Skip to main content
Log in

Cerebellar malfunction and postoperative sleep disturbances after general anesthesia: a narrative review

  • Sleep Breathing Physiology and Disorders • Review
  • Published:
Sleep and Breathing Aims and scope Submit manuscript

Abstract

The cerebellum is widely regarded as a brain region involved in motor processing, non-motor processing, and even sleep-wake cycles. Cerebellar dysfunction may cause changes in the sleep-wake cycle, leading to sleep disturbances. At present, there is limited research on its effect on postoperative sleep after general anesthesia, despite the suspicion of its implication in postoperative sleep disturbances. With this review, we aim to provide a clear and comprehensive review of the cerebellar activity during the normal sleep-wake cycle, the correlation between cerebellar dysfunction and postoperative sleep disturbances, and the effects of general anesthesia on cerebellar dysfunction. Future large-scale multicenter trials are needed to objectively support the present results, identify the initial cerebellar dysfunction to prevent postoperative sleep disturbances, and develop new therapeutic measures targeting sleep disturbances with possible far-reaching implications for neurodegenerative diseases in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

ML:

molecular layer

GCL:

granule cell layer

NREM:

non–rapid eye movement

REM:

rapid eye movement

MPB:

medial parabrachial nucleus

SWS:

slow-wave sleep

NMDA:

N-methyl-D-aspartate

AD:

Alzheimer’s disease

LC:

the locus coeruleus trajectory

PAG:

periaqueductal gray

PVN:

the parahypothalamic nucleus

OSA:

obstructive sleep apnea

GABA:

gamma-aminobutyric acid

COX:

cyclooxygenase

SP:

senile plaque

PGE2:

prostaglandin E2

p38 MAPK:

P38 mitogen-activated protein kinase

SCN:

suprachiasmatic nucleus

References

  1. Gao Z, Davis C, Thomas AM, Economo MN, Abrego AM, Svoboda K, De Zeeuw CI, Li N (2018) A cortico-cerebellar loop for motor planning. Nature 563:113–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Becker MI, Person AL (2019) Cerebellar control of reach kinematics for endpoint precision. Neuron 103:335–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lee KH, Mathews PJ, Reeves AMB, Choe KY, Jami SA, Serrano RE, Otis TS (2015) Circuit mechanisms underlying motor memory formation in the cerebellum. Neuron 86:529–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Schmahmann JD (2019) The cerebellum and cognition. Neurosci Lett 688:62–75

    Article  CAS  PubMed  Google Scholar 

  5. Zhang LB, Zhang J, Sun MJ, Chen H, Yan J, Luo FL, Yao ZX, Wu YM, Hu B (2020) Neuronal activity in the cerebellum during the sleep-wakefulness transition in mice. Neurosci 36(8):919–931

    CAS  Google Scholar 

  6. Cousins JN, Fernández G (2019) The impact of sleep deprivation on declarative memory. Prog Brain Re 246:27–53

    Article  Google Scholar 

  7. Anaclet C, Lin JS, Vetrivelan R, Krenzer M, Vong L, Fuller PM, Lu J (2012) Identification and characterization of a sleep-active cell group in the rostral medullary brainstem. J Neurosci 32:17970–17976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hayashi Y, Kashiwagi M, Yasuda K, Ando R, Kanuka M, Sakai K, Itohara S (2015) Cells of a common developmental origin regulate REM/non-REM sleep and wakefulness in mice. Science 350:957–961

    Article  CAS  PubMed  Google Scholar 

  9. Hashimoto M, Yamanaka A, Kato S, Tanifuji M, Kobayashi K, Yaginuma H (2018) Anatomical evidence for a direct projection from Purkinje cells in the mouse cerebellar vermis to medial parabrachial nucleus. Front Neural Circuits 12:6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Canto CB, Onuki Y, Bruinsma B, van der Werf YD, De Zeeuw CI (2017) The sleeping cerebellum. Trends Neurosci 40(5):309–323

    Article  CAS  PubMed  Google Scholar 

  11. Verweij IM, Onuki Y, Van Someren EJ, Van der Werf YD (2016) Sleep to the beat: a nap favours consolidation of timing. Behav Neurosci 130:298–304

    Article  PubMed  Google Scholar 

  12. Maquet P, Schwartz S, Passingham R, Frith C (2003) Sleep-related consolidation of a visuomotor skill: brain mechanisms as assessed by functional magnetic resonance imaging. J Neurosci 23:1432–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Chouchou F, Khoury S, Chauny JM, Denis R, Lavigne GJ (2014) Postoperative sleep disruptions: a potential catalyst of acute pain? Sleep Med Rev 18(3):273–282

    Article  PubMed  Google Scholar 

  14. Krenk L, Jennum P, Kehlet H (2012) Sleep disturbances after fast-track hip and knee arthroplasty. Br J Anaesth 109:769e75

    Article  Google Scholar 

  15. Pick J, Chen Y, Moore JT, Sun Y, Wyner AJ, Friedman EB, Kelz MB (2011) Rapid eye movement sleep debt accrues in mice exposed to volatile anesthetics. Anesthesiology. 115(4):702–712

    Article  PubMed  Google Scholar 

  16. Boeve BF (2010) REM sleep behavior disorder: updated review of the core features, the REM sleep behavior disorder-neurodegenerative disease association, evolving concepts, controversies, and future directions. Ann N Y Acad Sci 1184:15–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sixel-Doring F, Trautmann E, Mollenhauer B, Trenkwalder C (2011) Associated factors for REM sleep behavior disorder in Parkinson disease. Neurology 77(11):1048–1054

    Article  PubMed  Google Scholar 

  18. Chung F, Liao P, Yang Y, Andrawes M, Kang W, Mokhlesi B, Shapiro CM (2015) Postoperative sleep-disordered breathing in patients without preoperative sleep apnea. Anesth Analg 120(6):1214–1224

    Article  PubMed  Google Scholar 

  19. Xu Y, Li X-y, Lin S (2018) Changes of glutamate levels in cerebellum and hippocampus of rats with obstructive apnea hypopnea syndrome. Chinese J Front Med 10:25–28 In Chinese

    Google Scholar 

  20. Yadav SK, Kumar R, Macey PM, Richardson HL, Wang DJ, Woo MA, Harper RM (2013) Regional cerebral blood flow alterations in obstructive sleep apnea. Neurosci Lett 555:159–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cao H, Cannon TD (2019) Cerebellar dysfunction and schizophrenia: from "cognitive dysmetria" to a potential therapeutic target. Am J Psychiatry 176(7):498–500

    Article  PubMed  Google Scholar 

  22. Gao Z, van Beugen BJ, De Zeeuw CI (2012) Distributed synergistic plasticity and cerebellar learning. Nat Rev Neurosci 13:619–635

    Article  CAS  PubMed  Google Scholar 

  23. Pedroso JL, Braga-Neto P, Felício AC, Aquino CC, Prado LB, Prado GF, Barsottini OG (2011) Sleep disorders in cerebellar ataxias. Arq Neuropsiquiatr 69:253–257

    Article  PubMed  Google Scholar 

  24. DelRosso LM, Hoque R (2014) The cerebellum and sleep. Neurol Clin 32:893–900

    Article  PubMed  Google Scholar 

  25. Silva GM, Pedroso JL, Dos Santos DF, Braga-Neto P, Do Prado LB, De Carvalho LB, Barsottini OG, Do Prado GF (2016) NREM-related parasomnias in Machado-Joseph disease: clinical and polysomnographic evaluation. J Sleep Res 25:11–15

    Article  PubMed  Google Scholar 

  26. Martinez AR, Nunes MB, Faber I, D'Abreu A, Lopes-Cendes Í, França MCJR (2017) Fatigue and its associated factors in spinocerebellar ataxia type 3/Machado-Joseph disease. Cerebellum 16:118–121

    Article  PubMed  Google Scholar 

  27. Bassetti CL, Aldrich MS (2001) Sleep electroencephalogram changes in acute hemispheric stroke. Sleep Med 2(3):185–194

    Article  PubMed  Google Scholar 

  28. Tsujino N, Sakurai T (2013) Role of orexin in modulating arousal, feeding, and motivation. Front Behav Neurosci 7:28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Giordano KR, Denman CR, Dollish HK, Fernandez F, Lifshitz J, Akhter M, Rowe RK (2020) Intracerebral hemorrhage in the mouse altered sleep-wake patterns and activated microglia. Exp Neurol 327:113242

    Article  CAS  PubMed  Google Scholar 

  30. Sinner B, Becke K, Engelhard K (2014) General anaesthetics and the developing brain: an overview. Anaesthesia 69:1009–1022

    Article  CAS  PubMed  Google Scholar 

  31. Xiao R, Yu D, Li X, Huang J, Jing S, Bao X, Yang T, Fan X (2017) Propofol exposure in early life induced developmental impairments in the mouse cerebellum. Front Cell Neurosci 11:373

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jin R, Liu H, Jin WZ, Shi JD, Jin QH, Chu CP, Qiu DL (2015) Propofol depresses cerebellar Purkinje cell activity via activation of GABA(A) and glycine receptors in vivo in mice. Eur J Pharmacol 764:87–93

    Article  CAS  PubMed  Google Scholar 

  33. Yu Y, Wang Y, Wang Y, Dong J, Min H, Chen J (2018) Maternal marginal iodine deficiency delays cerebellar Bergmann glial cell development in rat offspring: involvement of Notch signaling pathway. Neurotoxicology 68:159–166

    Article  CAS  PubMed  Google Scholar 

  34. Komine O, Nagaoka M, Watase K, Gutmann DH, Tanigaki K, Honjo T, Radtke F, Saito T, Chiba S, Tanaka K (2007) The monolayer formation of Bergmann glial cells is regulated by Notch/RBP-J signaling. Dev Biol 311:238–250

    Article  CAS  PubMed  Google Scholar 

  35. Sepulveda-Falla D, Barrera-Ocampo A, Hagel C, Korwitz A, Vinueza-Veloz MF, Zhou K, Schonewille M, Zhou H, Velazquez-Perez L, Rodriguez-Labrada R, Villegas A, Ferrer I, Lopera F, Langer T, De Zeeuw CI, Glatzel M (2014) Familial Alzheimer's disease-associated presenilin-1 alters cerebellar activity and calcium homeostasis. J Clin Invest 124:1552–1567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tian Y, Chen KY, Liu LD, Dong YX, Zhao P, Guo SB (2018) Sevoflurane exacerbates cognitive impairment induced by Aβ1-40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus. Mediat Inflamm 327:3802324

    Google Scholar 

  37. Bianchi SL, Tran T, Liu C, Lin S, Li Y, Keller JM, Eckenhoff RG, Eckenhoff MF (2008) Brain and behavior changes in 12-month-old Tg2576 and nontransgenic mice exposed to anesthetics. Neurobiol Aging 29:1002–1010

    Article  CAS  PubMed  Google Scholar 

  38. Le Freche H, Brouillette J, Fernandez-Gomez FJ, Patin P, Caillierez R, Zommer N, Sergeant N, Buée-Scherrer V, Lebuffe G, Blum D, Buée L (2012) Tau phosphorylation and sevoflurane anesthesia: an association to postoperative cognitive impairment. Anesthesiology 116(4):779–787

    Article  PubMed  Google Scholar 

  39. Jia Z, Geng L, Xie G, Chu Q, Zhang W (2015) Sevoflurane impairs acquisition learning and memory function in transgenic mice model of Alzheimer's disease by induction of hippocampal neuron apoptosis. Int J Clin Exp Med 8:15490–15497

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Eacret D, Veasey SC, Blendy JA (2020) Bidirectional relationship between opioids and disrupted sleep: putative mechanisms. Mol Pharmacol 98(4):445–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boucetta S, Salimi A, Dadar M, Jones BE, Collins DL, Dang-Vu TT (2016) Structural brain alterations associated with rapid eye movement sleep behavior disorder in Parkinson's disease. Sci Rep 6:26782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Moreno-Rius J (2019) Opioid addiction and the cerebellum. Neurosci Biobehav Rev 107:238–251

    Article  CAS  PubMed  Google Scholar 

  43. Firestone LL, Gyulai F, Mintun M, Adler LJ, Urso K, Winter PM (1996) Human brain activity response to fentanyl imaged by positron emission tomography. Anesth Analg 82(6):1247–1251

    CAS  PubMed  Google Scholar 

  44. Lin WC, Chou KH, Chen HL, Huang CC, Lu CH, Li SH, Wangc YL, Cheng YF, Lin CP, Chen CC (2012) Structural deficits in the emotion circuit and cerebellum are associated with depression, anxiety and cognitive dysfunction in methadone maintenance patients: a voxel-based morphometric study. Psychiatry Res 201(2):89–97

    Article  PubMed  Google Scholar 

  45. Tuppo EE, Arias HR (2005) The role of inflammation in Alzheimer’s disease. Int J Biochem Cell Biol 37(2):289–305

    Article  CAS  PubMed  Google Scholar 

  46. McGeer PL, McGeer EG (2007) NSAIDs and Alzheimer disease: epidemiological animal model and clinical studies. Neurobiol Aging 28(5):639–647

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Raymond C. Koehler, MD, Ph.D., from the Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA, and Dr. Weifeng Song, MD, Ph.D., from the Department of Anesthesiology and Perioperative Medicine, School of Medicine, the University of Alabama at Birmingham, Birmingham, Alabama, USA, for their discussion and advice on this study.

Funding

The present study was funded by the Joint plan of key R&D plan of Liaoning Provincial Science and Technology Department (2020JH2/10300123), 345 Talent project, and the Support Plan for Innovative Talents in Liaoning Higher Education Institution (grant no. 201834).

Author information

Authors and Affiliations

Authors

Contributions

Bijia Song helped to contribute to drafting or revising the article. Junchao Zhu helped to revise the article, give final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Corresponding author

Correspondence to Junchao Zhu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, B., Zhu, J. Cerebellar malfunction and postoperative sleep disturbances after general anesthesia: a narrative review. Sleep Breath 26, 31–36 (2022). https://doi.org/10.1007/s11325-021-02361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11325-021-02361-9

Keywords

Navigation