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Abstract
Background Gastro-entero-pancreatic neuroendocrine carcinomas (GEP-NECs) are an aggressive subgroup of neuroendo-
crine neoplasms (NENs). In patients affected with NEN, there is a growing body of evidence that increased C-X-C motif 
chemokine receptor (CXCR4) expression is linked to decreasing overall survival (OS) in an ex-vivo setting. Thus, we aimed 
to determine whether the in-vivo-derived CXCR4-directed whole-body PET signal can also determine GEP-NEC patients 
with shorter OS.
Methods We retrospectively included 16 patients with histologically proven GEP-NEC, who underwent CXCR4-directed 
PET/CT for staging and therapy planning. We assessed maximum, peak, and mean standardized uptake values as well as 
whole-body tumor volume (TV) and total-lesion uptake (TLU = SUVmean × TV) using a semi-automatic segmentation 
tool with a 50% threshold. Association of PET-based biomarkers and OS or radiographic progression-free survival (rPFS; 
according to RECIST 1.1 criteria) was analyzed using univariable and multivariable cox regression.
Results Median OS and rPFS was 7.5 and 7 months, respectively. A significant correlation between TV and TLU was 
found for OS (TV: hazard ratio (HR) 1.007 95% confidence interval (CI) 1.000–1.014, p = 0.0309; TLU: HR 1.002 95% CI 
1.000–1.003, p = 0.0350) and rPFS (TV: HR 1.010 95% CI 1.002–1.021; p = 0.0275; TLU: HR 1.002 95% CI 1.000–1.004, 
p = 0.0329), respectively. No significant correlation with OS or rPFS was found for non-volumetric parameters (p > 0.4). TV 
remained a significant predictive marker for OS and rPFS in multivariable analysis (OS: HR 1.012 95%, CI 1.003–1.022, 
p = 0.0084; rPFS: HR 1.009, 95% CI 0.9999–1.019, p = 0.0491), whereas TLU remained only prognostic for OS (HR 1.009, 
95% CI 0.9999–1.019, p = 0.0194) but narrowly failed significance for rPFS (p = 0.0559).
Conclusion In-vivo assessment of CXCR4 PET-derived volumetric parameters is predictive for outcome of patients with 
GEP-NEC and could be used as a risk stratification tool, which detects patients prone to early progression.
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Introduction

Gastro-entero-pancreatic neuroendocrine carcinomas 
(GEP-NECs) are highly aggressive neuroendocrine neo-
plasms (NENs). The differentiation of NEN is defined 
upon histomorphological features and proliferation index 
(Ki-67) [1]. NECs are dedifferentiated neoplasms that 
constitute only 10–20% of all NENs and are associated 
with a poor prognosis [2]. Whereas treatment of well-dif-
ferentiated NEN is based upon targeting the somatostatin 
receptor (SSTR) using somatostatin analogs or SSTR-
directed radioligand therapy [3], treatment possibilities 
of NECs are largely limited to conventional chemother-
apy because of a lack of SSTR expression and a highly 
aggressive tumor growth [4]. Both European Neuroen-
docrine Tumor Society (ENETS) and European Society 
for Medical Oncology (ESMO) guidelines recommend 
platinum-based chemotherapy using cisplatin/etoposide 
or carboplatin/etoposide as first-line therapy for advanced 
NEC [3, 5]. However, there is no standardized treatment 
regime for second-line therapy and proposed therapies 
include fluorouracil-based chemotherapy together with 
either irinotecan or oxaliplatin as well as temozolomide 
in monotherapy or in combination with capecitabine. 
Nevertheless, progression is unavoidable [4] and further 
therapeutic options or personalized treatments are there-
fore desperately warranted.

A factor that might influence outcome of patients 
affected with NECs is the expression of C-X-C motif 
chemokine receptor (CXCR4). CXCR4 is a G-protein-
coupled receptor which is overexpressed in multiple hema-
tological malignancies and solid cancers and a possible 
target for theranostic approaches [6]. Our study group has 
shown that CXCR4-targeted imaging using the radiop-
harmaceutical  [68Ga]Ga-PentixaFor is an effective image 
tool in staging a variety of neoplasms, especially multiple 
myeloma, mantle cell lymphoma, small cell lung cancer, 
and adrenocortical neoplasms [7]. Of note, the therapeu-
tic counterpart  [177Lu]Lu/[90Y]Y-PentixaTher can be used 
for CXCR4-directed radioligand therapy and has proven 
substantial anti-lymphoma effect in selected malignan-
cies [8–10]. In an earlier work of our study group, we 
assessed the diagnostic value of CXCR4-directed PET/CT 
compared to the performance to reference standard  [18F]
fluorodesoxyglucose (FDG) PET/CT in patients with NEC. 
In this analysis of 11 treatment-naive patients, the diagnos-
tic performance of CXCR4 PET/CT was inferior to those 
of FDG PET/CT and in-vivo-assessed CXCR4 expression 
was not sufficient for possible CXCR4-directed radioli-
gand therapy. However, increased CXCR4 expression in 
GEP-NEN in an ex-vivo setting was linked to decreasing 
overall survival (OS) [11]. Of note, an ex-vivo sampling 

only displays tumor biology and receptor expression in the 
respective lesion, while assessment of the in-vivo CXCR4 
expression offers a non-invasive whole-body evaluation, 
which reflects also possible intraindividual tumor hetero-
geneity. Thus, in-vivo-assessed CXCR4 expression might 
be a prognostic biomarker for response to therapy and out-
come prediction.

The aim of this study was to investigate the prognostic 
impact of CXCR4 PET-derived biomarker in patients with 
NEC and their potential impact on OS and radiographic 
progression-free survival (rPFS).

Methods

Patient Population

Searching our institutional PET/CT database we retrospec-
tively identified 16 patients with neuroendocrine carcinomas 
of the gastrointestinal tract who underwent  [68 Ga]Ga-Pen-
tixaFor PET/CT between July, 2015, and July, 2022. Patients 
were also included in case of unknown primary if imaging 
and histopathological results indicated gastrointestinal ori-
gin. Patients were excluded if neither follow-up imaging nor 
survival data was available. Patients were referred to our 
institution by the treating physicians to evaluate potential 
theranostic considerations after first-line therapy using the 
therapeutic equivalent  [177Lu]Lu- or  [90Y]Y-PentixaTher 
[12]. In 15 of 16 patients (94%) a recent FDG PET/CT was 
available as part of clinical routine diagnostic. Due to the 
retrospective character of this study, the local institutional 
review board waived the requirement for additional approval 
(No. 20230721 01). All patients provided written informed 
consent. Parts of this cohort have been examined in previous 
studies [7, 13–18]; however, without comparing PET-based 
parameters to patient outcome.

Imaging Procedure

All PET/CTs were performed on Siemens Biograph mCT 
64 or 128 scanners (Siemens Healthineers, Erlangen, Ger-
many). PET/CTs were acquired approximately 60 min after 
the administration of 115 ± 29 MBq  [68 Ga]Ga-PentixaFor 
or 292 ± 30 MBq  [18F]FDG from vertex to mid-thigh. The 
acquisition parameters were 2–3 min/bed position (mCT 64)/
continuous bed motion at 1.1 mm/s (mCT 128); 3 iterations, 
subsets 24 (mCT 64)/21 (mCT 128); matrix, 200 * 200; 
Gaussian filter, 2.0 mm. A contrast-enhanced diagnostic 
CT scan or a low dose CT scan was acquired for attenua-
tion correction and anatomical coregistration (tube voltage, 
100–120 kV; tube current modulation; reconstructed axial 
slice thickness 3.0–5.0 mm) [15, 18].
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Image Evaluation

Images were analyzed by one reader (KM). Fiji [19] and the 
Beth Israel plugin [20] were used for autosegmentation of 
PET-positive lesions, i.e., volumes of interest (VOIs). VOIs 
including tissue with physiological radioligand uptake were 
removed manually, while VOIs for pathological lesions not 
detected by autosegmentation were added manually by the 
reader. In analogy to whole-body tumor segmentation on 
prostate-specific membrane antigen-targeted PET/CT [21, 
22], we used a lesion-specific threshold of 50% of the local 
SUVmax for CXCR4 PET as well as for FDG PET accord-
ing to the guideline of the European Association of Nuclear 
Medicine (EANM) [23]. The summed volumes of all lesions 
represent the whole-body tumor volume (= TV, measured 
in milliliters). In addition, we assessed maximum, peak, 
and mean standardized uptake values as well as total-lesion 
uptake (= SUVmean × TV). Radiographic PFS was assessed 
by two board-certified radiologists in consensus (AK and 
WS) using RECIST 1.1 criteria on CT follow-up imaging 
[24].

Statistical Analysis

Statistical analyses were performed using GraphPad Prism 
Version 9.3.1 (GraphPad Prism Software, La Jolla, CA, 
USA). Descriptive data are presented as mean ± standard 
deviation or median and range. A paired t-test was used to 
assess differences between the two PET tracers. Outcome 
data is analyzed using univariable and multivariable cox 
regression including age, Ki67-score, presence of liver 
metastases, and pretreatment (yes vs. no). OS and rPFS are 
calculated from the day of CXCR4 PET/CT and are pre-
sented as median with the 95% confidence interval in square 
brackets. A p value less than 0.05 was considered statisti-
cally significant.

Results

Patients’ Characteristics

Mean patient age was 65 ± 10 (range 44–76) years (Table 1). 
Most patients were male (13 of 16; 81%). Median Ki67-
score was 80 (range 45–90)%. Most patients were treatment 
naïve (12 of 16; 75%) at the time of CXCR4 PET/CT. Mean 
time between initial diagnosis and CXCR4 PET was 9 ± 9 
(range 2–23) months for those patients (4 of 16) who were 
pretreated. Median time interval between CXCR4 and FDG 
PET (15 of 16 patients; 94%) was 6 days (range 1–53 days). 
Assessment of rPFS was possible in 14 of 16 patients (88%), 
because follow-up imaging was not available in 2 of 16 
patients (12%).

CXCR4 PET‑Derived Volumetric Parameters Are 
Prognostic for OS and rPFS

Mean parameters for TV, TLU, SUVmax, SUVpeak, and 
SUVmean were 83.0 ± 112.1  ml (range 0–476.6  ml), 
391.3 ± 443.7 (range 0–2215.5), 9.6 ± 5.0 (range 0–18.5), 
7.3 ± 4.3 (range 0–18.5), and 4.5 ± 2.3 (range 0–8.2), 
respectively. Of note, 2 of 16 patients (13%) did not show 
any pathological uptake on CXCR4 PET, despite liver 
and lymph node metastases seen on corresponding FDG 
PET/CT. Disease progression occurred in all patients. 
Thirteen of 16 patients (81%) died during follow-up. 
Median OS and rPFS of the whole patient cohort was 
7.5 (n = 16) and 7 (n = 14) months, respectively. A sig-
nificant correlation between TV and TLU was found for 
OS (TV: hazard ratio (HR) 1.007, 95% confidence inter-
val (CI) 1.000–1.014, p = 0.0309; TLU: HR 1.002, 95% 
CI 1.000–1.003, p = 0.0350) and rPFS (TV: HR 1.010, 
95% CI 1.002–1.021; p = 0.0275; TLU: HR 1.002, 95% 
CI 1.000–1.004, p = 0.0329), respectively. No significant 
correlation with neither OS nor rPFS was found for non-
volumetric parameters (p > 0.4, respectively).

Table 1  Patients’ characteristics

All patients (n = 16)

Age [years] mean ± SD 65 ± 10 (44–76)
Ki67 [%] median 80 (45–90)
Gender Male: 13; female: 3
Primary tumor

  CUP 6
  Stomach 4
  Pancreas 3
  Biliary tract 1
  Esophagus 1
  Rectum 1

Pretreatment
  None 12
  Carboplatin/etoposide 4
  FOLFIRI + bevacizumab
(second line)

1

  FOLFOX + bevacizumab
(second line)

1

Treatment after CXCR4 PET
  Carboplatin/etoposide 14
  SIRT 1
  Primary surgery 3

Metastatic sites
  Lymph nodes 14
  Liver 12
  Bone 7
  Lung 7
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FDG PET‑Derived Parameters Are Not Prognostic 
for OS and rPFS

Mean parameters for TV, TLU, SUVmax, SUVpeak, and 
SUVmean were 243.7 ± 229.0 ml (range 1.8–785.9 ml), 
2422.4 ± 2510.7 (range 8.7–7758.4), 18.6 ± 10.7 (range 
6.5–43.3), 14.0 ± 7.9 (range 4.5–29.7), and 9.0 ± 4.8 (range 
3.5–20.8), respectively. The two patients with negative 
CXCR4 PET showed intense uptake on FDG PET (TV: 
18.4 ml, TLU: 164.1, SUVmax: 14.7, SUVpeak: 10.3, 
SUVmean: 8.9 and TV: 433.9 ml, TLU: 7341.6, SUV-
max: 37.1, SUVpeak: 29.7, SUVmean: 16.9). All PET-
based parameter were significantly higher FDG PET 
compared to CXCR4 PET (p-values: TV: 0.0467, TLU: 
0.0097, SUVmax: 0.0075, SUVpeak: 0.0082, SUVmean: 
0.0046; Fig. 1). Median OS and rPFS of those patients 
who underwent an additional FDG PET/CT was 6 (n = 15) 
and 5.5 (n = 13) months, respectively. None of the volu-
metric or non-volumetric parameters were prognostic for 

OS or rPFS (p > 0.06). Table 2 summarizes the outcome 
data of CXCR4 and FDG PET-derived parameters. Fig-
ure 2 depicts different patterns of tracer uptake on CXCR4 
and FDG PET.

CXCR4 PET‑Derived Tumor Volume Remains 
a Prognostic Marker in Multivariable Cox Regression

Multivariable cox regression including age, Ki67-score, 
presence of liver metastases, and pretreatment (yes vs. no) 
for CXCR-derived TV and TLU confirmed TV as a sig-
nificant predictive marker as well as for OS and for rPFS 
(OS: HR 1.012 95% CI 1.003–1.022, p = 0.0084; rPFS: 
HR 1.009 95% CI 0.9999–1.019, p = 0.0491), whereas 
TLU remained only predictive for OS (HR 1.009 95% 
CI 0.9999–1.019, p = 0.0194) but narrowly failed signifi-
cance for rPFS (p = 0.0559). The other parameters were 
not significantly associated with OS or rPFS (p > 0.07, 
respectively).

Fig. 1  Paired t-test of volumet-
ric parameters (A) and standard-
ized uptake values (SUV; B) of 
CXCR4 (blue bars) and FDG 
(orange bars) PET derived 
parameters. The scale bars indi-
cate the 5th to 95th confidence 
interval. Abbreviations: TV, 
tumor volume; TLU, total-lesion 
uptake (= TV * SUVmean)

Table 2  Univariable cox 
regression of OS and rPFS of 
CXCR4 and FDG PET derived 
parameters

Abbreviations: OS, overall survival, rPFS, radiographic progression-free survival, TV, tumor volume, TLU, 
total-lesion uptake, SUV, standardized uptake value

CXCR4 PET FDG PET

OS rPFS OS rPFS

HR p HR p HR p HR p

TV 1.007 0.0309* 1.010 0.0275* 1.002 0.1370 1.001 0.4431
TLU 1.002 0.0350* 1.002 0.0329* 1.000 0.0855 1.000 0.6134
SUVmax 1.011 0.8600 1.017 0.8086 1.055 0.0632 1.044 0.1872
SUVpeak 1.029 0.7325 1.065 0.5266 1.070 0.0674 1.048 0.2287
SUVmean 0.9032 0.3835 0.9118 0.4459 1.126 0.0634 1.084 0.3186
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Discussion

This is the first study to evaluate the prognostic impact 
of whole-body in-vivo assessment of CXCR4 expres-
sion using CXCR4 PET/CT in patients with GEP-NEC. 
CXCR4-based TV and TLU were significantly correlated 
to OS and rPFS as well as in univariable and for TV also in 
multivariable analysis. Interestingly, corresponding FDG 
PET-derived biomarkers were not associated with out-
come. In contrast, Langen Stokmo et al. found TV, TLU, 
and SUVmax on FDG PET to be significant predictors for 
OS and rPFS in 14 patients with gastroenteropancreatic 
neuroendocrine tumors G3 and 52 patients with gastro-
enteropancreatic NEC [25]. Jiang et al. showed a signifi-
cant association between NECs of the uterine cervix in 22 
patients and the volume as well as the lesion uptake solely 
of the primary tumor on FDG PET and PFS, whereas 
SUVmax of the primary tumor was not a prognostic 

marker [26]. Hou et al. also described a significant prog-
nostic value of TV and TLU on FDG PET in 28 patients 
with esophageal NECs [27]. The fact that FDG PET was 
not a prognostic tool in our cohort could be due to the 
small sample size in which a statistical significant effect 
does not break through. CXCR4 PET-derived parameters 
appear to be more robust predictors for rPFS and OS with 
significant results even in a small study group.

Volumetric parameters (TV and TLU) on CXCR4 PET 
were the only predictive biomarker. This was not due to mere 
tumor extent since the “real” tumor volume on FDG PET 
significantly diverged. A possible reason might be tumor het-
erogeneity, which cannot be depicted by SUVmax/peak or 
SUVmean. Hence, CXCR4 PET might serve as a risk strati-
fication tool which is able to detect patients prone to early 
progression. Consequently, CXCR4 PET/CT might help the 
treating physician to identify candidates in risk of early pro-
gression under first-line therapy or even single out high-risk 

Fig. 2  Comparison of PET-
based biomarker of corre-
sponding maximum intensity 
projections of CXCR4 (upper 
row) and FDG (lower row) PET. 
Tumor is delineated using Fiji 
[19] and the Beth Israel Plugin 
[20] and marked in blue. SUV 
window ranging from 0 to 5. A, 
B A 75-year-old patient with 
pretreated gastric neuroendo-
crine carcinoma (NEC) and 
a negative CXCR4 PET scan 
with missing tracer uptake of 
the liver metastases. C, D A 
55-year old patient with initial 
diagnosis of an esophageal NEC 
and metastases in lymph nodes, 
liver, bones, and the lungs. E, 
F A 68-year-old patient with 
initial diagnosis of a pancreatic 
NEC and local lymph node 
metastases only seen on CXCR4 
PET. G, H A 76-year-old 
patient with initial diagnosis of 
a gastric NEC and metastases in 
lymph nodes, liver, bones, and 
the lungs
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lesions that can be targeted by a local procedure such as 
surgery, radiofrequency ablation, or chemoembolisation.

In the present study, we did not analyze the diagnostic 
performance or the theranostic potential of CXCR4 PET/CT 
compared to the reference standard. However, two patients 
showed false-negative CXCR4 PET scans in our patient 
cohort and the diagnostic inferiority of CXCR4 PET in 
patients with (neuroendocrine) gastrointestinal neoplasms 
has been shown before by our study group [14, 28]. Hence, 
other theranostic radiopharmaceuticals in this tumor entity 
would be desirable. One potential option is fibroblast acti-
vation protein (FAP)-targeting radioligands. FAP-directed 
PET/CT showed promising diagnostic performance com-
pared to FDG PET/CT in a subcohort of seven patients with 
GEP-NEC in an analysis of our own study group [18]. These 
results encourage the development of a theranostic FAP-
targeted twin [29, 30] in order to provide additional thera-
peutic strategies.

This study suffers from several limitations. Apart 
from the retrospective study design and the single-center 
approach, we only included a small sample size due to the 
rare incidence of NECs. We assessed rPFS based upon the 
routine follow-up imaging including conventional CT scan 
and/or FDG PET/CT. Imaging follow-up was thus not stand-
ardized performed but routinely undertaken after 3 months. 
We also assessed PET-based parameters of CXCR4 PET 
compared to the reference standard FDG, but corresponding 
FDG PET was not available in one patient. However, this is 
to our knowledge the only analysis, which includes a sub-
stantial sample size of GEP-NEC with dual tracer imaging.

Conclusion

In-vivo assessment of CXCR4 PET-derived volumetric 
parameters is prognostic for patient outcome with GEP-
NECs and might reflect tumor heterogeneity and aggressive-
ness. These parameters could be used for risk stratification 
in order to detect patients prone to early progression and 
support treatment decisions.
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