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Abstract
Objectives To evaluate the performance of machine learning–augmented MRI-based radiomics models for predicting 
response to neoadjuvant chemotherapy (NAC) in soft tissue sarcomas.
Methods Forty-four subjects were identified retrospectively from patients who received NAC at our institution for patho-
logically proven soft tissue sarcomas. Only subjects who had both a baseline MRI prior to initiating chemotherapy and a 
post-treatment scan at least 2 months after initiating chemotherapy and prior to surgical resection were included. 3D ROIs 
were used to delineate whole-tumor volumes on pre- and post-treatment scans, from which 1708 radiomics features were 
extracted. Delta-radiomics features were calculated by subtraction of baseline from post-treatment values and used to dis-
tinguish treatment response through univariate analyses as well as machine learning–augmented radiomics analyses.
Results Though only 4.74% of variables overall reached significance at p ≤ 0.05 in univariate analyses, Laws Texture Energy 
(LTE)-derived metrics represented 46.04% of all such features reaching statistical significance. ROC analyses similarly 
failed to predict NAC response, with AUCs of 0.40 (95% CI 0.22–0.58) and 0.44 (95% CI 0.26–0.62) for RF and AdaBoost, 
respectively.
Conclusion Overall, while our result was not able to separate NAC responders from non-responders, our analyses did identify 
a subset of LTE-derived metrics that show promise for further investigations. Future studies will likely benefit from larger 
sample size constructions so as to avoid the need for data filtering and feature selection techniques, which have the potential 
to significantly bias the machine learning procedures.
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Introduction

Assessment of treatment response in soft tissue sarcomas 
(STS) by conventional radiologic imaging has long posed 
unique set of challenges for clinicians [1–4]. Owing to their 
highly variable internal compositions, tumors undergoing a 

Key Points  
• Our decision classifiers constructed using machine learning–
augmented MRI-based radiomics data were not able to separate 
neoadjuvant chemotherapy responders from non-responders in 
a cohort of soft tissue sarcomas, with AUCs of 0.40 (95% CI 
0.22–0.58) and 0.44 (95% CI 0.26–0.62) for RF and AdaBoost, 
respectively.
• Our univariate analyses revealed that 46.04% of features 
reaching statistical significance at the p ≤ 0.05 level were derived 
from Laws Texture Energy (LTE)-based computations, which is in 
line with existing literature suggesting a promising role for spatial 
filtering metrics in identifying features of tumor heterogeneity.
• Though frequently reported in the literature, we advocate against 
the routine use of feature reduction and data filtering methods in 
radiomics studies as these methods are highly prone to introducing 
bias when working with modern machine learning algorithms.
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biologic response to chemotherapy may not actually dimin-
ish in size due to factors such as cystic degeneration, hya-
linization, fibrosis, centralized necrosis, and intratumoral 
hemorrhage, all of which have the potential to affect estima-
tions of whole-tumor volume [2, 3, 5–10]. Thus, appraisals 
of treatment response that depend on evaluations of tumor 
size—including the World Health Organization (WHO) 
response evaluation criteria and the oft-cited Response 
Evaluation Criteria In Solid Tumors (RECIST)—may fail 
to appreciate satisfactory biologic response to chemotherapy 
in tumors that do not demonstrate macroscopic shrinkage 
on radiologic imaging [2, 3, 7, 8, 11–16]. The Choi criteria 
and modified Choi criteria, which were later proposed in an 
effort to incorporate additional features such as changes in 
attenuation or signal intensity on CT or MRI, were shown to 
better correlate with pathologic response [7, 8, 14, 17–19]. 
However, the Choi criteria were notably not originally 
designed for STS and still rely heavily on size-based estima-
tions, thus calling into question in their ability to accurately 
resolve complex architectural changes in STS, particularly 
in cases of synovial sarcoma [4, 7, 20]. In the age of targeted 
molecular therapies, there exists a growing need for modern-
ized response criteria that more accurately reflect the scope 
of phenotypic heterogeneity [6, 13, 21, 22].

Radiomics is defined as the conversion of medical imag-
ing into multi-dimensional mineable data for clinical deci-
sion support to bolster accurate diagnosis, prognostication, 
and prediction of treatment response [4, 23–28]. In com-
parison with standard biopsy techniques, radiomics analysis 
offers the advantage of being able to non-invasively quantify 
heterogeneity of entire tumor volumes at given time points 
of interest, which in theory should allow for better charac-
terization of chemotherapeutic response than use of size-
based criteria alone [6, 20–22, 26, 27, 29–31]. Radiomics 
has already been successfully applied to a variety of clinical 
applications related to STS, including stratification of benign 
from malignant soft tissue neoplasms, prediction of histo-
logic grade, and assessment of metastatic risk [27, 31–34], 
though lack of standardized protocols has hindered wide-
spread adoption of radiomics workflows in clinical practice 
[16, 24, 25, 35].

Standard-of-care typically encourages the use of anthra-
cycline-based regimens as first-line chemotherapy in patients 
with newly diagnosed STS, which have demonstrated 
improved overall and metastasis-free survival in phase 3 
clinical trials [2, 3, 29, 30]. Yet, ongoing research in sarcoma 
care remains limited in part due to the previously detailed 
shortcomings of traditional size-based response criteria, 
which calls into question their appropriateness for use as 
endpoints in clinical trials [2, 3, 20]. Thus, ongoing collabo-
rations between leading agencies including the US Food and 
Drug Administration and the US National Cancer Institute 
have since called for the validation of quantitative imaging 

techniques to serve as surrogate biomarkers, as these may in 
fact more accurately reflect early biological changes in tumor 
physiology [6, 13, 20, 22]. In a previous pilot study [20], 
we were able to demonstrate that quantitative-MRI (q-MRI) 
evaluation of enhancing tumor volume was able to accurately 
stratify responders from non-responders in a small cohort 
of patients with histopathologically diagnosed STS treated 
with standard-of-care neoadjuvant chemotherapy (NAC). 
Therefore, based on studies correlating intratumoral hetero-
geneity on radiologic imaging with higher histologic grade 
and poorer patient outcomes [5, 23, 24, 29, 32, 33, 36], we 
hypothesized that change from baseline of radiomics metrics 
taken pre- and post-NAC (i.e., delta-radiomics) might be able 
to better predict response to NAC in STS. While a small body 
of evidence does suggest a role for radiomics-based predic-
tive modeling in stratifying response to neoadjuvant therapy 
[30, 34, 37, 38], these studies are not repeatable due to the 
application of data filtering and feature reduction techniques 
prior to model training and cross-validation, which has been 
shown to bias model performance [28, 39]. Thus, we further 
aimed to investigate whether these previous findings could 
be replicated under more rigorous test conditions.

Materials and Methods

This single-center retrospective study was approved by our 
university’s institutional review board. The requirement for 
informed consent was waived due to the retrospective nature 
of our data collection.

Study Participants

A total of 44 subjects (mean age 53.70  years; range 
16–80 years) who received NAC at our institution for histo-
logically diagnosed STS were included in this study. Enroll-
ments were restricted to only subjects who had both a baseline 
MRI obtained prior to initiation of NAC and a post-treatment 
MRI obtained at least 2 months following NAC initiation 
and prior to surgical resection. Patients were identified by 
chart review of cases discussed at our institution’s Orthopedic 
and Sarcoma Tumor Boards from January 2010 to January 
2017. All 44 subjects were previously reported as part of a 
related study investigating the utility of radiomics analysis in 
stratifying benign and malignant soft tissue neoplasms [27]. 
Seven of these subjects were additionally included in previ-
ous pilot studies [1, 20]. In our cohort, the most common 
pathologic diagnoses were undifferentiated pleomorphic sar-
coma (n = 17), synovial sarcoma (n = 6), myxoid liposarcoma 
(n = 4), and leiomyosarcoma (n = 4) (Table 1). Lesions were 
most often encountered in the thigh (n = 21), followed by the 
arm (n = 4), pelvis/buttock (n = 4), and calf (n = 3).
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Sequence Acquisitions

Two MRI studies were analyzed per subject for a total of 88 
scans, 37 of which were acquired at our institution and 51 of 
which were acquired at outside facilities. A total of 29 insti-
tutions contributed to the acquisition pool, which featured 
radiomics data extracted from 11 unique MRI sequences 
(Table 2). All studies were uploaded to and available for 
review through our institution’s PACS at the time of subject 
enrollment.

Volumetric Segmentations and Radiomics Data 
Extraction

The workflow for image segmentation and radiomics data 
extraction has been previously described in detail [27]; 
briefly, images were loaded onto server-deployed Synapse 
3D software (Fujifilm Medical Systems), after which tumor 
volumes were manually delineated on one sequence of inter-
est. 3D regions of interest (ROIs) were then transferred onto 
additional sequences of interest from the same MRI study 
following sequence co-registration using statistical paramet-
ric mapping (SPM) software [40] (Fig. 1). Subsequently, 
1708 radiomics features were extracted from the 3D-ROIs 
using MATLAB® (MathWorks) software running our 
comprehensive institutional radiomics pipeline, which has 
been rigorously benchmarked against an Image Biomark-
ers Standardization Initiative (IBSI) phantom and reference 
values [41] (Fig. 2). Delta values were then calculated from 
the extracted radiomics features. Generally speaking, delta-
radiomics capture either the change or the percent change 
in radiomics features across different points in time [4, 30, 
34, 37, 38]. The quantification of delta change over time in 
our study was thus calculated as post-NAC minus pre-NAC 
feature numeric values, from which subsequent analyses and 
machine learning algorithms were derived.

Statistical Analyses

Univariate comparisons were performed using independ-
ent t-test or Wilcoxon rank sum test depending on data 
normality. Descriptive analyses included mean, standard 
deviation, and interquartile ranges displayed as box plots. 
Benjamini–Hochberg Procedure was used to adjust for mul-
tiple comparisons errors [42]. The percentages of radiomics 
features with unadjusted and Benjamini–Hochberg adjusted 
p ≤ 0.05 and p ≤ 0.01 within each radiomics family were cal-
culated as an assessment of the overall signal strength of a 
given family.

Two machine learning algorithms, namely random forest 
(RF) and real adaptive boosting (AdaBoost), were trained 
with the aim of distinguishing between responders and 

Table 1  Summary features of neoplasms analyzed for machine learn-
ing–augmented radiomics analysis

all data are presented as numerators and denominators with percent-
ages in parentheses unless otherwise specified
* Data presented as mean age in years ± standard deviation with range 
reported in parentheses
NAC neoadjuvant chemotherapy

Characteristic All tumors (n = 44)

Age (years)* 53.70 ± 16.05 (16–80)
Sex
  Males 19/44 (43.18%)
  Females 25/44 (56.82%)

Anatomic location
  Shoulder 1/44 (2.27%)
  Arm 4/44 (9.09%)
  Forearm 1/44 (2.27%)
  Wrist 1/44 (2.27%)
  Groin 2/44 (4.55%)
  Hip 1/44 (2.27%)
  Pelvis/buttock 4/44 (9.09%)
  Thigh 21/44 (47.23%)
  Calf 3/44 (6.82%)
  Knee 1/44 (2.27%)
  Ankle 1/44 (2.27%)
  Foot 2/44 (4.55%)
  Retroperitoneum 2/44 (4.55%)

Histologic subtypes
  Undifferentiated pleomorphic sarcoma 17/44 (38.64%)
  Dedifferentiated liposarcoma 2/44 (4.55%)
  Myxoid liposarcoma 4/44 (9.09%)
  Pleomorphic liposarcoma 1/44 (2.27%)
  Leiomyosarcoma 4/44 (9.09%)
  Myxofibrosarcoma 2/44 (4.55%)
  Embryonal rhabdomyosarcoma 1/44 (2.27%)
  Pleomorphic rhabdomyosarcoma 1/44 (2.27%)
  Extraskeletal Ewing sarcoma 2/44 (4.55%)
  Extraskeletal osteosarcoma 2/44 (4.55%)
  Malignant peripheral nerve sheath tumor 2/44 (4.55%)
  Synovial sarcoma 6/44 (13.64%)

Histologic grade
  High 41/44 (93.18%)
  Low 3/44 (6.82%)

Surgical margins
  Positive 26/44 (59.09%)
  Marginal 7/44 (15.91%)
  Negative 6/44 (13.64%)
  Not specified 5/44 (11.36%)

NAC response
  Responder 23/44 (52.27%)
  Non-responder 21/44 (47.73%)
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non-responders using delta-radiomics values [43]. Both 
RF and AdaBoost are decision tree-based methods that 
are robust to non-normal distributions, missing data, and 
outliers, though RF in particular has performed exception-
ally well in related radiomics studies [44–46]. Model per-
formance was evaluated using a tenfold cross-validation. 
K-fold cross-validation is a commonly employed validation 
technique in radiomics studies [4, 27, 30, 31, 34, 47, 48], as 
the systematic formulation of multiple training and testing 
cohorts renders many unanticipated confounders essentially 
inert. For the purposes of our study, the full dataset was 
first divided equally into 10 folds. Subsequently, the learn-
ing process was re-iterated 10 times, during which a given 
classifier was applied in turn to each of the testing samples. 
In this way, each study sample was allowed to serve as an 
independent test case.

The machine learning models were constructed as pre-
viously described [27]. In the case of RF, the model was 
constructed using 800 trees with a leaf size of 16. Maximal 
depth was set at 50. The square root of the variable number 
was taken as the variable to try. Given that AdaBoost is 
comparatively more efficient, only 25 trees with a maximal 
depth of 3 were used during model construction [49]. For 
both models, Gini impurity index served as the loss func-
tion. Prior correction as described by King et al. was used 
to adjust for imbalanced outcomes [50]. The accuracies of 
the predictive models were quantitatively assessed by taking 
the areas under the curve (AUCs) of the receiver operating 
characteristic (ROC) curves generated from the predicted 
probabilities of the 10 testing datasets combined.

Variables of importance were selected and ranked using 
out-of-bag Gini index. The cut-off for top performing 
variables of importance was taken to be the “cliff” of the 
out-of-bag Gini ranking, i.e., a sudden large change from 
previous ranking position. The variables of importance 
selection procedure were repeated 10 times, with the final 
ranking based on the sum of out-of-bag Gini rankings over 
the tenfold cross-validation.

SAS Enterprise Miner 15.1: High-Performance Proce-
dures were used for machine learning. SAS v9.4 statisti-
cal computing software was used for all other statistical 
analysis.

Results

Univariate analyses revealed that only 4.74% (n = 265) of 
variables showed significant differences in delta-radiomics 
metrics at the p ≤ 0.05 level between NAC responders vs. 
non-responders. Though only a small percentage of metrics 
overall showed statistical significance, an increased repre-
sentation of Laws Texture Energy (LTE)-derived features 
was notably observed as compared to other texture families, 

Table 2  Overview of MRI scans obtained at our institution and at 
outside facilities broken down by plane of section

all data are presented as percentages of MRI scans for which the indi-
cated sequence was available for analysis. Unless otherwise specified, 
all sequences were obtained prior to contrast administration. STIR 
short-tau inversion recovery, PD proton density, HASTE half-Fourier 
acquisition single-shot turbo spin-echo, FIESTA fast imaging employ-
ing steady-state acquisition

Sequence Total (n = 88) Acquired at our 
institution (n = 37)

Acquired at an out-
side facility (n = 51)

T1
  Axial 85.23% 97.30% 76.47%
  Coronal 13.64% 2.70% 21.57%
  Sagittal – – –

T1 post-contrast
  Axial 5.68% 2.70% 7.84%
  Coronal 2.27% – 3.92%
  Sagittal – – –

T1 fat-saturated
  Axial 63.64% 97.30% 39.22%
  Coronal 2.27% – 3.92%
  Sagittal 1.14% – 1.96%

T1 fat-saturated post-contrast
  Axial 84.09% 100.00% 72.55%
  Coronal 2.27% – 3.92%
  Sagittal 1.14% – 1.96%

STIR
  Axial 56.82% 75.68% 43.14%
  Coronal 18.18% 8.11% 25.49%
  Sagittal 10.23% 10.81% 9.80%

T2
  Axial 13.64% 13.51% 13.73%
  Coronal 3.41% – 5.88%
  Sagittal 6.82% – 11.76%

T2 fat-saturated
  Axial 15.91% 2.70% 25.49%
  Coronal 3.41% – 5.88%
  Sagittal 1.14% 2.70% –

PD
  Axial 6.82% 2.70% 9.80%
  Coronal 3.41% – 5.88%
  Sagittal 1.14% – 1.96%

PD fat-saturated
  Axial 22.73% 8.11% 33.33%
  Coronal – – –
  Sagittal 4.55% 8.11% 1.96%

HASTE
  Axial – – –
  Coronal 1.14% – 1.96%
  Sagittal – – –

FIESTA
  Axial 1.14% – 1.96%
  Coronal – – –
  Sagittal – – –



780 Molecular Imaging and Biology (2023) 25:776–787

1 3

accounting for 46.04% (n = 122) of all features reaching sta-
tistical significance at the p ≤ 0.05 level (Fig. 3). Likewise, 
only 1.34% (n = 75) of variables showed statistically sig-
nificant differences at the p ≤ 0.01 level. Concordantly, both 
machine learning methods failed to predict NAC response 
by ROC analysis, with AUCs of 0.40 (95% CI 0.22–0.58) 
and 0.44 (95% CI 0.26–0.62) for RF and AdaBoost, respec-
tively (Fig. 4).

As demonstration of proof of concept, we repeated our 
machine learning procedure on 2 restricted datasets of pre-
selected radiomics features filtered by univariate p-values. 
When run on a restricted dataset of only features found 
to be significant at the p ≤ 0.05 level, RF and AdaBoost 
yielded AUCs of 0.74 (95% CI 0.59–0.89) and 0.75 (95% CI 
0.60–0.89), respectively. Similarly, when run on a restricted 
dataset of only features found to be significant at the p ≤ 0.01 
level, RF and AdaBoost yielded AUCs of 0.78 (95% CI 
0.64–0.92) and 0.82 (95% CI 0.70–0.95), respectively. This 
exercise was conducted solely for the purposes of compari-
son and discussion and is not routinely recommended by the 
authors as a method of bolstering machine learning results.

Discussion

MRI remains the preeminent method for serial evaluation of 
STS progression and treatment response [4, 9, 19, 37, 38]. 
Yet, it has been clear for some time that historical defini-
tions of treatment response—which have tended to rely on 
size-based criteria—are severely lacking, as they often fail 
to account for non-dimensional changes in tumors exhibiting 
a biologic response to NAC [2–4, 7, 8, 20, 30]. In this study, 
we investigated the utility of a delta-radiomics approach to 
predict chemotherapeutic response in STS by assessing for 
temporal changes in the radiomics feature parameters of 
MRI scans taken pre- and post-NAC. In contrast to previ-
ously published findings [30], we do not find an ability for 
decision classifiers constructed using an MRI-based delta-
radiomics approach to accurately predict treatment response 
in STS treated with NAC.

Despite a concerted push for the validation of novel thera-
peutic biomarkers in oncologic care [6, 21, 22], few studies 
have thus far investigated the utility of MRI-based radiom-
ics features to serve as surrogate predictors of neoadjuvant 
response in STS [4] (Table 3). To the best of our knowl-
edge, only one previously published study by Crombé et al. 
similarly utilized an MRI-based delta-radiomics approach 
for predicting treatment response specifically to NAC. In 
their procedure, the authors calculated the absolute change 
in 33 radiomics features in 65 patients with STS following 
anthracycline-based NAC, from which only a subset of pre-
selected delta features was used to train 4 decision classi-
fiers [30]. Likewise, though Peeken et al., Gao et al., and 

Miao et al. all suggest an ability for delta-radiomics–based 
decision classifiers to predict STS response to radiotherapy 
[34, 37, 38], these studies also employed feature reduction 
or recalling techniques prior to model training. While data 
filtering has become an unfortunately common practice to 
address high dimensionality in radiomics datasets, these 
approaches have the potential to induce information leak-
age. Information leakage further leads to disruption of test 
data independency, thereby resulting in problems of overfit-
ting [28, 39]. We demonstrate these phenomena explicitly 
through the results of our filtered analyses, whereby restrict-
ing our machine learning inputs to only variables which were 
significant at the p ≤ 0.05 and p ≤ 0.01 levels in our univari-
ate analyses yielded comparable AUCs to those reported by 
Crombé et al., Peeken et al., Gao et al., and Miao et al. [30, 
34, 37, 38].

Publication bias has emerged as a growing area of con-
cern among radiomics studies. As recently as 2018, Buvat 
et al. reported that a mere 6% of all PET radiomics studies 
in the published literature explicitly reported negative results 
[51]. Moreover, in a systematic review of 52 sarcoma-spe-
cific radiomics studies, Crombé et al. found that no studies 
specifically described negative findings [36], further high-
lighting the need for more balanced publication practices 
within the field. As discussed above, our result was not able 
to reproduce separation of neoadjuvant responders from 
non-responders using machine learning augmented MRI-
based radiomics analyses [30, 34, 37, 38]. We believe this 
is in large part due to our more rigorous approach to our 
machine learning methodologies without reliance on data 
filtering and feature selection techniques featured in related 
works [27, 28, 39]. In particular, Crombé et al. even further 
report that they constructed their models by first selecting 
one feature per category and then increasing the number of 
included features in a “forward stepwise fashion” as deter-
mined by univariate p-values [30]. Such steps are not only 
unnecessary but actually bias and invalidate the results of 
modern machine learning approaches such as RF—which 
was notably their top performing classifier—as these algo-
rithms are designed to work with high dimensionality data-
sets without pre-selection of so-called candidate features 
[27, 47, 52].

One other notable aspect of our study’s methodology 
was our inclusion of scans from multiple image acquisition 
centers. Issues with reproducibility in radiomics studies has 
garnered progressively more attention in recent years, as it 
has become increasingly clear that radiomics-based machine 
learning procedures based on single-center, single-vendor 
datasets generalize poorly to multicentric data pools [36, 
48, 53, 54]. Moreover, as we have discussed in our prior 
work [27], databases derived from single-center cohorts are 
poorly reflective of modern clinical practice models [29, 48]. 
Thus, our study is in line with literature supporting the use 
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of multicentric datasets in radiomics studies [16, 26, 27, 36, 
53, 55], which theoretically would help mitigate confound-
ing effects of signal noise introduced as a result of hetero-
geneity in acquisition parameters.

Finally, though the results of our machine learning pro-
cess failed to reach overall statistical significance, we do note 
an increased representation of LTE-derived metrics in the 
univariate analyses, with 46.04% of all metrics reaching sta-
tistical significance at the p ≤ 0.05 level deriving from LTE-
based computations. LTE-based measures belong to a group 
of spatial filtering techniques that reflect the properties of n 
x n-sized “convolution kernels” [56–58]. Using this method, 
spatial domain filters are generated from the vector products 
of one-dimensional convolution masks, each representing a 
different texture feature [58]. In the case of our institutional 

radiomics pipeline, LTE-based metrics accounted for 1472 
individual radiomics features out of a total of 5585 features 
extracted from 9 separate texture families during the course 
of this study. This subset of our findings do support previ-
ously published data suggesting that spatial filtering tech-
niques are well-suited to detect features indicative of tumor 
heterogeneity [26, 27], possibly as a consequence of more 
completely capturing voxel-to-voxel variation through the 
creation of neighborhood-based matrices [56, 58].

Our study was limited by several factors. First, while 
our study population was similar in size and composi-
tion to the cohort reported on by Crombé et al. [30], it 
is possible that our study was underpowered to detect a 
significant result, whereby 100 subjects is often regarded 
as the threshold sample size for radiomics studies [23]. 
Although feature selection can theoretically lower the 
cohort threshold size, we feel that routine use of these 
procedures should generally be avoided in radiomics stud-
ies for reasons as discussed thoroughly above. Thus, given 
the relative rarity of STS in the general population, multi-
institutional collaborations may be necessary in future 
studies to accrue adequate sample sizes [4, 5, 10, 20, 27, 
32, 37, 48]. Second, the retrospective nature of our data 
collection poses a risk for selection bias given that our 
subjects were screened for enrollment eligibility from a 

Fig. 1  Flowchart illustrating the workflow for radiomics feature 
extraction and machine learning–augmented analysis. Example 
depicts a 50-year-old female with undifferentiated pleomorphic 
sarcoma of the left calf pre- and post-NAC. Following manual seg-
mentation of 3D-ROIs, data were then extracted from co-regis-
tered sequences of interest via our institutional radiomics pipeline. 
Machine learning models using random forest (RF) and real adaptive 
boosting (AdaBoost) methods were constructed using a tenfold cross-
validation procedure. NAC, neoadjuvant chemotherapy; ROI, region 
of interest; RF, random forest; AdaBoost, real adaptive boosting.

◂

Fig. 2  Diagrammatic representation of features extracted by our insti-
tutional radiomics pipeline. In total, our radiomics pipeline was engi-
neered to extract 1708 radiomics features from 9 distinct texture fami-
lies. Reprinted by permission from Springer Nature Customer Service 

Centre GmbH: Springer Nature European Radiology, [27] (Whole-
tumor 3D volumetric MRI-based radiomics approach for distinguish-
ing between benign and malignant soft tissue tumors, Fields et  al.), 
European Society of Radiology (2021).



783Molecular Imaging and Biology (2023) 25:776–787 

1 3

larger pool of cases discussed at our institution’s Orthope-
dic and Sarcoma Tumor Boards [59]. Third, though efforts 
are currently being made to standardize post-acquisition 
harmonization techniques [10, 24, 31, 60, 61], such appli-
cations lack general consensus regarding proper imple-
mentation and execution [26, 27]. Furthermore, while 
post-processing data harmonization techniques such as 
ComBat have shown some ability to ameliorate scanner 
and protocol variabilities in multicentric studies, such 
batch adjustment methods have limitations when used in 
small sample sizes and rely on stringent data distribution 
assumptions. [62]. Thus, these methods were of limited 
applicability to our dataset given concerns for adverse 
effects due to outliers as well as missing and skewed data 
distributions. Future efforts to validate post-processing 
methods aimed at mitigating signal instability across het-
erogeneous acquisition parameters will undoubtedly aid in 
the construction of large, multicentric datasets for future 
research. Additional future directions may also include 
focused studies correlating delta-radiomics changes with 
histologic subtype and histopathologic findings of percent 
necrosis, as well as those specifically focused on stratify-
ing post-treatment changes related to specific chemothera-
peutic regimens.

In conclusion, though our machine learning analyses 
did not show statistically significant separation of NAC 
responders from non-responders, we were able to identify 
increased representation of LTE-derived metrics in univar-
iate analyses. These and other spatial filtering metrics may 
pose a promising area for future radiomics research due to 

their ability to more accurately reflect subtle variations in 
the imaging grayscale [26, 27, 56, 58]. Larger sample sizes 
in future cohorts are warranted so as to obviate the need 

Fig. 3  Bar plots illustrating the percentage of radiomics features that 
were statistically significant at the p ≤ 0.05 level broken down by 
texture family. Overall, only 4.74% of all variables reached statisti-
cal significance in univariate analyses; however, analyses did reveal 
increased representation of LTE-derived features. GLSZM, gray-level 

size zone matrix; LTE, Laws Texture Energy; NGTDM, neighboring 
gray tone difference matrix; GLRLM, gray-level run length matrix; 
FFT, fast Fourier transform; GLDM, gray-level dependence matrix; 
DCT, discrete cosine transform; GLCM, gray-level co-occurrence 
matrix.

Fig. 4  Evaluation of prediction accuracies of the machine learning–
augmented decision classifiers using ROC curve analysis. Prediction 
accuracy was evaluated by AUC. ROC, receiver operating character-
istic; AUC, area under the curve; RF, random forest; AdaBoost, real 
adaptive boosting.
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for data reductive techniques, which carry with them an 
inherent risk of introducing information leakage and thus 
biasing the decision classifiers [28, 39].
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