Skip to main content

Advertisement

Log in

Radiomics Based on Contrast-Enhanced CT for Recognizing c-Met-Positive Hepatocellular Carcinoma: a Noninvasive Approach to Predict the Outcome of Sorafenib Resistance

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Objectives

The purpose of our project was to investigate the effectiveness of radiomic features based on contrast-enhanced computed tomography (CT) that can detect the expression of c-Met in hepatocellular carcinoma (HCC) and to validate its efficacy in predicting the outcome of sorafenib resistance.

Materials and Methods

In total, 130 patients (median age, 60 years) with pathologically confirmed HCC who underwent contrast material–enhanced CT from October 2012 to July 2020 were randomly divided into a training set (n = 91) and a test set (n = 39). Radiomic features were extracted from arterial phase (AP), portal venous phase (VP) and delayed phase (DP) images of every participant’s enhanced CT images.

Results

The entire group comprised 39 Met-positive and 91 Met-negative patients. The combined model, which included the clinical factors and the radiomic features, performed well in the training (area under the curve [AUC] = 0.878) and validation (AUC = 0.851) cohorts. The nomogram, which relied on the combined model, fits well in the calibration curves. Decision curve analysis (DCA) further confirmed that the clinical valuation of the nomogram achieved comparable accuracy in c-Met prediction. Among another 20 patients with HCC who had received sorafenib, the predicted high-risk group had shorter overall survival (OS) than the predicted low-risk group (p < 0.05).

Conclusion

A multivariate model acquired from three phases (AP, VP and DP) of enhanced CT, HBV-DNA and γ glutamyl transpeptidase isoenzyme II (GGT-II) could be considered a satisfactory preoperative marker of the expression of c-Met in patients with HCC. This approach may help in overcoming sorafenib resistance in advanced HCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AFP:

a-Fetoprotein

AP:

Arterial phase

VP:

Portal venous phase

DP:

Delayed phase

AUC:

Area under curve

CT:

Computed tomography

DCA:

Decision curve analysis

HCC:

Hepatocellular carcinoma

ICC:

Intraclass correlation coefficients

HGF:

Hepatocyte growth factor

GGT-II:

γ glutamyl transpeptidase isoenzyme II

VEGF:

Vascular endothelial growth factor

MRI:

Magnetic resonance imaging

TACE:

Transcatheter arterial chemoembolization

DICOM:

Digital imaging and communications in medicine

ROI:

Regions of interest

Lasso:

Shrinkage and selection operator

ROC:

Receiver operating characteristic curve

CI:

Confidence interval

OR:

Odds ratio

OS:

Overall survival

GLDM:

Grey level dependence matrix

GLSZM:

Grey level size zone matrix

GLRLM:

Grey level run length matrix

GLCM:

Grey level co-occurrence matrix

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clinicians 71:209–249. https://doi.org/10.3322/caac.21660

    Article  Google Scholar 

  2. Villanueva A (2019) Hepatocellular carcinoma. N Engl J Med 380:1450–1462. https://doi.org/10.1056/NEJMra1713263

    Article  CAS  PubMed  Google Scholar 

  3. Llovet JM, Castet F, Heikenwalder M et al (2022) Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol 19:151–172. https://doi.org/10.1038/s41571-021-00573-2

    Article  CAS  PubMed  Google Scholar 

  4. Qin S, Bi F, Gu S et al (2021) Donafenib versus sorafenib in first-line treatment of unresectable or metastatic hepatocellular carcinoma: a randomized, open-label, parallel-controlled phase II-III trial. JCO 39:3002–3011. https://doi.org/10.1200/JCO.21.00163

    Article  CAS  Google Scholar 

  5. Rebouissou S, Nault JC (2020) Advances in molecular classification and precision oncology in hepatocellular carcinoma. J Hepatol 72:215–229

    Article  CAS  PubMed  Google Scholar 

  6. Alqahtani A, Khan Z, Alloghbi A, Said Ahmed TS, Ashraf M, Hammouda DM (2019) Hepatocellular carcinoma: molecular mechanisms and targeted therapies. Medicina (Kaunas) 55(9):526. https://doi.org/10.3390/medicina55090526

  7. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet 391:1301–1314

    Article  PubMed  Google Scholar 

  8. Firtina Karagonlar Z, Koc D, Iscan E, Erdal E, Atabey N (2016) Elevated hepatocyte growth factor expression as an autocrine c-Met activation mechanism in acquired resistance to sorafenib in hepatocellular carcinoma cells. Cancer Sci 107:407–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Haibe Y, Kreidieh M, El Hajj H et al (2020) Resistance mechanisms to anti-angiogenic therapies in cancer. Front Oncol 10:221

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kuczynski EA, Yin M, Bar-Zion A et al (2016) Co-option of liver vessels and not sprouting angiogenesis drives acquired sorafenib resistance in hepatocellular carcinoma. J Natl Cancer Inst 108(8):djw030. https://doi.org/10.1093/jnci/djw030

  11. Duplaquet L, Kherrouche Z, Baldacci S et al (2018) The multiple paths towards MET receptor addiction in cancer. Oncogene 37:3200–3215

    Article  CAS  PubMed  Google Scholar 

  12. Xiang QF, Zhan MX, Li Y et al (2019) Activation of MET promotes resistance to sorafenib in hepatocellular carcinoma cells via the AKT/ERK1/2-EGR1 pathway. Artif Cells Nanomed Biotechnol 47:83–89

    Article  CAS  PubMed  Google Scholar 

  13. Iwatate Y, Hoshino I, Yokota H et al (2020) Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer. Br J Cancer 123:1253–1261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ji GW, Zhu FP, Xu Q et al (2020) Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular carcinoma: a multi-institutional study. Radiology 294:568–579

    Article  PubMed  Google Scholar 

  15. Bouattour M, Raymond E, Qin S et al (2018) Recent developments of c-Met as a therapeutic target in hepatocellular carcinoma. Hepatology 67:1132–1149

    Article  PubMed  Google Scholar 

  16. Decaens T, Barone C, Assenat E et al (2021) Phase 1b/2 trial of tepotinib in sorafenib pretreated advanced hepatocellular carcinoma with MET overexpression. Br J Cancer 125:190–199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bowen SR, Yuh WTC, Hippe DS et al (2018) Tumor radiomic heterogeneity: multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy. J Magn Reson Imaging 47:1388–1396

    Article  PubMed  Google Scholar 

  18. Lambin P, Leijenaar RTH, Deist TM et al (2017) Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 14:749–762

    Article  PubMed  Google Scholar 

  19. Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma: part II. Extracellular agents, hepatobiliary agents, and ancillary imaging features. Radiology 273:30–50

    Article  PubMed  Google Scholar 

  20. Fan T, Li S, Li K et al (2022) A potential prognostic marker for recognizing VEGF-positive hepatocellular carcinoma based on magnetic resonance radiomics signature. Front Oncol 12:857715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yuan G, Song Y, Li Q et al (2020) Development and validation of a contrast-enhanced CT-based radiomics nomogram for prediction of therapeutic efficacy of anti-PD-1 antibodies in advanced HCC patients. Front Immunol 11:613946

    Article  CAS  PubMed  Google Scholar 

  22. Packeisen J, Buerger H, Krech R, Boecker W (2002) Tissue microarrays: a new approach for quality control in immunohistochemistry. J Clin Pathol 55:613–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. van Griethuysen JJM, Fedorov A, Parmar C et al (2017) Computational radiomics system to decode the radiographic phenotype. Cancer Res 77:e104–e107

    Article  PubMed  PubMed Central  Google Scholar 

  24. Aerts HJ, Velazquez ER, Leijenaar RT et al (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    Article  CAS  PubMed  Google Scholar 

  25. Sun R, Limkin EJ, Vakalopoulou M et al (2018) A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study. Lancet Oncol 19:1180–1191

    Article  CAS  PubMed  Google Scholar 

  26. Zwanenburg A, Vallieres M, Abdalah MA et al (2020) The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 295:328–338

    Article  PubMed  Google Scholar 

  27. Tibshirani R (1997) The lasso method for variable selection in the Cox model. Stat Med 16:385–395

    Article  CAS  PubMed  Google Scholar 

  28. Gu D, Xie Y, Wei J et al (2020) MRI-based radiomics signature: a potential biomarker for identifying glypican 3-positive hepatocellular carcinoma. J Magn Reson Imaging 52:1679–1687

    Article  PubMed  Google Scholar 

  29. Vickers AJ, Elkin EB (2006) Decision curve analysis: a novel method for evaluating prediction models. Med Decis Making 26:565–574

    Article  PubMed  PubMed Central  Google Scholar 

  30. Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675–680

    Article  CAS  PubMed  Google Scholar 

  31. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: images are more than pictures, they are data. Radiology 278:563–577

    Article  PubMed  Google Scholar 

  32. Ng F, Kozarski R, Ganeshan B, Goh V (2013) Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82:342–348

    Article  PubMed  Google Scholar 

  33. Amini M, Nazari M, Shiri I et al (2021) Multi-level multi-modality (PET and CT) fusion radiomics: prognostic modeling for non-small cell lung carcinoma. Phys Med Biol 66(20). https://doi.org/10.1088/1361-6560/ac287d

  34. Ozkan E, West A, Dedelow JA et al (2015) CT gray-level texture analysis as a quantitative imaging biomarker of epidermal growth factor receptor mutation status in adenocarcinoma of the lung. AJR Am J Roentgenol 205:1016–1025

    Article  PubMed  Google Scholar 

  35. Global Burden of Disease Liver Cancer C, Akinyemiju T, Abera S et al (2017) The burden of primary liver cancer and underlying etiologies from 1990 to 2015 at the global, regional, and national level: results from the Global Burden of Disease Study 2015. JAMA Oncol 3:1683–1691

    Article  Google Scholar 

  36. Kazemi-Shirazi L, Endler G, Winkler S, Schickbauer T, Wagner O, Marsik C (2007) Gamma glutamyltransferase and long-term survival: is it just the liver? Clin Chem 53:940–946

    Article  CAS  PubMed  Google Scholar 

  37. Llovet JM, Pena CE, Lathia CD et al (2012) Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin Cancer Res 18:2290–2300

    Article  CAS  PubMed  Google Scholar 

  38. Hassan S, Ferrario C, Mamo A, Basik M (2008) Tissue microarrays: emerging standard for biomarker validation. Curr Opin Biotechnol 19:19–25

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Natural Science Foundation of China (82170514).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongzheng Jia, Yu Zhang or Chen Huang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Bao, S., Akemuhan, R. et al. Radiomics Based on Contrast-Enhanced CT for Recognizing c-Met-Positive Hepatocellular Carcinoma: a Noninvasive Approach to Predict the Outcome of Sorafenib Resistance. Mol Imaging Biol 25, 1073–1083 (2023). https://doi.org/10.1007/s11307-023-01870-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-023-01870-1

Keywords

Navigation