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Abstract
Purpose This study aimed to develop an unobtrusive method for home sleep apnea testing (HSAT) utilizing micromotion 
signals obtained by a piezoelectric rubber sheet sensor.
Methods Algorithms were designated to extract respiratory and ballistocardiogram components from micromotion signals 
and to detect respiratory events as the characteristic separation of the fast envelope of the respiration component from the 
slow envelope. In 78 adults with diagnosed or suspected sleep apnea, micromotion signal was recorded with a piezoelectric 
rubber sheet sensor placed beneath the bedsheet during polysomnography. In a half of the subjects, the algorithms were 
optimized to calculate respiratory event index (REI), estimating apnea–hypopnea index (AHI). In the other half of subjects, 
the performance of REI in classifying sleep apnea severity was evaluated. Additionally, the predictive value of the frequency 
of cyclic variation in heart rate (Fcv) obtained from the ballistocardiogram was assessed.
Results In the training group, the optimized REI showed a strong correlation with the AHI (r = 0.93). Using the optimal 
cutoff of REI ≥ 14/h, subjects with an AHI ≥ 15 were identified with 77.8% sensitivity and 90.5% specificity. When applying 
this REI to the test group, it correlated closely with the AHI (r = 0.92) and identified subjects with an AHI ≥ 15 with 87.5% 
sensitivity and 91.3% specificity. While Fcv showed a modest correlation with AHI (r = 0.46 and 0.66 in the training and 
test groups), it lacked independent predictive power for AHI.
Conclusion The analysis of respiratory component of micromotion using piezoelectric rubber sheet sensors presents a prom-
ising approach for HSAT, providing a practical and effective means of estimating sleep apnea severity.

Keywords Sleep apnea · Micromotion · Piezoelectric rubber sheet sensor · Respiratory event index · Home sleep apnea 
testing

Introduction

Home sleep apnea testing (HSAT) [1], as a means of screen-
ing sleep apnea, plays a crucial role in efficiently utilizing 
the limited medical resources of polysomnographic examina-
tion. Various types of sensors are utilized in HSAT devices, 
including those for measuring nasal pressure/temperature 

[2], respiratory inductance plethysmography [3], peripheral 
arterial tonometry [4, 5], oximetry [6], electrocardiography 
[7, 8], pulse wave photo-plethysmography [9], radio-wave 
Doppler effect [10] and bed-embedded micromotion sen-
sors [11–14]. Generally, it is believed that the accuracy of 
sleep apnea detection improves with an increased number 
of signals measured [15]. However, considering the con-
venience of HSAT, it is desirable to minimize the number 
of sensors used and the effort required to wear them [16]. 
Thus, the optimal signal and measurement method should 
be selected by considering the tradeoff between accuracy 
and convenience.

Among the sensors utilized in HSAT, micromotion 
sensing by sheet sensors positioned beneath the bedsheet 
presents the notable advantage of enabling users to sleep 
without the need for wearing sensors or electrodes while 
remaining unaware of their presence. Additionally, these 
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sensors possess a unique feature of capturing respiration 
and ballisttocardioram as well as body movement using a 
single sensor device [13]. Thus, they could be a promising 
solution for HSAT, effectively meeting both accuracy and 
convenience requirements simultaneously. In this study, we 
developed an unobtrusive method for HSAT utilizing a pie-
zoelectric rubber sheet sensor. We designated algorithms to 
extract respiration and ballistocardiogram signals, allowing 
for the scoring of the respiratory event index (REI) [16, 17], 
as well as measuring the frequency (Fcv) of cyclic variation 
of heart rate (CVHR) [7, 8, 18]. The performance of REI 
and Fcv in classifying sleep apnea severity was assessed 
using the apnea–hypopnea index (AHI) obtained from the 
simultaneous polysomnogram as a reference standard.

Methods

Ethics approval and consent to participate

All procedures were performed in accordance with the 
protocol that was approved by the Research Ethics Com-
mittee of the Center for Data-driven Science and Artificial 
Intelligence, Tohoku University, Japan (registration number 
2022–7). All subjects participated in this study gave their 
written informed consent.

Subjects

The eligible subjects for this study were patients who 
underwent an overnight polysomnography due to suspected 
or diagnosed sleep disordered breathing at Gifu Mates 
Sleep Clinic in Gifu, Japan, between September 2022 and 
December 2022. The inclusion criterion was adulthood (age 
20 years or older). Subjects were excluded if they had con-
tinuous atrial fibrillation, experienced acute illness, or had 
exacerbation of chronic diseases requiring hospitalization 
within the past three months. Additionally, individuals who 
were pregnant or breastfeeding were also excluded.

Protocol

The polysomnographic examination was performed with an 
Alice diagnostic sleep system (Philips-Respironics, Murrys-
ville, PA, USA Philips Respironics, The Netherlands). The 
examination was initiated at the subject's customary bedtime 
and continued until the subject awoke the next morning, dur-
ing which micromotions were continuously measured by a 
commercially available piezoelectric rubber sheet sensor 
device (Moni Life wellness®, Sumitomo Riko Company 
Limited, Komaki, Aichi, Japan).

Subjects were randomly allocated into a training group 
and a test group. Using the data from the training group, 

we developed and optimized the algorithms for sleep apnea 
detection, constructed regression models to estimate sleep 
apnea severity, and identified the optimal cutoff values 
for classifying the severity. Using the data from the test 
group, we evaluated the classification performance of the 
algorithms.

Measurements

The polysomnograms were recorded with the standard mon-
tages consisting of F4-M1, F4-M2, C4-M1, C3-M2, O2-M1, 
and O1-M2 electroencephalograms, left and right electrooc-
ulograms, a submental electromyogram, a nasal pressure 
cannula, oronasal airflows, left and right tibial electromyo-
grams, thoracoabdominal inductance plethysmograms, pulse 
oximetric arterial blood oxygen saturation, a neck micro-
phone, body position sensors, and a modified lead II ECG.

Sleep stages, apneic and hypopneic indices (AI and HI, 
respectively), and AHI were scored according to the Ameri-
can Association of Sleep Medicine (AASM) Manual for the 
Scoring of Sleep and Associated Events, Version 2.5 [19] by 
registered polysomnogram technicians. AHI was calculated 
both with the total recording time (TRT) as the denomina-
tor  (AHITRT ) and total sleep time (TST) as the denominator 
 (AHITST). The  AHITRT  was used as the reference standard 
for developing algorithms for sleep apnea detection from the 
micromotion signal. The  AHITST was used to classify sleep 
apnea severity, with < 5 defined as normal, 5–15 as mild, 
15–30 as moderate, and ≥ 30 as severe sleep apnea. The 
ECG signal of the polygraph was sampled at a frequency of 
100 Hz. All QRS complexes were identified and annotated 
as normal (sinus rhythm), ventricular ectopic beat, supraven-
tricular ectopic beat, and artifact.

The piezoelectric rubber sheet sensor, depicted in Fig. 1, 
had dimensions of 811 mm in length, 60 mm in width, and 
0.9 mm in thickness and a weight of 220 g. It was positioned 
beneath the bedsheet at a level from the subject's axilla to the 
lower end of the sternum body. The signal was digitized at 
100 Hz with a 24-bit dynamic range (±  223, from -8,388,608 
to + 8,388,608) and the device outputted the data to a CSV 
file.

Development of REI algorithms

The details of the algorithms are reported in Appendix. 
Briefly, first, the algorithm extracted respiratory, body 
movement, and ballistocardiogram components from the 
micromotion signal of the piezoelectric rubber sheet sen-
sor using band-pass filters set to their respective frequency 
ranges (0.08–0.5, 2–3, and 4–11 Hz) (Fig. 2). Second, the 
respiratory component signals were rectified to reflect the 
magnitude of respiratory motion and natural logarithm 
transformation was performed to minimize the effects of 
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large changes in respiratory amplitude and large noise. 
Third, two types of upper (95th percentile point) envelopes 
(fast and slow) were generated; the fast envelope depicted 
breath-by-breath amplitude changes, while the slow enve-
lope presented the local trend of submaximum amplitude. 
The use of the 95th percentile points for the envelopes 
excluded outliers with an incidence < 5%. Fourth, peri-
ods in which the fast envelope separated downward from 
the slow envelope to an extent greater than a threshold 
(depth threshold) were detected. Fifth, when the length of 
a period was within a range (duration criteria), the period 
was considered to be a respiratory event. Finally, REI was 
calculated as the frequency of respiratory events per hour 
of TRT.

The optimal values of depth threshold and duration crite-
ria were determined in the training group using a grid-search 
method. This involved repeated analyses with small param-
eter adjustments until the closest correlation between REI 
and AHI was achieved. Because the amplitude of respiratory 
movement detected by the sheet sensor varied substantially 
with body position, a percentage reduction was employed 
as the depth threshold to adapt to the variations. The search 
for the optimal depth threshold was conducted in 1% incre-
ments, while the optimal lower and upper duration criteria 
were determined at 10-s intervals.

The source code for these algorithms was written in FOR-
TRAN 95 and compiled on Microsoft Windows 10 by the 
Silverfrost Fortran (FTN95) compiler (Elgin, IL, USA).

Analysis of Fcv

Fcv was measured not only from the heartbeat interval of the 
ballistocardiogram but also from ECG R-R interval of the 
polysomnography (ECG-Fcv). The method for measuring 
the heartbeat interval from ballistocardiogram is reported 
in Appendix. CVHR was detected by previously published 
algorithm [7, 8, 18] and Fcv and ECG-Fcv was computed 
as the frequency of CVHR per hour of TRT. The ECG-Fcv 
was used to determine whether the association between bal-
listocardiogram Fcv and  AHITRT  is affected by the accuracy 
of ballistocardiogram-based heartbeat interval measurement.

Statistical analysis

The statistical analyses were performed using the program 
package of Statistical Analysis System (SAS Institute, Cary, 
NC, USA). Between-group differences in quantitative and 
categorical variables were assessed using the Wilcoxon rank 
sum test and χ2 test, respectively. The relationships between 
 AHITRT  and REI, Fcv, and ECG-Fcv were evaluated with 
Pearson's correlation coefficient. The multivariate regres-
sions were performed using the SAS REG procedure. The 
classification performance of REI, Fcv, and ECG-Fcv for 
binary sleep apnea severity was evaluated by the area under 
the curve (AUC) of the receiver-operating characteristic 
(ROC) curve. The classification performance for four sever-
ity levels (normal, mild, moderate, and severe) was exam-
ined by the percentages of subjects correctly classified and 
misclassified off by one, two, and three classes. The optimal 
REI cutoff values for these classifications were determined 
by balancing sensitivity and specificity by ROC curve analy-
sis in the training group and then evaluated in the test group. 
Statistical significance was defined as P < 0.05.

Results

Subjects’ characteristics

We enrolled a total of 78 consecutive subjects (21 females) 
with a median (interquartile range, IQR) age of 49 (38–62) 
years who underwent polysomnography for diagnostic 
purposes (n = 54, 69%) or evaluation of therapeutic effects 
(n = 24, 31%). The polysomnography revealed that the 
median (IQR)  AHITST was 13.4 (3.6 to 23.8), with 34 (44%) 
subjects classified as having moderate-to-severe sleep apnea 
 (AHITST ≥ 15) and 18 (23%) subjects classified as having 
severe sleep apnea  (AHITST ≥ 30). Among apnea episodes, 
obstructive, central, and mixed types accounted for 72%, 
4%, and 24%, respectively. Half (n = 39) of the subjects were 
assigned to the training group and the other half (n = 39) 
to the test group. There were no significant differences in 

Fig. 1  Schema of piezoelectric rubber sheet sensor used for measur-
ing micromotion
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the characteristics of the subjects between the two groups 
(Table 1).

Grid search for optimal parameters

In the training group, the grid search was conducted to deter-
mine the optimal parameter values. The results revealed 
that the closest correlation between REI and  AHITRT  was 
achieved when the depth threshold was set at 30% (equiva-
lent to a natural-logarithmic transformed amplitude differ-
ence of ln (1.43)) and the duration criteria was configured to 
select dips with a length between 10 and 70 s as respiratory 
events. These parameters were used for analyzing the data 
in the test group.

Estimation of  AHITRT  by REI and Fcv

In the training group, the REI calculated with the optimized 
parameters closely correlated with  AHITRT  (r = 0.93), while 

the Fcv and ECG-Fcv correlated with correlation coeffi-
cients of 0.46 and 0.76, respectively (Fig. 3). When apply-
ing the same algorithms and parameters to the data in the 
test group, the correlation coefficients became 0.92, 0.66, 
and 0.77 for REI, Fcv, and ECG-Fcv, respectively. Notably, 
in both the training group and test group, the correlations 
of Fcv were lower compared to those of REI, as well as 
the correlations of ECG-Fcv. These differences were partly 
attributed to the impact of PLM on Fcv (Figs. 3 and 4). 
When excluding subjects with a PLM index of ≥ 15, the cor-
relation coefficients of REI, Fcv, and ECG-Fcv became 0.92, 
0.68, and 0.76, respectively, in the training group and 0.91, 
0.70, and 0.79, respectively, in the test group.

Multiple regression analyses were performed to assess the 
relationship between  AHITRT  and the combination of REI 
and Fcv in the training and test groups. In either group, the 
inclusion of Fcv lead to no significant improvement in the 
multiple correlation when REI was already included, even 
when the subjects with PLM index of ≥ 15 were excluded.

Fig. 2  Detection of sleep apnea 
by micromotion signal from pie-
zoelectric rubber sheet sensor. 
A series of sleep apnea attacks 
began to appear at 04:28, with 
the fast upper envelope of 
respiration (red line in panel b) 
declining from the slow upper 
envelope (blue line in panel 
b) and showing periodic dips. 
Panel d is the enlarged image 
of frame b’ in panel b. Periods 
in which the dip of the fast 
upper envelope (red line) from 
the slow upper envelope (blue 
line) exceeds a depth threshold 
(ln (1.43), which corresponds 
to a 30% drop) are indicated by 
vertical lines (cyan). When the 
length (L) of a period meets 
duration criteria (10 to 70 s), 
the period is considered to be a 
respiratory event
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Sleep apnea severity classification by REI

Table 2 displays the results of the ROC curve analysis evalu-
ating the classification performance of sleep apnea severity 
using the REI, Fcv, and ECG-Fcv. In both the training and 
test groups, the REI demonstrated favorable classification 
performance, as indicated by AUC values exceeding 0.9, 
for both moderate-to-severe sleep apnea and severe sleep 
apnea. The AUC values of REI were higher than those of 
Fcv for both levels of severity and those of ECG-Fcv for 
severe sleep apnea.

The ROC curve analysis in the training group revealed 
that REI ≥ 14 and REI ≥ 24 were optimal cutoff values for 
detecting moderate-to-severe sleep apnea and severe sleep 
apnea, respectively (Table 3). When applying these cutoff 
values to the data in the test group, 87.5% sensitivity and 
91.3% specificity for moderate-to-severe sleep apnea and 
87.5% sensitivity and 96.8% specificity for severe sleep 
apnea were obtained (Table 3).

Finally, in the training group, the most favorable out-
come for the classification of severity into four levels was 
achieved by incorporating cutoff values of REI < 9 to define 
the normal category, and 9 to 14 to define mild sleep apnea 
(Table 4). Subsequently, When applying these identical 
cutoff values to the test group, the classification accuracy 
reached 56.4% and 82% of the misclassifications were off 
by one class and the rest (18%) were off by two classes 
(Table 4).

Table 1  Subjects’ characteristics in the training and test groups

Data are median (IQR) or frequency (%)
* Significance of difference by Wilcoxon rank sum test
AHI = apnea–hypopnea index, AI = apnea index, CAI = central apnea 
index, HI = hypopnea index, BMI = body mass index, CPAP = con-
tinuous positive airway pressure, MAI = mixed apnea index, 
OHI = obstructive apnea index, PLM = periodic leg movement. The 
denominator for AHI, AI, HI, OAI, CAI, and MAI is TST (in hour)

Training group Test group P*
N = 39 N = 39

Age, year 55 (42–67) 45 (36–52) 0.5
Female, n (%) 11 (28%) 10 (26%) 0.7
BMI, kg/m2 24.8 (22.9–28.7) 25.3 (21.6–30.8) 0.4
Purpose of polysomnog-

raphy
0.5

Diagnosis, n(%) 26 (66%) 28 (71%)
CPAP titration, n(%) 10 (26%) 10 (26%)
Other, n(%) 3 (8%) 1 (3%)
Total recording time, min 474 (447–485) 467 (458–482) 0.2
Total sleep time, min 369 (317–417) 406 (356–424) 0.3
Sleep efficiency, % 82.7 (70.6–87.4) 85.3 (76.7–91.8) 0.7
AHITST 13.9 (4.1–47.4) 12.9 (2.8–23.8) 0.5
AITST 1.4 (0.3–9.5) 1.2 (0.3–6.2) 0.6
HITST 7.2 (2.7–16.8) 10.8 (2.8–17.4) 0.7
OAITST 0.8 (0.0–6.5) 0.3 (0.0–6.2) 0.7
CAITST 0.2 (0.0–0.4) 0.1 (0.0–0.6) 0.3
MAITST 0.2 (0–0.5) 0.1 (0–0.5) 0.5
AHITST ≥ 15 18 (46%) 16 (41%) 0.6
AHITST ≥ 30 10 (26%) 8 (21%) 0.5
PLM index ≥ 15 1 (3%) 2 (5%) 0.5

Fig. 3  Correlation of alternative 
measures of AHI with the true 
measure in the training group 
(panels a-c) and test group 
(panels d-f).  Subjects with a 
PLM index ≥ 15. AHI = apnea–
hypopnea index, ECG = elec-
trocardiogram, Fcv = frequency 
of cyclic variation of heart rate, 
PLM periodic leg movement, 
PSG = polysomnography, 
REI = respiratory event index, 
TRT = total recording time PSG AHITRT
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Discussion

To develop an unobtrusive method for HSAT utilizing 
micromotion signals detected by a piezoelectric rubber 
sheet sensor, we developed algorithms to extract respira-
tory and ballistocardiogram components from these sig-
nals and detect respiratory events. In a group of 78 adult 
subjects with diagnosed or suspected sleep apnea, data 
from half of the subjects were used to optimize algorithms 
to calculate REI estimating  AHITRT , while the other half 
was used to evaluate REI's performance in classifying 
sleep apnea severity. Additionally, the predictive value 
of Fcv from the ballistocardiogram was assessed. The 

optimized REI closely correlated with AHI, effectively 
identifying subjects with AHI ≥ 15 with high sensitivity 
and specificity in both training and test groups. However, 
while Fcv showed a modest correlation with AHI, it lacked 
independent predictive power. These results suggest that 
analyzing the respiratory component of micromotion using 
piezoelectric rubber sheet sensors offers a promising and 
practical avenue for HSAT, providing an effective means 
of estimating sleep apnea severity.

Although the analysis of micromotion signals has garnered 
increasing attention as a noninvasive method for obtaining 
respiration and heartbeat signals during sleep [11–14, 20], 
the use of these signals requires addressing two crucial chal-
lenges: the frequent inclusion of substantial noise, even with 
minimal body movements, and the notable variability in the 
magnitude of the respiratory signal with changes in body 
posture and position. The REI assessment algorithms devel-
oped in this study addressed these issues by a method utiliz-
ing the fast and slow envelopes of the 95th percentile points 
of logarithmically transformed respiratory amplitude. By 
employing the 95th percentile points for the envelopes, the 
influences of outliers with an incidence < 5% were excluded. 
Moreover, the logarithmic transformation minimized exten-
sive deviations of the envelopes caused by large noise. As 
sleep apnea–hypopnea events were identified based on the 
relative percent reduction in the fast envelope compared to 
the slow envelope, the detection threshold automatically 
adapted to variations in respiratory amplitude reflected in the 
slow envelope. With these features, the algorithms provided 
an optimized REI that identified subjects with an AHI ≥ 15 
with a sensitivity of 87.5% and specificity of 91.3% in the test 
group. This classification performance compared favorably 
even with the performance of Type 3 HSAT devices stud-
ied in the American Academy of Sleep Medicine's clinical 
guidelines for sleep apnea diagnosis (six devices studied in 
457 participants, with sensitivity ranging from 62 to 94% and 
specificity ranging from 25 to 97%) [21].

a

b

c

Fig. 4  Micromotion signal from piezoelectric rubber sheet sensor 
and extracted respiratory and body movement signals during an event 
of periodic leg movement in a subject with a periodic leg movement 
index of 108.8

Table 2  Receiver operating 
characteristic curve analysis 
of sleep apnea severity 
classification performance by 
REI

* Significance of difference of the AUC of REI

N AUC 
(95%CI)

Difference, P*

Yes No REI Fcv ECG-Fcv REI vs ECG-Fcv REI vs Fcv

Training group
AHITST ≥ 15 18 21 0.907

(0.771–0.976)
0.685
(0.517–0.824)

0.694
(0.527–0.832)

0.02 0.01

AHITST ≥ 30 10 29 0.997
(0.903–1.00)

0.866
(0.718–0.953)

0.826
(0.671–0.928)

0.1 0.03

Test group
AHITST ≥ 15 16 23 0.937

(0.811–0.99)
0.614
(0.445–0.765)

0.682
(0.514–0.822)

0.004 0.0003

AHITST ≥ 30 8 31 0.980
(0.874–1.00)

0.839
(0.686–0.937)

0.782
(0.621–0.898)

0.05 0.02
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In previous studies investigating sleep apnea–hypopnea 
detection through micromotion, these challenges were 
addressed using diverse approaches. Agatsuma et al. [11] 
evaluated the performance of a sheet sensor, SD-101, for 

HSAT. The SD-101 consisted of 162 membrane-type pres-
sure sensors arranged on a sheet 1235 mm long, 555 mm 
wide, and 5 to 7 mm thick. The device had the ability to auto-
matically find and select one of the 162 sensors that most 
significantly sensed respiratory motion and had the least 
noise. In 201 patients with suspected sleep apnea, the REI 
measured by the SD-101 correlated with  AHITRT  (r = 0.88); 
REI ≥ 14 identified patients with  AHITST ≥ 15 with 89.5% 
sensitivity and 85.8% specificity. Their findings were repli-
cated by Kobayashi et al. [22], with a correlation coefficient 
of 0.87 and a sensitivity of 87.5% and specificity of 85.7% 
for identification of patients with  AHITST ≥ 15. Sadek et al. 
[13] conducted a study using a microbend fiber optic sen-
sor mat measuring 20 cm × 50 cm × 0.5 cm in ten patients 
with obstructive sleep apnea. They devised an adaptive his-
togram-based thresholding approach for detecting respira-
tory events. This method involved creating a histogram from 
the absolute deviations of respiratory signal in overlapping 
60-s segments and determined the optimal cutoff to detect 
segments with a respiratory event. Using this approach, they 
achieved a sensitivity of 57.07% and a specificity of 45.26% 
in detecting true individual respiratory events. Coluzzi et al. 
[14] developed a multi-scale algorithm for detecting sleep 
fragmentation. The algorithm analyzed the cumulative his-
togram of quiet sleep segment lengths derived from micro-
motion signals obtained by a pressure bed sensor measuring 
64 cm × 64 cm. They reported that the ratio between the 
total fragmented sleep time and the total moving time had a 
correlation coefficient of 0.85 with AHI in 18 subjects who 
underwent polysomnography. Finally, Weinreich et al. [20] 
conducted a study in 57 patients with obstructive sleep apnea 
or PLM using Sleep Minder, a radio wave Doppler sensor, 

Table 3  Confusion table 
of sleep apnea severity 
classification by REI in the 
training and test groups

Training group
Cutoff AHITST ≥ 15 AHITST < 15

REI  ≥ 14 14 2 PPA = 87.5%
 < 14 4 19 NPA = 82.6%

Sensitivity = 77.8 Specificity = 90.5% Accuracy = 84.6%
Cutoff AHI ≥ 30 AHI < 30

REI  ≥ 24 10 1 PPA = 90.9%
 < 24 0 28 NPA = 100.0%

Sensitivity = 100% Specificity = 96.6% Accuracy = 97.4%
Test group

Cutoff AHITST ≥ 15 AHITST < 15
REI  ≥ 14 14 2 PPA = 91.3%

 < 14 2 21 NPA = 87.5%
Sensitivity = 87.5% Specificity = 91.3% Accuracy = 87.2%

Cutoff AHI ≥ 30 AHI < 30
REI  ≥ 24 7 1 PPA = 87.5%

 < 24 1 30 NPA = 96.8%
Sensitivity = 87.5% Specificity = 96.8% Accuracy = 94.9%

Table 4  Four-level severity classification of sleep apnea by REI in the 
training group

For the training group, accuracy (correct classification ratio) is 74.4% 
and misclassification off by 1 and 2 classes are 70% and 30%, respec-
tively. For the test group, accuracy (correct classification ratio) is 
56.4% and misclassification off by 1 and 2 classes are 82% and 18%, 
respectively. The sensitivity in the table is the proportion of subjects 
in the AHI class who were classified in that class, and the specificity 
is the proportion of subjects not in the AHI class who were identified 
as not in that class

AHITST

 < 5
Normal

5–15
Mild

15–30
Moderate

 ≥ 30
Severe

Training group
REI  < 9 12 3 2 0

9–14 1 3 2 0
14–24 0 1 4 0
 ≥ 24 0 1 0 10

Sensitivity, % 92 38 50 100 92
Specificity, % 81 90 97 97 81
Test group
REI  < 9 7 7 2 0

9–14 4 3 0 0
14–24 1 1 5 1
 ≥ 24 0 0 1 7

Sensitivity, % 58 27 63 88 58
Specificity, % 67 86 90 97 67
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that enabled non-contact micromotion sensing. The detec-
tion algorithm employed by the device was not disclosed. 
While the AHI estimated by this device had a correlation 
coefficient of 0.57 with the true AHI, it displayed a correla-
tion coefficient of 0.79 with the sum of the true AHI and 
PLMI by the polysomnography. Moreover, it successfully 
identified patients with a sum of AHI + PLMI ≥ 15/h with a 
sensitivity of 92.2% and a specificity of 95.8%. Due to dif-
ferences in device type, study subjects, and taction target, 
comparing the performance of algorithms is not feasible. 
Nonetheless, the algorithms proposed in this study might 
be simpler and more straightforward, thereby enabling wide 
utilization across various types of micromotion sensors.

We analyzed heartbeat signal as well as respiration and 
evaluated the association between Fcv and  AHITRT , but the 
correlation was modest. The disparity between ECG R-R 
intervals and ballistocardiogram heartbeat intervals may 
contribute the lower correlation of Fcv. In fact, the ECG-
Fcv demonstrated a closer correlation with  AHITRT  than 
Fcv. Another potential factor for this difference might be the 
greater influence of PLM on ballistocardiogram CVHR than 
on ECG CVHR. PLM is known to be associated with CVHR, 
and differentiating CVHR caused by PLM from CVHR due 
to sleep apnea/hypopnea is generally challenging [7]. After 
excluding subjects with a PLM index of 15 or higher, the 
correlation between Fcv and  AHITRT  improved, but was still 
lower compared to that between REI and  AHITRT . REI was 
not affected by PLM, and when combined with REI, Fcv had 
no significant predictive value for  AHITRT . In terms of sleep 
apnea detection using the micromotion signal, the analysis of 
the Fcv may not be critical. However, the analysis of heart-
beat and body movement would be valuable in evaluating 
sleep quality, as supported by earlier studies [13, 23, 24].

Finally, regarding HSAT devices, piezoelectric rubber 
sheet sensors have excellent characteristics: small size, light 
weight, and thin profile. These features would improve not 
only the ease of incorporating the sensor into bedding but 
also portability and practicality, reduce the burden of trans-
fers between beds and patient rooms, and facilitate lending 
from the clinic to patients. Given the significant variability 
in sleep apnea severity from night to night [18], prolonged 
monitoring over multiple nights in a home setting is desir-
able to accurately assess the disease's characteristics in 
real-world conditions. In such scenarios, the small and light-
weight design of the device becomes crucial for convenient 
handling and ensuring effective maintenance of cleanliness 
and hygiene.

This study has several limitations. First, the participants 
were patients who required polysomnography, and the pre-
test probability of moderate-to-severe sleep apnea was 41% 
in the test group. When applying to a population with a 
lower probability, it is expected that the positive predictive 
accuracy will decrease accordingly. Second, while the sheet 

sensor was uniformly positioned from the subject's axilla to 
the lower end of the sternum, there is a possibility for further 
optimization of its placement for more effective detection 
of sleep apnea–hypopnea. Third, due to the limited number 
of cases, the analysis of the effects of comorbidities and of 
the type of sleep apnea (obstructive, central, or mixed) on 
the classification performance were not conducted. Fourth, 
differences in sleep apnea–hypopnea detection effective-
ness by sleep stage could not be evaluated because they are 
disturbed by large changes in respiratory amplitude due to 
body posture/position. Fifth, the combined predictive value 
of Fcv and REI may be further improved by machine learn-
ing approaches, but they also require a larger sample size. 
Lastly, the study was conducted in a sleep laboratory, but 
the product is intended for home use. Future researches are 
needed to address these limitations and investigate the appli-
cability of the findings in a home setting.

Conclusions

This study demonstrates that the analysis of the respiratory 
component, detected using piezoelectric rubber sheet sen-
sors to measure REI, provides a valuable method for HSAT. 
The optimized REI closely correlated with the  AHITRT , 
displaying strong sensitivity and specificity in identifying 
subjects with varying severity of sleep apnea–hypopnea. 
Additionally, while the Fcv showed some correlation with 
 AHITRT , its incorporation did not enhance the predictive 
capability of the regression model when combined with REI. 
These findings suggest that the analysis of the respiratory 
component using piezoelectric rubber sheet sensors presents 
a promising approach for HSAT, offering a practical and 
effective means of estimating sleep apnea severity.

Appendix

Detection of respiratory events from respiratory 
component of micromotion

Output from the piezoelectric rubber sheet sensor included 
respiratory, body movement, and ballistocardiogram com-
ponents, which could be separated from each other by the 
typical frequency bands in which they reside. We developed 
algorithms to estimate respiratory event index (REI) from 
the respiratory signal.

The algorithm for detection of respiratory events and 
calculation of REI is shown in Fig. 5. First, the micro-
motion signal was standardized to have a dynamic range 
of ±  223 and the respiration signal was extracted with a 
0.08 Ha to 0.5 Hz bandpass filter. Second, the respiratory 
signal was rectified and natural-logarithmic transformed to 
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reflect the magnitude of respiratory movement while mini-
mizing the impacts of large changes in respiratory ampli-
tude and of large noises. Third, the slow and fast upper 
envelopes of the respiratory signal were calculated as the 
moving 95th percentile with window widths of 60 and 
6 s, respectively. The slow envelope reflects the average 
submaximal magnitude of respiratory motion smoothed 
out by the effects of sleep apnea/hypopnea, while the fast 
envelope faithfully reflects the changes in the magnitude of 
respiratory movements including those with sleep apnea/
hypopnea. Fourth, a respiratory event was considered to 
occur when the dip of the fast envelope, compared to the 
slow envelope, surpassed a threshold value (ln (1.43)), 
indicating a 30% decline in magnitude, continuously for 
a duration ranging from 10 to 70 s. Finally, the hourly 

frequency of respiratory events during total recording time 
(TRT) of the polysomnogram was calculated as the REI.

The threshold values for the dips of fast envelope and 
the duration of dips were determined in the training group 
using a grid search method. This involved repeated analyses 
with small parameter adjustments until the closest correla-
tion between REI and AHI was achieved (see main text).

Measurement of heartbeat interval 
from ballistocardiogram component of micromotion

The algorithm for measuring heartbeat intervals from the 
micromotion signal is shown in Fig. 6. First, since the 

Fig. 5  Algorithm developed for detecting respiratory events from 
micromotion signal of the piezoelectric rubber sheet sensor. ln = natu-
ral logarithm

Fig. 6  Algorithm developed to obtain heartbeat interval time series 
from the micromotion signal. Ln = natural logarithm; PW = pulse 
wave
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micromotion signal was digitalized by a 24-bit converter, 
the offset was removed by subtracting  223 and dividing by 
 210 to standardize the dynamic range to ±  213 (± 8192). 
Second, the data were divided into segments of 50-s dura-
tion with 20-s overlap at both ends. Second, ballistocardio-
gram was extracted with bandpass filters of 4–11 Hz. The 
signal was rectified and natural-logarithmic transformed, 
and pulse wave signals were extracted as the upper enve-
lope of each signal. Finally, the heartbeat intervals were 
measured as the intervals between successive foot points 
of the pulse wave signal.
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