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Abstract
Purpose Models of appetite control have been largely based on negative feedback from gut and adipose signaling to central 
appetite centers. However, contemporary models posit that fat-free mass (FFM) or the energy demand of FFM [i.e., resting 
metabolic rate (RMR)] may play a primary role in the motivational drive for food intake (i.e., food reinforcement). The 
relative reinforcing value of food  (RRVfood) is associated with energy intake (EI) and increases with an acute energy deficit. 
Chronic exercise-induced energy deficits lead to alterations in fat mass (FM), FFM, and RMR and provide an opportunity 
to test whether change in (∆) FM, ∆FFM, ∆usual EI, or ∆RMR are associated with ∆RRVfood.
Methods Participants (n = 29, BMI = 25–35 kg/m2) engaged in aerobic exercise expending 300 or 600 kcal, 5 days/weeks 
for 12 weeks. The reinforcing value of food  (PMaxfood) was measured via a computer-based operant responding task and 
 RRVfood was calculated as the reinforcing value of food relative to non-eating sedentary behaviors. RMR was determined 
by indirect calorimetry and body composition by DXA.
Results Post-training FFM correlated with usual post-training EI (rs = 0.41, p < 0.05),  PMaxfood (rs=0.52, p < 0.01), and RMR 
(rs = 0.85, p < 0.0001). ∆RMR negatively correlated with ∆PMaxfood (rs = − 0.38, p < 0.05) and with ∆RRVfood (rs = − 0.37, 
p < 0.05). ∆PMaxfood and ∆RRVfood were not associated with ∆FFM (p = 0.71, p = 0.57, respectively).
Conclusions Reductions in RMR with weight loss may increase food reinforcement as means of restoring FFM and RMR 
to pre-weight loss amounts. Limiting reductions in RMR during weight loss may benefit weight maintenance by restricting 
increases in food reinforcement after weight loss.
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Abbreviations
FFM  Fat-free mass
RRVfood  Relative reinforcing value of food
PMaxfood  Reinforcing value of food
RMR  Resting metabolic rate
DXA  Dual X-ray absorptiometry

EI  Energy intake
Δ  Changes in

Introduction

Common models of body weight regulation propose that 
energy intake is loosely controlled via negative feedback 
loops [1]. For example, feedback from homeostatic gut pep-
tides (e.g., ghrelin, cholecystokinin) signals acute changes 
in energy intake. Meanwhile, phasic signals from leptin and 
other adipokines provide tonic feedback as a consequence of 
adipose reserves [1]. These mechanisms can be problematic 
during weight loss regimens as they oppose loss of body 
mass. Additional complications arise when attempting to 
reduce fat mass (FM), as fat-free mass (FFM) can also be 
reduced during weight loss [2]. Both FM and FFM are con-
sequential for body weight regulation as both tissues con-
tribute to resting metabolic rate (RMR) [3, 4], accounting 
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for 65–90% of total energy expenditure [5, 6]. FFM in 
particular is important for body weight control as it has a 
much greater energy demand than FM [7], accounting for 
70–80% of RMR [8]. Blundell and colleagues have posited 
that appetite regulation and control of energy intake goes 
beyond negative feedback and lipostatic mechanisms to also 
include the energetic demands of RMR [9, 10]. They pro-
pose the tonic effects of FFM on energy intake are mediated 
through RMR, and that FFM may exert an ‘active’ drive for 
food. Moreover, FFM is protective against cardiometabolic 
disease [11, 12], and as such may be regulated resulting in an 
increased ‘active’ drive to eat after weight loss to replenish 
FFM to pre-weight loss levels, even if this is accompanied 
by simultaneous gains in FM [9, 10].

A validated approach to conceptualizing the ‘active’ drive 
for food is the relative reinforcing value of food  (RRVfood) 
measured as the amount of operant responding, or effort a 
person is willing to complete to gain access to a food rein-
forcer relative to an alternative non-food reinforcer [13, 14]. 
 RRVfood is associated with greater energy intake and obesity 
[15], and increases with acute (≤ 24 h) food deprivation [16]. 
The effect of body composition changes on  RRVfood is not 
yet known. Increased  RRVfood following weight loss could 
act as a compensatory response to return FFM to pre-weight 
loss amounts by increasing the ‘active’ drive for food. More-
over, if FFM or RMR are regulating food reinforcement after 
weight loss, then weight loss-induced reductions in FFM or 
RMR should be associated with increases in food reinforce-
ment, but this has not yet been studied. Though exercise-
induced weight loss is proposed to influence energy intake 
to a lesser degree than energy restriction [10], it provides a 
stronger test of the association between changes in FFM and 
 RRVfood because any observed changes in  RRVfood are not 
due to, nor confounded by, energy restriction or food depri-
vation [16]. Therefore, the purpose of this study was to test 
the hypothesis that changes in FFM or RMR with exercise 
training correlates to changes in food reinforcement, thus 
influencing the ‘active’ drive for food intake as measured 
by  RRVfood.

Methods

Study design

This work is a pre–post study design to test a secondary 
hypothesis from a previous study that tested differences in 
energy intake, food reinforcement, and circulating ghrelin 
between 3000 kcal/week and 1500 kcal/week of aerobic 
exercise energy expenditure. The full methods, assess-
ments, and analyses are published elsewhere [17]. For the 
purposes of the current study, results are not presented by 
treatment group as those data are already published and 

discussed [17]. The trial is registered with ClinicalTrials.
gov identifier NCT02152501. All outcomes were measured 
at baseline and after 12 weeks of aerobic exercise training.

Participants

Thirty-six overweight or obese (BMI 25–35 kg/m2) par-
ticipants (26 women) were originally recruited for the 
study and were randomized to groups of 3000 kcal/week 
or 1500 kcal/week of aerobic exercise energy expenditure. 
Twenty-nine participants (21 female) completed the study, 
six (5 female) withdrew for personal reasons, and one was 
dismissed for noncompliance. Participants were not regu-
larly exercising more than twice per week prior to study 
initiation, were non-smokers, and were not on medica-
tions that affected hunger or metabolism. All participants 
were recruited from the Grand Forks ND metropolitan 
area. Appropriateness of exercise was screened using a 
Health History and Physical Activity Readiness Question-
naire (PAR-Q). All procedures were approved by the Uni-
versity of North Dakota Institutional Review Board, and 
participants provided written informed consent. Data were 
collected from April to October, 2016.

Exercise intervention

Exercise was prescribed to induce either 1500 or 3000 kcal 
expenditure per week. Exercise could be completed on a 
treadmill, elliptical ergometer, or cycle ergometer. Par-
ticipants expended either 300 or 600 kcal per day, 5 days 
a week, for 12 weeks. Vivofit activity trackers (Garmin, 
Kansas City, KS) were provided for all participants to 
monitor compliance. Dietary recommendations were not 
discussed as part of the intervention.

Outcome measures

Body composition

FM, FFM, and % body fat were determined via dual X-ray 
absorptiometry (DXA) using a GE Lunar iDXA machine, 
and scans were analyzed using the GE Lunar enCORE 
software (GE Medical Systems, Madison, WI). Full body 
scans were conducted with participants lying supine on 
the table with arms to their side. Scans were taken in nor-
mal scan mode unless the software suggested “thick” scan 
mode. Automatic edge detection was used for scan analy-
ses, and the machine was calibrated each day of use with 
the GE Lunar calibration phantom.
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Resting metabolic rate

RMR was determined using indirect calorimetry. Partici-
pants traveled via automobile to the Grand Forks Human 
Nutrition Center ≥ 10 h after eating and ≥ 48 h after exer-
cise. The equipment was calibrated prior to each assessment 
using a 3.0 L syringe for the flowmeter and known gas con-
centrations for the gas analyzer. Upon arrival, participants 
completed a questionnaire to ensure compliance. For the 
assessment, participants laid supine in a dimly lit, tempera-
ture-controlled room for 30 min, followed by a 30 min RMR 
measurement using a TrueOne 2400 metabolic cart (Parvo 
Medics, Sandy, UT). Participants were monitored to verify 
they stayed awake throughout the assessment, and that frac-
tional expired  CO2 was between 0.8 and 1.2%. The criterion 
for a valid RMR was 15 min of steady state, determined 
as < 10% fluctuation in  VO2 and < 5% fluctuation in respira-
tory quotient (RQ). The Weir equation (46) was used to 

determine RMR from the measured  VO2 and  VCO2. These 
methods are validated and have been previously published 
[17, 18].

Food reinforcement

The reinforcing value of food  (RRVfood) was assessed using 
previously described methods [17, 19]. A computer task 
assessed the amount of operant responding a participant was 
willing to perform to earn a portion of their favorite test food 
(Doritos, Snickers, Chips Ahoy cookies, powdered donuts, 
or Oreo cookies) relative to the amount of operant responses 
to earn access to their most-liked, sedentary behavior (time 
for activities such as watching TV, reading magazines, or 
completing crossword or Sudoku puzzles). Participants were 
given free choice to work at two proximal computer stations. 
The first station allowed the participant to earn an allotment 
of their most-liked test food and the other station allowed 
them to earn access to sedentary, non-eating behavior. The 
operant responses were measured in presses of a mouse but-
ton using a computer program mimicking a slot machine. 
Each click of the mouse changed three images on the screen, 
and a point was earned each time the slot machine produces 
three matching images. The slot machine awarded points 
based on operant responses, where clicks required to earn 
points doubled with each completed schedule of reinforce-
ment. A schedule was completed for every five points earned 
(beginning with 4 clicks per point for schedule 1, 8 clicks 
per point for schedule 2, 16 clicks for schedule 3, etc.), and 
each completed schedule was awarded either a 100 kcal por-
tion of the chosen snack food, or 5 min of sedentary activity. 
For example, it would initially require four mouse clicks to 
earn a point in schedule 1. After completion of schedule 1 
(20 total clicks), participants had earned either a 100 kcal 
portion of food, or 5 min of sedentary activity time, and the 
game then required eight clicks to earn a point for sched-
ule 2. After five points were earned in schedule 2, rewards 

Table 1  PMaxfood,  RRVfood, energy intake, fat mass, fat-free mass, 
and resting metabolic rate at baseline and after 12 weeks of aerobic 
exercise training at 1500–3000 kcal of energy expenditure per week

Data presented as mean ± SEM, treatment differences are published 
elsewhere (see Methods); Differences between timepoint were deter-
mined via Wilcoxon tests for  PMaxfood and  RRVfood, and student 
t tests for energy intake, fat mass, fat-free mass, and resting meta-
bolic rate; PMaxfood schedules of reinforcement completed to gain 
access to food, RRVfood relative reinforcement value of food; Adjusted 
α = 0.0063
*Means differ p < 0.0063 between time points

Outcome Baseline Post-training

PMaxfood (schedules) 28.5 ± 5.3* 12.8 ± 2.9*
RRVfood 0.49 ± 0.06 0.50 ± 0.08
Energy intake (kcal) 2337 ± 138 2035 ± 96
Fat mass (kg) 31.2 ± 1.6 29.5 ± 1.6
Fat-free mass (kg) 50.0 ± 2.0 50.0 ± 1.9
RMR (kcal/day) 1887 ± 68.4 1840.2 ± 63.8

Table 2  Baseline correlations 
among  PMaxfood,  RRVfood, 
energy intake, fat-free mass, fat 
mass, and resting metabolic rate

Data presented are Spearman correlation coefficients and p values
RMR resting metabolic rate, PMaxfood number of schedules of reinforcement completed to gain access to 
food, RRVfood relative reinforcing value of food

Outcome Variable Energy 
intake 
(kcal)

Fat-free mass (kg) Fat mass (kg) RMR (kcal/day)

PMaxfood (schedules) Coefficient 0.18 0.20 − 0.0 0.02
p 0.311 0.257 0.676 0.925

RRVfood Coefficient 0.41 0.05 − 0.10 0.07
p 0.014 0.765 0.591 0.706

Energy intake (kcal) Coefficient 0.28 0.04 0.33
p 0.106 0.814 0.058

RMR (kcal/day) Coefficient 0.87 0.34
p < 0.0001 0.048
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would increase, and participants moved in to schedule 3, and 
so on. Each participant was free to earn as much or as little 
of each reinforcer as they desired (play the game as long as 
they wished), switch between stations as they desired, and 
were given immediate access to the reinforcers earned upon 
voluntary conclusion of the assessment. Outcome measures 
for food reinforcement included the greatest schedule com-
pleted to earn food  (PMaxfood).  RRVfood was calculated as 
 [PMaxfood/(PMaxfood +  PMaxsed)].

Energy intake

Dietary intake was assessed using the online version of the 
automated self-administered 24 h dietary recall (ASA24), 
which estimated total energy intake (EI), grams of car-
bohydrate, fat, protein and alcohol for 2 week days and 
one weekend day during the exercise intervention [20]. 
Participants are guided through multiple passes of dietary 
intake, and visual aids are provided to improve portion 
size estimations [21].

Analytic plan

Changes in outcome measures from pre- to post-inter-
vention (∆) were determined by subtracting the baseline 
measurement from the post-training measurement. PMax 
and RRV values were rank-order variables, therefore, 
Spearman correlations were used to determine relation-
ships between variables at pre, post, and between ∆ scores, 
to account for multiple comparisons, correlation p values 
were adjusted using the Benjamini–Hochberg procedure. 
After setting the false discovery rate at 20%, p values less 
than 0.05 were deemed significant [22]. Wilcoxon tests 
were used to determine differences between pre- and post-
training for PMax and RRV data. Energy intake, fat mass, 
fat-free mass, and resting metabolic rate are continuous 
variables, therefore, students t tests were used to deter-
mine differences between pre- and post-training for these 
outcomes. To account for multiple comparisons in t tests, 
alpha (0.05) was divided by 8 (to account for variables: 
RRV, PMax, RMR, EI, weight, FM, FFM, %fat), requir-
ing a p < 0.0063 to indicate significance. SAS version 9.4 
(SAS Institute, Cary, NC) was used to fit the models using 
the CORR, or GLIMMIX, procedure. A post hoc power 
analysis [23] revealed 96% power to detect a 10% change 
when using the sample size, standard deviations, and mean 
changes associated with the  PMaxfood outcome data in the 
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Fig. 1  Data are presented as individual data points with a best fit line. 
a Energy intake vs. relative reinforcing value of food  (RRVfood); b Fat 
mass (FM) vs. resting metabolic rate (RMR); c Resting metabolic rate 
(RMR) vs. fat-free mass (FFM)
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current study. Figures were created using GraphPad Prism 
9.

Results

Overall,  PMaxfood decreased (p < 0.0063) from baseline 
to post-exercise training, while  RRVfood, EI, FM, FFM, 
and RMR were not different (p = 0.95, p = 0.04, p = 0.22, 
p = 0.47, p = 0.31, respectively) (Table 1). Considering the 
marked variation and bidirectional participant responses to 
exercise training, further analysis primarily focused on the 
following correlational data. At baseline (Table 2) RMR 
correlated with FM (rs = 0.34, p < 0.05; Fig. 1A), and FFM 
(rs = 0.87, p < 0.0001; Fig. 1B). Baseline  RRVfood was cor-
related with usual EI (rs = 0.41, p < 0.05, Fig. 1C). Base-
line  PMaxfood and  RRVfood were not associated with base-
line RMR, FFM, or FM, and FFM was not associated with 
EI. After 12 weeks of aerobic exercise training (Table 3), 
RMR was no longer correlated with FM (rs = 0.25, p = 0.19), 
but remained correlated with FFM (rs = 0.85, p < 0.0001; 
Fig. 2A). Also, post-training  PMaxfood was correlated with 
FFM (rs = 0.52, p < 0.01; Fig. 2B) but not with EI, RMR or 
FM after training, and usual EI was correlated with FFM 
(rs = 0.41, p < 0.05; Fig. 2C). No other post-training meas-
ures were correlated.

Correlations among the change scores of the outcome 
variables are shown in Table 4. ∆RMR was negatively cor-
related with ∆PMaxfood (rs = − 0.38, p < 0.05; Fig. 3A) and 
∆RRVfood (rs = − 0.37, p < 0.05; Fig. 3B). Interestingly, nei-
ther ∆FM nor ∆FFM significantly correlated with ∆PMax-
food or ∆RRVfood. No other significant correlations were 
observed between changes in outcome measures, including 
∆FFM vs. ∆RMR (rs = 0.06, p = 0.73).

Discussion

The primary findings from the current study show that 
∆RMR is negatively correlated with ∆RRVfood and ∆PMax-
food, suggesting that if RMR changes as a result of exercise 
training, individuals may experience an inverse change in 
their active drive for food. Although FFM correlated with 
 PMaxfood post-training, neither ∆RRVfood nor ∆PMaxfood 
were correlated with ∆FFM, which does not follow the pro-
posed model of FFM determining the active drive for food 
and subsequent EI [9]. FFM certainly plays a major role in 
determining RMR, but these data suggest that role may not 
be independently sufficient to promote an increased drive for 
food following exercise-induced weight loss. Instead, ∆RMR 
inversely correlated to ∆RRVfood and ∆PMaxfood, suggest-
ing that exercise-induced changes in RMR may promote an 
opposing change in the drive for food, potentially fostering 
a return to pre-intervention levels of FFM. For example, 
individuals with reduced RMR following exercise-induced 
weight loss would subsequently experience an increase in 
their active drive for food in an attempt to reestablish their 
pre-intervention RMR. These data encompass both posi-
tive and negative changes in RMR, suggesting an allostatic 
mechanism that promotes a return to pre-intervention RMR.

Prior studies support a mechanism by which FM is 
regained in excess while FFM returns to pre-weight loss 
levels in a phenomenon commonly known as “fat-overshoot-
ing” [24–26], which can lead to greater adiposity follow-
ing weight loss interventions [27]. According to Dulloo and 
colleagues [28], this phenomenon results in an “increased 
drive to eat which persists beyond the point by which FM is 
restored”. The current data provide a potential mechanism 
that works in concert with these prior findings, however, 
stem from changes in RMR but not FFM.

Table 3  Post-training 
correlations among  PMaxfood, 
 RRVfood, energy intake, fat-free 
mass, fat mass, and resting 
metabolic rate

Data presented are Spearman correlation coefficients and p values
RMR resting metabolic rate, PMaxfood number of schedules of reinforcement completed to gain access to 
food, RRVfood relative reinforcing value of food

Outcome Variable Energy 
intake 
(kcal)

Fat-free mass (kg) Fat mass (kg) RMR (kcal/day)

PMaxfood (schedules) Coefficient 0.30 0.52 0.22 0.26
p 0.120 0.004 0.258 0.167

RRVfood Coefficient 0.05 0.23 − 0.12 0.04
p 0.779 0.231 0.541 0.856

Energy intake (kcal) Coefficient 0.41 − 0.20 0.19
p 0.027 0.292 0.322

RMR (kcal/day) Coefficient 0.85 0.25
p  < 0.0001 0.186
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It is important to note that there were no differences 
in FM, FFM or RMR between baseline and post-training 
in this analysis as we did not control for diet. Participants 

widely varied in their compositional responses to the train-
ing protocol, with some showing positive, and others nega-
tive ∆FFM and ∆RMR. Exercise training can lead to either 
an increased, or decreased FFM [29] depending on energy 
intake and dietary choices, as was exhibited by participants 
in this study. Therefore, the correlational data are a primary 
focal point of the analysis as it provides insight into bidi-
rectional changes in RMR and FFM. Notably, no correla-
tion was observed between ∆FFM and ∆RMR, suggesting 
that ∆RMR can stem from factors other than ∆FFM. These 
factors may include metabolic compensation/adaptive ther-
mogenesis [30], the thermogenic effect of feeding (as diet 
was uncontrolled in this study), and by changes in physical 
activity.

As shown in Table 1, participants decreased  PMaxfood 
from baseline to post-training. As these previously seden-
tary, overweight/obese adults were enrolled in an exercise 
training study, the increased awareness of dietary choices 
likely contributed to the observed decrease in  Pmaxfood for 
these participants [31]. It is unexpected that  PMaxfood would 
remain reduced considering the propensity for weight regain 
following weight loss [32]. Further research is needed to 
determine the duration that  PMaxfood is reduced following 
exercise-induced weight loss and how to most effectively 
reduce  PMaxfood with an exercise program, which would be 
expected to curb energy intake and prove beneficial in main-
taining weight loss.

At baseline, RMR was positively correlated with both 
FFM and FM. Both FFM and FM contribute to RMR as 
metabolically active tissues, but contributions from FFM are 
far greater than FM (see review, [5]). Consistent with prior 
food reinforcement studies, baseline  RRVfood was positively 
correlated with EI [14, 15, 33, 34]. Considering that  RRVfood 
is a measure of the motivational drive to access food, these 
baseline results are in the expected directions and provide 
evidence for the validity of the RMR, body composition, 
food reinforcement, and EI assessment measures.

After training, FFM maintained a strong positive asso-
ciation with RMR further supporting FFM as a primary 
determinant of RMR [5, 7, 35]. Though not correlated 
at baseline, FFM was positively correlated with EI after 
training which suggests that the role of FFM in influenc-
ing EI [36, 37] may be uncovered after exercise-induced 
weight loss. FFM correlated with  PMaxfood, EI, and RMR 
following exercise-induced weight loss, suggesting that 
FFM contributes to RMR, the drive for food, and ulti-
mately increased EI [9]. FFM may, therefore, influence 
the drive for food indirectly, via its contribution to RMR.

The nonsignificant correlation between FM and RMR 
after exercise-induced weight loss suggests that the per-
centage of RMR determined by FM is reduced after train-
ing. Studies show conflicting reports of the association 
of FM with RMR, which has been attributed to either the 
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small energy contribution of FM relative to FFM, or that 
the energy expenditure from FM contributing to RMR is 
relatively insignificant until individuals reach a state of 
obesity [5].

Importantly, this study has strengths and weaknesses 
that should not be overlooked. As this was a secondary 
study assessing a novel research question, methodologic 
precautions were taken to avoid type I statistical error by 
adjusting alpha for multiple comparisons, and setting the 
false discovery rate at 20% for correlational analyses. An 
effort to avoid type II statistical error was accomplished 
using a dataset with high statistical power for the given 
outcome measures (see Analytic plan). Regarding weak-
nesses, the sample population was recruited with the origi-
nal research question in mind. Additionally, the correla-
tions demonstrated in this paper do not prove causation, 
but do support the relationships that we have described 
above. Future research is needed to verify any cause-effect 

directionality, and validate the potential relationships iden-
tified in this secondary data analysis.

Conclusion

Responses in  RRVfood following exercise training may be 
an allostatic response to reestablish pre-intervention RMR. 
The current data suggest that exercise-induced changes in 
RMR may drive an inverse change in the active drive for 
food, potentially promoting a return to pre-intervention 
RMR. Further, negative ∆RMR as a result of weight loss 
was associated with the active drive for food independent 
of ∆FFM. Therefore, limiting reductions in RMR during 
weight loss may benefit weight loss maintenance by limit-
ing increases in  RRVfood. Further studies are warranted to 
confirm the potential relationships identified in this study, 
and substantiate any possible cause–effect relationships.

Table 4  Correlations between 
exercise training-induced 
changes (∆) in energy intake, 
fat-free mass, fat mass, resting 
metabolic rate,  PMaxfood, and 
 RRVfood

Data presented are Spearman correlation coefficients and p values
EI energy intake, FFM fat-free mass, FM fat mass, RMR resting metabolic rate, PMaxfood schedules of rein-
forcement completed to gain access to food, RRVfood relative reinforcing value of food

Outcome Variable ∆EI (kcal) ∆FFM (kg) ∆FM (kg) ∆RMR (kg/day)

∆PMaxfood 
(schedules)

Coefficient − 0.14 0.07 − 0.05 − 0.38
p value 0.466 0.714 0.818 0.041

∆RRVfood Coefficient 0.07 − 0.11 − 0.24 − 0.37
p value 0.729 0.572 0.205 0.049
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