Skip to main content
Log in

Combined action of açai and aerobic exercise training on the development of NAFLD induced by a high-fat diet: a preliminary exploration

  • Original Article
  • Published:
Sport Sciences for Health Aims and scope Submit manuscript

Abstract

Introduction

Non-alcoholic fatty liver disease (NAFLD) is a metabolic condition that comprises a spectrum of liver diseases. Non-pharmacological treatments such as functional food consumption and aerobic exercise training (AET) have been recommended.

Objective

To evaluate the combined effects of açai pulp consumption and AET on the development of NAFLD induced by a high-fat diet.

Methods

Male Fischer rats received either standard or high-fat diet. Animals (21.8% lard and 1% cholesterol) were treated with lyophilized açai pulp (1%), AET or açai plus AET for 8 weeks. Exercise capacity, body fat, serum metabolites (triacylglycerol, total cholesterol, and high-density lipoprotein) and enzymes (lipase, aspartate aminotransferase and alanine aminotransferase), liver macrovesicular steatosis and liver lipid peroxidation (thiobarbituric acid reactive substances—TBARS) were evaluated.

Results

Açai consumption reduced the levels of serum total cholesterol (p = 0.0185). AET with or without açai consumption increased the exercise capacity (p = 0.0097) and reduced body fat (p = 0.0001) similarly. Both AET and açai consumption individually reduced the concentrations of aspartate aminotransferase (p = 0.0103) and TBARS (p = 0.0014). AET with or without açai consumption reduced the degree of macrovesicular steatosis (p < 0.0001) likewise.

Conclusions

Açai consumption or AET protect against increases in serum metabolite (total cholesterol) and enzyme (aspartate aminotransferase) and liver lipid peroxidation (TBARS), whereas AET prevents increases in the degree of macrovesicular steatosis in this model of NAFLD induced by high-fat diet in rats. The combination of treatments, nevertheless, does not provide additional effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Buzzetti E, Pinzani M, Tsochatzis EA (2016) The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metab: Clin Exp 65:1038–1048. https://doi.org/10.1016/j.metabol.2015.12.012

    Article  CAS  Google Scholar 

  2. Cave M, Deaciuc I, Mendez C et al (2007) Nonalcoholic fatty liver disease: predisposing factors and the role of nutrition. J Nutr Biochem 18:184–195. https://doi.org/10.1016/j.jnutbio.2006.12.006

    Article  CAS  PubMed  Google Scholar 

  3. Vasconcelos MAM, Galeão RR, Carvalho AV et al (2006) Práticas de colheita e manuseio do Açaí. Embrapa Amazônia Oriental, Belem, p 22

    Google Scholar 

  4. Carvalho MMF, Lage NN, Paulino AHS et al (2019) Effects of açai on oxidative stress, ER stress, and inflammation-related parameters in mice with high fat diet-fed induced NAFLD. Sci Rep 9:8107. https://doi.org/10.1038/s41598-019-44563-y

    Article  CAS  Google Scholar 

  5. de Souza MO, Silva M, Silva ME et al (2010) Diet supplementation with acai (Euterpe oleracea Mart.) pulp improves biomarkers of oxidative stress and the serum lipid profile in rats. Nutrition 26:804–810. https://doi.org/10.1016/j.nut.2009.09.007

    Article  CAS  PubMed  Google Scholar 

  6. Guerra JFC, Maciel PS, Abreu ICME et al (2015) Dietary açai attenuates hepatic steatosis via adiponectin-mediated effects on lipid metabolism in high-fat diet mice. J Funct Foods 14:192–202. https://doi.org/10.1016/j.jff.2015.01.025

    Article  CAS  Google Scholar 

  7. Pereira RR, de Abreu IC, Guerra JF et al (2016) Acai (Euterpe oleracea Mart.) upregulates paraoxonase 1 gene expression and activity with concomitant reduction of hepatic steatosis in high-fat diet-fed rats. Oxid Med Cell Longev 2016:8379105. https://doi.org/10.1155/2016/8379105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nath P, Panigrahi MK, Sahu MK et al (2020) Effect of exercise on NAFLD and its risk factors: comparison of moderate versus low intensity exercise. J Clin Transl Hepatol 8:120–126. https://doi.org/10.14218/JCTH.2019.00012

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kapravelou G, Martinez R, Andrade AM et al (2015) Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats. Appl Physiol Nutr Metab 40:1242–1252. https://doi.org/10.1139/apnm-2015-0141

    Article  CAS  PubMed  Google Scholar 

  10. Hajighasem A, Farzanegi P, Mazaheri Z et al (2018) Effects of resveratrol, exercises and their combination on Farnesoid X receptor, liver X receptor and Sirtuin 1 gene expression and apoptosis in the liver of elderly rats with nonalcoholic fatty liver. PeerJ 6:e5522. https://doi.org/10.7717/peerj.5522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hajighasem A, Farzanegi P, Mazaheri Z (2019) Effects of combined therapy with resveratrol, continuous and interval exercises on apoptosis, oxidative stress, and inflammatory biomarkers in the liver of old rats with non-alcoholic fatty liver disease. Arch Physiol Biochem 125:142–149. https://doi.org/10.1080/13813455.2018.1441872

    Article  CAS  PubMed  Google Scholar 

  12. de Bem GF, Costa CA, Santos IB et al (2018) Antidiabetic effect of Euterpe oleracea Mart. (acai) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: a positive interaction. PloS One 13:e0199207. https://doi.org/10.1371/journal.pone.0199207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kong AN, Owuor E, Yu R et al (2001) Induction of xenobiotic enzymes by the MAP kinase pathway and the antioxidant or electrophile response element (ARE/EpRE). Drug Metab Rev 33:255–271. https://doi.org/10.1081/DMR-120000652

    Article  CAS  PubMed  Google Scholar 

  14. Narasimhan M, Rajasekaran NS (2016) Exercise, Nrf2 and antioxidant signaling in cardiac aging. Front Physiol 7:241. https://doi.org/10.3389/fphys.2016.00241

    Article  PubMed  PubMed Central  Google Scholar 

  15. Charan J, Kantharia ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4:303–306. https://doi.org/10.4103/0976-500X.119726

    Article  PubMed  PubMed Central  Google Scholar 

  16. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American institute of nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123:1939–1951. https://doi.org/10.1093/jn/123.11.1939

    Article  CAS  PubMed  Google Scholar 

  17. Lavorato VN, Del Carlo RJ, da Cunha DN et al (2016) Mesenchymal stem cell therapy associated with endurance exercise training: effects on the structural and functional remodeling of infarcted rat hearts. J Mol Cell Cardiol 90:111–119. https://doi.org/10.1016/j.yjmcc.2015.12.012

    Article  CAS  PubMed  Google Scholar 

  18. Nielsen SS (2010) Food analysis laboratory manual. Springer, Heidelberg

    Book  Google Scholar 

  19. Brunt EM, Janney CG, Di Bisceglie AM et al (1999) Nonalcoholic steatohepatitis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94:2467–2474. https://doi.org/10.1111/j.1572-0241.1999.01377

    Article  CAS  PubMed  Google Scholar 

  20. Buege JA, Aust SD (1978) Microsomal lipid peroxidation. Methods Enzymol 52:302–310. https://doi.org/10.1016/s0076-6879(78)52032-6

    Article  CAS  PubMed  Google Scholar 

  21. Akiyama T, Tachibana I, Shirohara H et al (1996) High-fat hypercaloric diet induces obesity, glucose intolerance and hyperlipidemia in normal adult male Wistar rat. Diabetes Res Clin Pract 31:27–35. https://doi.org/10.1016/0168-8227(96)01205-3

    Article  CAS  PubMed  Google Scholar 

  22. Inserte J, Aluja D, Barba I et al (2019) High-fat diet improves tolerance to myocardial ischemia by delaying normalization of intracellular PH at reperfusion. J Mol Cell Cardiol 133:164–173. https://doi.org/10.1016/j.yjmcc.2019.06.001

    Article  CAS  PubMed  Google Scholar 

  23. Burke LM, Ross ML, Garvican-Lewis LA et al (2017) Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J Physiol 595:2785–2807. https://doi.org/10.1113/JP273230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kemi OJ, Ellingsen O, Smith GL et al (2008) Exercise-induced changes in calcium handling in left ventricular cardiomyocytes. Front Biosci 13:356–368. https://doi.org/10.2741/2685

    Article  CAS  PubMed  Google Scholar 

  25. Kemi OJ, Haram M, Wisloff U et al (2004) Aerobic fitness is associated with cardiomyocyte contractile capacity and endothelial function in exercise training and detraining. Circulation 109:2897–2904. https://doi.org/10.1161/01.CIR.0000129308.04757.72

    Article  PubMed  Google Scholar 

  26. Farhat F, Dupas J, Amérand A et al (2015) Effect of exercise training on oxidative stress and mitochondrial function in rat heart and gastrocnemius muscle. Redox Rep 20:60–68. https://doi.org/10.1179/1351000214Y.0000000105

    Article  CAS  PubMed  Google Scholar 

  27. Merry TL, Ristow M (2016) Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training? J Physiol 594:5135–5147. https://doi.org/10.1113/JP270654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lambert K, Demion M, Lagace JC, Hokayem M, Dass M, Virsolvy A et al (2021) Grape polyphenols and exercise training have distinct molecular effects on cardiac hypertrophy in a model of obese insulin-resistant rats. J Nutr Biochem 87:108522. https://doi.org/10.1016/j.jnutbio.2020.108522

    Article  CAS  PubMed  Google Scholar 

  29. Connor WE, DeFrancesco CA, Connor SL (1993) N-3 fatty acids from fish oil. Effects on plasma lipoproteins and hypertriglyceridemic patients. Ann NY Acad Sci 683:16–34. https://doi.org/10.1111/j.1749-6632.1993.tb35689.x

    Article  CAS  PubMed  Google Scholar 

  30. Park Y, Park EM, Kim EH et al (2014) Hypocholesterolemic metabolism of dietary red pericarp glutinous rice rich in phenolic compounds in mice fed a high cholesterol diet. Nutr Res Pract 8:632–637. https://doi.org/10.4162/nrp.2014.8.6.632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lopes JMM, Lage NN, Guerra JFC et al (2018) A preliminary exploration of the potential of Eugenia uvalha Cambess juice intake to counter oxidative stress. Food Res Int 105:563–569. https://doi.org/10.1016/j.foodres.2017.11.067

    Article  CAS  PubMed  Google Scholar 

  32. Farzanegi P, Dana A, Ebrahimpoor Z et al (2019) Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): roles of oxidative stress and inflammation. Eur J Sport Sci 19:994–1003. https://doi.org/10.1080/17461391.2019.1571114

    Article  PubMed  Google Scholar 

  33. Rice-Evans CA, Miller NJ, Paganga G (1996) Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20:933–956. https://doi.org/10.1016/0891-5849(95)02227-9

    Article  CAS  PubMed  Google Scholar 

  34. Yahfoufi N, Alsadi N, Jambi M et al (2018) The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10:1618. https://doi.org/10.3390/nu10111618

    Article  CAS  PubMed Central  Google Scholar 

  35. Roshan VD, Assali M, Moghaddam AH et al (2011) Exercise training and antioxidants: effects on rat heart tissue exposed to lead acetate. Int J Toxicol 30:190–196. https://doi.org/10.1177/1091581810392809

    Article  CAS  PubMed  Google Scholar 

  36. Carvalho MMF, Reis LLT, Lopes JMM, Lage NN, Guerra JFC, Zago HP et al (2018) Açai improves non-alcoholic fatty liver disease (NAFLD) induced by fructose. Nutr Hosp 35:318–325. https://doi.org/10.20960/nh.1294

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported in part by Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). AJ Natali is a CNPq fellow.

Funding

Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Neiva Lavorato.

Ethics declarations

Conflict of interest

The authors declare that no conflict of interest.

Ethical approval

The present study was approved by the local ethics committee, under approval number (CEUA UFOP-22/2016).

Human and animal rights

All procedures performed in studies involving animals were in accordance with ethical standards of the institutional and/or national research committee and with the Ethics Commission on Animal Use (CEUA UFOP-22/2016).

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavorato, V.N., de Miranda, D.C., Drummond, F.R. et al. Combined action of açai and aerobic exercise training on the development of NAFLD induced by a high-fat diet: a preliminary exploration. Sport Sci Health 18, 509–515 (2022). https://doi.org/10.1007/s11332-021-00831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11332-021-00831-x

Keyword

Navigation