non-Disclosure Agreement 
only for research purposes. The owner of the data remains 
the soccer club that has the right to choose which informa-
tion, results, and data can be made publicly available.

Data‑driven clustering by blood sample features

Eighty-nine blood samples—3.30 (1.41) blood samples 
per player—were recorded through the two soccer seasons. 
All venous blood samples were taken in the early morning 
(around 8 AM) in an antecubital vein in a seated position. 
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The players were asked to fast from the previous evening. 
10 ml of blood was collected in vacutainer tubes, using an 
anticoagulant. The freshly drawn blood was immediately 
centrifuged at 3000 repetitions per minute (825 g) for 10 min 
to remove the plasma. Plasma was separated into several 
aliquots and was rapidly frozen at − 80 °C for later bio-
chemical analysis. Analyses were performed using a coulter 
blood counter (Model S-plus II, Coulter Electronics Inc., 
Hialeah, Florida, USA) and Hematocrit (%), Hemoglobin 
(g/dl), number of red blood cells (cells/microL), ferritin (ng/
ml), and sideremia (ug/dl) were obtained from each blood 
sample. Immunoenzymatic plasma testosterone (ng/ml) and 
cortisol (nmol/L) measurements were taken with VIDAS tes-
tosterone (Ref. 30418) and VIDAS cortisol S (Ref. 30451) 
commercial test kits (bioMerieux, Carnaxide, Portugal). The 
T/C ratio was also calculated and expressed in percentage.

A silhouette analysis based on k-means algorithm was 
performed to detect the best number of clusters to group 
players in accordance with the blood sample. Silhouette 
analysis can be used to study the separation distance between 
the resulting clusters. In particular, it measures how close 
each point in one cluster is to points in the neighboring 
clusters (silhouette coefficient). This measure has a range 
between − 1 and 1. + 1 indicates that the sample is far away 
from the neighboring clusters, 0 refers to a sample that is 
very close to the decision boundary between two neighbor-
ing clusters, and negative values indicate that those samples 
might have been assigned to the wrong cluster. In particu-
lar, the Silhouette Coefficient was calculated using the mean 

intra-cluster distance (a) and the mean nearest-cluster dis-
tance (b) for each sample. The Silhouette Coefficient for 
a sample is (b − a)/max(a, b). To clarify, b is the distance 
between a sample and the nearest cluster that the sample 
is not a part of. The best value is 1 and the worst value is 
− 1. Values near 0 indicate overlapping clusters. Negative 
values generally indicate that a sample has been assigned to 
the wrong cluster, as a different cluster is more similar. The 
mean of the silhouette values for all the samples provides an 
index of cluster goodness.

After detecting the best number of clusters, an unpaired t 
test analysis was conducted in each blood sample feature to 
detect differences between blood sample groups.

Injury forecaster

Data

GPS data Players wore a Global Position System (K-GPS 
10 Hz, K-Sport International, Italy) [25] during each training 
or match to obtain external workloads data of each session. 
Seventeen workload features were used (see Table 1 for more 
details about the GPS variables). All of these features were 
pre-processed to obtain metrics describing the Acute (expo-
nential weighted moving average of the previous 7 days) and 
Chronic (exponential weighted moving average of the previ-
ous 28 days) workloads. Moreover, the ratio between Acute 
and Chronic features (ACWR) for each GPS variable was 
computed to obtain information about the intensity of the 

Table 1  Workload features’ description

GPS features Description

T (s) Duration of the training session in seconds
D (m) Distance in meter covered during the training session
DMPHI (m) Distance in meter covered at high-metabolic intensity (> 20 W/Kg)
DSHI (m) Distance in meter covered at high intensity speed (> 16 km/h)
DAccHI (m) Distance in meter covered with high-intensity acceleration (> 2 m/s2)
DDecHI (m) Distance in meter covered with high-intensity deceleration (> 2 m/s2)
NDMPI (n) Number of events with a metabolic power between 0 and 5 W/Kg
ED (%) Percentage of equivalent distance, i.e., the distance that the athlete would have covered at a constant speed using the energy 

consumed when the metabolic power is greater than 25.5 W/Kg
AI (%) Percentage of anaerobic index, i.e., the ratio between the energy expenditure higher than 21 km/h and the total energy 

expenditure
AMP (W/Kg) Average metabolic power during the training session
EEE (Kj/Kg) Estimating energy expenditure during the training session
EEEA4 (Kj/Kg) Estimating energy expenditure performed at moderate-acceleration intensity (2–3 m/s2)
EEEA5 (Kj/Kg) Estimating energy expenditure performed at high-acceleration intensity (3–4 m/s2)
EEES4 (Kj/Kg) Estimating energy expenditure performed at moderate-speed intensity (16–21 km/h)
EEES5 (Kj/Kg) Estimating energy expenditure performed at high-speed intensity (21–24 km/h)
EEEMP4 (Kj/Kg) Estimating energy expenditure performed at moderate metabolic power (10–20 W/Kg)
EEEMP5 (Kj/Kg) Estimating energy expenditure performed at high metabolic power (20–40 W/Kg)
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recent workloads (acute workload) in relation to the one that 
the player is used to perform (chronic workload). ACWR 
values higher than 1 indicate that a player performs a higher 
workload in the past week compared to the past month. In 
particular, values higher than 1.5 result in a high risk of 
injury (over-training status), while values between 1 and 1.5 
indicate the optimal training zone [13, 19, 20]. Differently, 
values lower than 1 indicate under-training status [13, 19, 
20]. Hence, in total, each training vector is composed of 68 
workload features (17 features for each aggregation method, 
i.e., Daily, Acute, Chronic, and ACWR).

Blood sample groups Based on the machine learning 
approach described in “Data-driven clustering by blood 
sample features”, all the players were grouped in accordance 
with the individual’s blood sample features. However, in 
train and test scenarios (see “Machine learning approach”), 
if the players performed 2 or more blood sample tests during 
the soccer season, the players were grouped in accordance 
with the most frequent blood sample class (0 = high blood 
sample group; 1 = low blood sample group). Players with 
an equal number of classes during the season were set as 
High groups. Differently, in the real scenario (see “Machine 
learning approach”), the blood sample profile for each player 
was re-definite every time the players performed a new blood 
sample test.

Injury label The club’s medical staff recorded 28 non-
contact injuries during soccer seasons. A non-contact injury 
was defined as any tissue damage sustained by a player that 
causes an absence in physical activities for at least the day 
after the day of the onset [22, 26]. To predict future inju-
ries, the training session examples of the previous 7 days 
were labeled as injury (a session with a high risk of injury). 
The days when the injuries occurred were deleted from the 
dataset due to the fact that the aim of this study is to predict 
players that will get injured in the next few days.

Moreover, to take into consideration the individuals’ 
injury history (previous injury), the exponential weighted 
moving average of the past 28 days was computed on the 
injury label time series. The higher the previous injury index 
was, the closer the previous injury was. These values were 
used as input in the machine learning model. This metric 
was found to be an important index for injury prediction in 
the previous paper [7, 22, 27, 28].

Machine learning approach

In this section, the description of the two approaches that 
were used to evaluate the prediction ability of the machine 
learning algorithms in this study was provided. In the first 
approach, the dataset was randomly split into two parts. 
In the first one, the predictive models were trained in the 
first part, while they were tested in the second part (train 
and test approach). The second approach simulated the real 

scenario by training and testing the machine learning models 
as the season went by (real scenario approach). Moreover, 
a description of the predictive metrics to evaluate the pre-
dictive performance of the machine learning models was 
provided in the predictive performance metrics paragraph. 
Finally, the way used to interpret the decision-making pro-
cess was described in the last paragraph of this section.

Train and test approach Multi-dimensional models were 
developed to predict the risk of injuries in the next 7 days. 
In particular, three different approaches was set: (i) “endorse 
groups” model, i.e., the models were trained for high and 
low blood sample groups separately; (ii) “blood group as 
variable”, i.e., a variable indicating the blood sample groups 
of each player was used as predictive features; (iii) “No-
split”, i.e., no information about players’ blood sample pro-
file was provided. 70% of data were used to train the models, 
while in the remaining 30% of the dataset, they were tested. 
The dataset was split into train and test sets in accordance 
with the distribution of the injury and no-injury examples 
(stratified approach). Moreover, to solve the problem of data 
unbalancing, the injury class was oversampled in the train set 
using the adaptive synthetic sampling approach (ADASYN). 
The ADASYN algorithm generates examples of the minority 
class permitting to equalize the distribution of classes and 
reducing the learning bias. Moreover, to reduce the feature 
dimension space by selecting the most important features 
and consequently the risk of overfitting, a Recursive Feature 
Elimination with Cross-Validation (RFECV) approach was 
performed in the oversampled train set. Actually, RFECV 
selects a subset of features producing the maximum score 
on the validation data. Two machine learning models were 
trained and tested in this study: (i) Decision Tree classifier 
(DT) and (ii) Gradient Boosting classifier (XGB). Addition-
ally, to validate the prediction ability of these classifiers, a 
baseline classifier (Dummy) that randomly assigns a class 
to an example by respecting the distribution of classes was 
built.

Real scenario approach This evaluation will permit us to 
assess the predictive performance of the machine learning 
algorithms in an evolutive scenario re-training the models by 
inserting new injury and no-injury examples as the season go 
by. Let assume that a soccer club has data until week n and 
it wants to detect the risk of injuries of the next week n + 1. 
The machine learning models were trained over the train set 
(i.e., until week n) and then tested by predicting the injury 
class on new data recorded in week n + 1. Every time that 
the algorithm is retrained, the data were pre-processed to 
oversample the minority class using ADASYN approach and 
the feature selection process (RFECV) was used to reduce 
the feature dimension space selecting the most important 
features for injury prediction in accordance with the season 
period. Two machine learning models (i.e., DT and XGB) 
and one baseline classifier (Dummy) were trained and tested 



289Sport Sciences for Health (2023) 19:285–296 

1 3

week-by-week. To assess the advantage that profiling players 
in accordance with blood samples could provide on injury 
prediction, the models were trained and tested on two differ-
ent datasets: (i) with blood group as variable and (ii) with no 
blood sample group information (No-Split).

Predictive performance metrics Precision, recall, and 
f1-scores were computed to assess the model goodness. 
Actually, precision (specificity) is the ratio of correctly pre-
dicted positive observations to the total predicted positive 
observations, while recall (sensitivity) is the ratio of cor-
rectly predicted positive observations to all observations in 
the actual class. Additionally, f1-score is the weighted mean 
of precision and recall. Finally, accuracy is the ratio of cor-
rectly predicted observations to the total observations.

Machine learning models’ interpretation To globally and 
locally explain the decision-making process that the machine 
learning models make to predict injuries, SHapley Additive 
exPlanations (SHAP) values were computed (http:// scikit- 
learn. org/ imbal anced- learn). It allows exploring the relation-
ships between predictive variables and injury risk assigning 
to each feature importance the permits to detect the influence 
of each feature to the final prediction. Moreover, SHAP per-
mits evaluating how much each predictor contributes, either 
positively or negatively, to the target variable. Understanding 

why a model makes a certain prediction can help the team’s 
staff to evaluate the reason underlying the model’s decisions 
and consequently change the training program in accordance 
with players’ demands.

Results

Blood sample groups

K-means algorithm [29] was used to search for the optimal 
number of clusters according to silhouette score. Figure 1 
shows the silhouette scores associated with each number of 
clusters selected (from 2 to 10 groups). This figure shows 
that the best value for silhouette was obtained by splitting 
players into two groups. The blood sample profiles were 
labeled as High and Low. Table 2 provides the descriptive 
statistics of the two groups and the statistical difference 
between the High and Low groups. The High group showed 
statistically higher Hematocrit (p < 0.001), Hemoglobin 
(p < 0.001), number of red blood cells (p < 0.001), and tes-
tosterone (p = 0.02), but lower ferritin (p = 0.03) compared 
to Low group. Moreover, similar level of cortisol (p = 0.15), 
sideremia (p = 0.64), and T/C (p = 0.63) were detected.

Injury forecaster

Train and test approach

As shown in Table 3, XGB is the best machine learning 
model to predict injuries in all the datasets. In particular, 
the higher prediction performance was detected in the model 
trained on the “blood group as variable” dataset (f1-score 
of the injury class = 63%). Similar results were detected 
when XGB is trained in players with different blood sample 
profiles (endorse group: f1-score of the injury class = 58%). 
Providing information about blood sample profiles at the 
machine learning model permitted to increase the injuries 
prediction ability of about 15% (i.e., precision and recall 
increase of about 18% and 4%, respectively) compared to the Fig. 1  Silhouette analysis

Table 2  Descriptive statistics 
and statistical differences for 
and between the blood sample 
groups (i.e., High and Low)

Statistical significance: *p < 0.05, **p < 0.01, ***p < 0.001

Features High Low p value

Hematocrit (%) 46.10 (1.99) 42.27 (2.06)  < 0.001***
Hemoglobin (g/dl) 15.64 (0.71) 14.44 (0.76)  < 0.001***
Red blood cells (cells/microL 5251.92 (163.90) 4684.60 (190.60)  < 0.001***
Ferritin (ng/ml) 110.67 (54.99) 139.91 (68.19) 0.03*
Testosterone (ng/ml) 6.45 (1.44) 5.62 (1.68) 0.02*
Cortisol (nmol/L) 502.69 (81.60) 471.75 (117.21) 0.15
Sideremia (ug/dL) 126.52 (78.75) 112.24 (40.93) 0.64
T/C 0.013 (0.004) 0.014 (0.011) 0.63

http://scikit-learn.org/imbalanced-learn
http://scikit-learn.org/imbalanced-learn


290 Sport Sciences for Health (2023) 19:285–296

1 3

results obtained from the “No-Split” dataset. All the models 
in all the datasets were valid to predict the injury due to the 
fact that higher predictive performance was detected with 
XGB and DTC algorithms compared to the Dummy one.

Figure 2 shows the feature importance for each model 
trained. Different features were selected in High and Low 
blood sample groups, indicating that the response to external 
stimuli was different between players with different blood 
sample profiles. Differently, the most important feature with-
out splitting the players in accordance with blood sample 
profile (“No-Split” dataset) was the mix of the workloads 
variables extracted from the High and Low blood sample 
groups dataset. In the model trained on the “Blood group as 
variable” dataset, the most important feature was the blood 
sample group and the other features were a mix between 
High and Low groups features. This result corroborates the 
fact that the information derived by the blood sample profile 
(indices of health and fit status) is an important factor affect-
ing the players’ injury risk.

Real scenario approach

Table 4 and Fig. 3 show that profiling soccer players in accord-
ance with their blood sample improve the prediction ability 
throughout the soccer season. In particular, higher precision, 
recall, and f1-score were detected in “Blood group as variable” 
compared to “No-split” at the end of the soccer season (i.e., 
increased prediction ability of about 5%, 3%, and 4%, respec-
tively; Table 4). Additionally, the higher prediction performance 
detected in XGB compared to Dummy classifier validated the 
fact that this model is able to accurately distinguish between play-
ers with different risk of injury (Table 4). Figure 3 shows a higher 
predictive performance of XGB compared to DT and Dummy 
classifiers throughout the entire soccer season. Additionally, 
Fig. 4 provides the influence of each feature on injury prediction 
week-by-week. To be noticed, the influence of the predictive fea-
tures changed in accordance with the season period. This aspect 
corroborates the fact that the training workloads differently affect 
the risk of injury in different parts of the soccer season based 
on teams’ training schedule and players’ physiological demand.

Table 3  Train and test 
approach. Performance of 
the machine learning models 
indifferent blood sample groups

Blood sample group Algorithm Classes Precision Recall F1-score

High DT No-injury 0.97 0.81 0.88
Injury 0.19 0.68 0.30

XGB No-injury 0.96 0.94 0.95
Injury 0.33 0.42 0.37

Dummy No-injury 0.92 0.50 0.65
Injury 0.05 0.37 0.08

Low DT No-injury 0.98 0.92 0.95
Injury 0.44 0.73 0.55

XGB No-injury 0.98 0.95 0.96
Injury 0.56 0.80 0.66

Dummy No-injury 0.95 0.52 0.67
Injury 0.11 0.70 0.18

Endorse DT No-injury 0.98 0.87 0.92
Injury 0.30 0.71 0.42

XGB No-injury 0.97 0.94 0.96
Injury 0.48 0.65 0.58

Dummy No-injury 0.94 0.51 0.66
Injury 0.08 0.57 0.14

Blood group as variable DT No-injury 0.98 0.84 0.90
Injury 0.20 0.68 0.31

XGB No-injury 0.97 0.98 0.98
Injury 0.58 0.65 0.63

Dummy No-injury 0.94 0.49 0.65
Injury 0.05 0.45 0.09

No-split DT No-injury 0.97 0.78 0.86
Injury 0.14 0.63 0.23

XGB No-injury 0.98 0.95 0.96
Injury 0.40 0.61 0.48

Dummy No-injury 0.94 0.49 0.65
Injury 0.05 0.45 0.09
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Fig. 2  Violin plots of the SHAP values computed for each feature in 
the XGB model trained on different datasets. The colors vary from 
blue (low feature value) and red (high feature value). The SHAP 
values indicate the influence of each point on injury risk. Negative 
SHAP values indicate that a specific feature value reduces the injury 

risk, while positive ones increase the risk. For example, a blue dot 
with a negative SHAP value indicates that the lower the feature value 
is the lower is the risk of injury. The sum of these influences indicates 
the risk of injury
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Discussion

Profiling the players in accordance with blood sample 
analysis helps to personalize the machine learning model 

increasing its ability to detect players’ risk of injury. As 
a matter of fact, in the train and test scenario, provid-
ing information about blood samples permitted to reach 
an accuracy (f1-score) of about 63% in “Blood group as 

Table 4  Real scenario approach. 
Performance of the machine 
learning models indifferent 
blood sample groups

Blood sample group Algorithm Classes Precision Recall F1-score

Blood group as variable DT No-injury 0.95 0.91 0.93
Injury 0.20 0.34 0.25

XGB No-injury 0.96 0.94 0.95
Injury 0.32 0.42 0.36

Dummy No-injury 0.94 0.94 0.94
Injury 0.07 0.07 0.07

No-split DT No-injury 0.92 0.90 0.93
Injury 0.19 0.35 0.25

XGB No-injury 0.96 0.93 0.94
Injury 0.27 0.39 0.32

Dummy No-injury 0.94 0.94 0.94
Injury 0.08 0.07 0.07

Fig. 3  Real scenario prediction performance
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variable” increasing the accuracy of injuries prediction of 
about 15% compared to “No-Split” (Table 3). Actually, 
the injury class precision increases of about 18% (pre-
cision in injury class for XGB in “Blood group as vari-
able” and in “No-split” dataset is equal to 40% and 58%, 
respectively), while the recall was increased of about 4% 
(recall in injury class for XGB in “Blood group as vari-
able” and in “No-split” dataset is equal to 65% and 61%, 
respectively). Similarly, in the real scenario, the highest 
predictive performance was detected by the XGB model in 
the “Blood group as variable” dataset (Table 4 and Fig. 3). 
These results corroborate the fact that blood sample vari-
ables permit to better assess the players status and conse-
quently permit to personalize the algorithm decision-mak-
ing rules in accordance with players’ needs. Furthermore, 

Fig. 4 shows that the influence of the workload's features 
on injury prediction varies week-by-week, suggesting that 
the players differently respond to external stimuli in dif-
ferent parts of the soccer season in accordance with their 
physiological needs of that period of time. Hence, add-
ing information about the players’ wellness status (e.g., 
strength, balance, motor skills, and sleep quality) could 
increase more and more the injury prediction ability due to 
the fact that machine learning could learn from an increas-
ingly comprehensive view of the player’s status. Future 
works are needed to understand which information derived 
from different tests (e.g., physical and psychological) is 
the most sensitive to discriminate against players with a 
high risk of injury.

Fig. 4  Heatmap of the influence of each feature in the real sce-
nario. Each column refers to a single week, while the columns refer 
to the input features. The darker the red is the higher the correlation 
between SHAP and features values is. Positive relationships indicate 

that the higher the values of a specific feature is, the higher the risk of 
injury is. Otherwise, for a negative relationship (the intensity of the 
green indicates the strength of the relationship)
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In this study, it was found that it is possible to split play-
ers in accordance with blood sample analysis into two main 
groups by a data-driven approach. In particular, hematocrit, 
hemoglobin, number of red blood cells, ferritin, and tes-
tosterone were the main blood sample features that show a 
statistical difference between the two main groups (Table 2). 
Actually, these features were found to be linked with aerobic 
capacity and over-training syndrome [21, 24]. In particular, 
the reduction of hematocrit, hemoglobin, and number of red 
blood cells is related to a high external workload performed 
on the previous days resulting in high physical stress [23]. 
Actually, subjects with the higher hematocrits (> 44.6%) 
were frequently overtrained resulting in iron deficiency and 
increased blood viscosity, while players with low hemato-
crit (< 40%) were associated with a higher aerobic capacity 
[21]. Hence, due to the fact that players in the two blood 
sample profiles show different characteristics, it is plausi-
ble to suppose that the two groups of players had different 
physiological demands resulting in a different response to 
external stimuli. As a matter of fact, Fig. 2a and b shows 
that the external workload features allowing to discriminate 
players that will get injured in the next week were different 
or shows different importance between High and Low blood 
sample groups. Moreover, to corroborate the fact that group-
ing players in accordance with blood samples are useful to 
increase the prediction ability, Fig. 2c shows that the most 
important feature in the “Blood sample groups as variable" 
dataset was the binary variable that provides the information 
about the player profile. Furthermore, the important features 
extracted from the “Blood sample groups as variable” data-
set (Fig. 2c) were a mix of the ones obtained analyzing the 
“Blood Sample—High” and “Blood Sample—Low” datasets 
independently (Fig. 2a and b, respectively). Moreover, simi-
lar predictive performance was detected in “endorse groups” 
and “Blood sample groups as variable” models (Table 3), 
indicating that providing information about blood sample 
profile as a categorical feature allows to accurately creation 
rules in accordance with individuals’ player profiles.

To be noted that the results of this study are valid only 
for the soccer team that is analyzed. This could be consid-
ered both as a limitation and strength of the approach pro-
posed in this study, because it is not possible to generalize 
the predictive results and feature importance, because it is 
personalized on this soccer team and different periods of 
the soccer season. Different players, training programs, and 
soccer season demands could affect the players’ physiologi-
cal demands and, consequently, the rules and features that 
permit to predict injuries. Future works are needed to assess 
if this approach and the results obtained are realizable for 
all the soccer teams. Another limitation of this study is the 
low number of blood samples per player recorded during 
the soccer season. Even if only 3.3 blood samples per player 
were recorded during the entire season, the players’ blood 

sample profiles permitted to increase the prediction ability 
of the machine learning models compared to the one trained 
using only external workload features. It is presumably that 
if the players will be often profiled as the season goes by, 
the player’s status evaluation will be more accurate and, 
consequently, the injury prediction goodness will increase.

The results of this study can help coaches and athletic 
trainers to improve the decision-making process when 
scheduling the training program keeping in mind their 
players’ biomedical status. Actually, the prediction of the 
players’ wellness status provides important insight on indi-
vidual psychophysiological responses to training allowing 
to maximize the training effect while reducing unwelcome 
detrimental effects associated with poor readiness.

Conclusion

Blood sample analysis is a proxy of the health status of 
the soccer players that allows profiling players and per-
sonalizing the rules that predict the individual injury risk. 
Field experts in soccer clubs should not only monitor the 
external workloads to assess the status of the players, but 
additional information derived from individuals’ charac-
teristics could help to have a complete overview of the 
players’ well-being enabling a better training schedule, 
maximizing the training effect and minimizing the risk 
of injuries.
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