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Abstract
Purpose  As novel tracers are continuously under development, it is important to obtain reliable radiation dose estimates to 
optimize the amount of activity that can be administered while keeping radiation burden within acceptable limits.
Organ segmentation is required for quantification of specific uptake in organs of interest and whole-body dosimetry but is 
a time-consuming task which induces high interobserver variability. Therefore, we explored using manual segmentations 
versus an artificial intelligence (AI)-based automated segmentation tool as a pre-processing step for calculating whole-body 
effective doses to determine the influence of variability in volumetric whole-organ segmentations on dosimetry.
Procedures  PET/CT data of six patients undergoing imaging with 89Zr-labelled pembrolizumab were included. Manual organ 
segmentations were performed, using in-house developed software, and biodistribution information was obtained. Based on 
the activity biodistribution information, residence times were calculated. The residence times served as input for OLINDA/
EXM version 1.0 (Vanderbilt University, 2003) to calculate the whole-body effective dose (mSv/MBq).
Subsequently, organ segmentations were performed using RECOMIA, a cloud-based AI platform for nuclear medicine and 
radiology research. The workflow for calculating residence times and whole-body effective doses, as described above, was 
repeated.
Results  Data were acquired on days 2, 4, and 7 post-injection, resulting in 18 scans. Overall analysis time per scan was 
approximately 4 h for manual segmentations compared to ≤ 30 min using AI-based segmentations. Median Jaccard similar-
ity coefficients between manual and AI-based segmentations varied from 0.05 (range 0.00–0.14) for the pancreas to 0.78 
(range 0.74–0.82) for the lungs. Whole-body effective doses differed minimally for the six patients with a median difference 
in received mSv/MBq of 0.52% (range 0.15–1.95%).
Conclusion  This pilot study suggests that whole-body dosimetry calculations can benefit from fast, automated AI-based 
whole organ segmentations.
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Introduction

As novel tracers are under continuous development, e.g., 
89Zr-labelled immune tracers, it is important to determine 
the biodistribution for each newly developed targeting agent 
and obtain reliable radiation dose estimates. This allows 
optimization of the amount of activity to be administered 
while keeping the radiation burden within acceptable lim-
its. Furthermore, timely whole-body dosimetry analysis is 
crucial for estimating absorbed doses to critical organs prior 
to, e.g., radioimmunotherapy [1].

After acquiring a series of PET/CT scans, manual 
whole organ segmentation is typically performed of the 
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organs of interest to obtain specific organ activity biodis-
tribution information for whole-body dosimetry. When 
using the extracted biodistribution information over 
time, the area under the time-activity curve extrapolated 
to infinity represents the total number of disintegrations 
per unit administered activity (i.e., cumulated activity or 
residence time) [2]. Next, the mean absorbed dose per 
organ can be determined using OLINDA/EXM (Organ 
Level INternal Dose Assessment/EXponential Modeling) 
software which translates the cumulated activity into 
absorbed dose using dose conversion factors [3].

Manual organ segmentation is however a very time-con-
suming task. The importance of faster, simplified (semi-)
automated whole organ segmentation methods for dosimetry 
purposes has been emphasized and explored before [4–7]. 
Makris et al. (2014) explored various image processing 
methods. Analysis methods based on spatial volume of inter-
est (VOI) transformation were developed and their influence 
on residence times and absorbed dose estimates was assessed 
[5]. In another study by the same group, an active contouring 
method for semi-automated segmentation of the red marrow, 
often the dose-limiting organ in radio-immunotherapy stud-
ies [8], was developed [4]. More recently, fully automated 
whole organ segmentation methods for facilitating absorbed 
dose estimation have emerged, and their performance with 
respect to manual segmentation has been explored [6, 7]. 
Depending on the manual segmentations and amount of data 
used as input to train the network, automated whole organ 
segmentation methods may also vary in accuracy [9].

Therefore, we decided to perform a pilot study testing an 
online readily available fully automated artificial intelligence 
(AI)-based whole organ segmentation tool as a pre-process-
ing step for calculating organ and whole-body absorbed 
doses to ultimately reduce analysis time. We explored the 
effect of differences in manual segmentations and AI-based 
segmentations on the calculated whole-body effective dose 
estimates.

Materials and Methods

89Zr immuno-PET/CT data of the first six patients partici-
pating in the recently published study [10] and acquired 
between October 2016 and March 2017 were included 
in the current analysis. The study was approved by the 
Medical Ethical Committee of the University Medi-
cal Center Groningen and registered at ClinicalTrials.
gov (NCT02760225). All patients gave written informed 
consent. Patients in the current analysis received a sin-
gle injection of 89Zr-labelled pembrolizumab and were 
scanned on day 2, day 4, and day 7 post-injection (p.i.). 
All images were acquired using a Biograph mCT (Sie-
mens Healthineers, Knoxville, TN, USA) PET/CT system 

in step-and-shoot mode from the patients’ vertex to feet. 
Data acquisitions on days 2 and 4 p.i. were performed at 
5 min per bed position from the vertex to the upper thigh 
and imaging of the legs at 2 min per bed position. On day 
7 p.i., to account for lower count rates, PET imaging was 
performed at 10 min per bed position from the vertex to 
the upper thigh followed by 4 min per bed position for the 
legs. The acquisition parameters of the low-dose CT were 
as follows: an X-ray tube current of 99 mAs, a tube voltage 
of 140 kV, and a spiral pitch factor of 1.5. PET data were 
reconstructed using the clinically preferred multicentre 
validated 89Zr PET reconstruction protocol [11] using an 
ordinary Poisson ordered-subset-expectation–maximiza-
tion 3D-iterative algorithm [12] with 3 iterations, 21 sub-
sets, Time-of-Flight application, resolution modelling, and 
a Gaussian filter of 8 mm. The resulting image matrix size 
was 256 × 256 with a voxel size of 3.18 × 3.18 × 2.00 mm.

Subsequently, manual organ segmentations were per-
formed, including a selection of critical organs predefined 
in the OLINDA VOI definition list [3] using in-house 
developed software, and biodistribution information was 
obtained. Manual segmentations were performed by the 
first author JS with approximately 4 years of experience in 
image segmentations. These manual segmentations were 
independently reviewed and corrected, if needed, by two 
nuclear medicine physicians (AHB and WN) with 25 and 
15 years of experience in image reading, respectively. 
Using the extracted biodistribution information over 
time, the area under the time-activity curve extrapolated 
to infinity was calculated, and the total number of disin-
tegrations per unit administered activity (i.e., cumulated 
activity or residence time) was obtained. The obtained 
residence times served as input for OLINDA/EXM ver-
sion 1.0 (Vanderbilt University, 2003) [3] to calculate 
the effective dose per organ and the whole-body effective 
dose (mSv/MBq), taking into account tissue weight factors 
described in the International Commission on Radiologi-
cal Protection (ICRP) publication 103 [13].

Next, organ segmentations were also performed using 
RECOMIA (available at: https://​www.​recom​ia.​org/), a 
cloud-based AI platform for nuclear medicine and radiol-
ogy research [14]. This AI tool is based on two convo-
lutional neural networks (loosely inspired by the U-Net) 
trained on 339 manually segmented CT scans by experi-
enced radiologists [14]; more details can also be found 
on the RECOMIA website [10]. To test the raw capabili-
ties of the AI tool, segmentations were not reviewed and 
corrected before further analyses. Moreover, most organs, 
such as liver, kidneys, spleen, lungs, and brain, are easily 
visualized on a CT scan and therefore easy to delineate, 
but this process is mainly time-consuming. Therefore, the 
AI method is primarily considered to reduce analysis time 
and final segmentations may need to be supervised and 
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corrected. The subsequent workflow for calculating resi-
dence times and whole-body effective doses, as described 
above, was repeated.

As the available AI-tool offered only a limited amount of 
organ segmentations per the OLINDA VOI definition list, 
six organs (brain, kidney, liver, lung, pancreas, and spleen) 
were included for further analysis in this pilot study.

Volumetric differences per organ between segmentation 
methods were assessed using a non-parametric Wilcoxon 
signed-rank test. In addition, Jaccard similarity coeffi-
cients were calculated per organ to quantify the extent of 
organ segmentation similarity between the two methods. A 
P-value of less than 0.05 was considered significant. Using 
the segmentations as a pre-processing step, the percentage 
difference between estimated absorbed dose obtained using 
manual versus AI-based segmentation was compared.

Results

All six patients included in this analysis had metastatic can-
cer. There were three men, and three women, 55–72 years of 
age (median 65 years), with a weight of 46–86 kg (median 
68 kg). Patients received an intravenous injection of median 
36 MBq (range 35–38 MBq) 89Zr-labelled. MAb protein dose 
for the first two patients was 10 mg (to establish the optimal 
protein dose for imaging), and the remaining four received 
5 mg mAb protein dose. The difference in administered pro-
tein doses did not influence organ residence times.

Overall analysis time per scan incorporating the man-
ual segmentation method was approximately 4  h com-
pared to ≤ 30 min when AI-based segmentation was used. 
Example patient images, including whole organ segmenta-
tions, are shown in Fig. 1. A comparison of organ volumes 

Fig. 1   Low-dose CT example 
patient images in coronal view 
(upper row) and axial view 
(lower row) including whole 
organ segmentations performed 
manually (left column) and 
using the AI-based tool (right 
column)
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obtained using the two different segmentations methods is 
illustrated with scatter plots in Fig. 2. The segmented vol-
umes using manual and AI-based segmentation in the kid-
neys (P = 0.005), in the liver (P < 0.001), and in the spleen 
(P < 0.001) were significantly different. Median Jaccard 
similarity coefficients between manual organ VOI segmen-
tations and AI-based segmentations varied from 0.05 (range 
0.00–0.14) for the pancreas to 0.78 (range 0.74–0.82) for the 
lung. A complete overview of Jaccard similarity coefficients 
is provided in Table 1.

Calculated whole-body effective doses differed mini-
mally for the six patients with a median difference in 
received mSv/MBq of 0.52% (range 0.15–1.95%), con-
sidering tissue weight factors described in ICRP Publica-
tion 103 [13]. A comparison of calculated effective dose 
per organ obtained using manual and AI-based segmen-
tation is illustrated with a scatter plot in Fig. 3. Whole-
body effective doses are shown in Table 2.

Discussion

It is known that manual segmentations suffer from high 
interobserver variability. In addition, AI-based segmenta-
tions are also subject to variability, e.g., depending on the 
manual segmentations and amount of data that is used to 
train the network [9]. Therefore, in the present study, we 
aimed to explore whether variations in segmented organ 
volumes would influence estimated effective doses by com-
paring the dose estimates derived from AI-based based seg-
mentations with those obtained manually.

The manual segmentations performed in this study 
showed some inaccuracies, for example, inclusion of a small 
part of the inferior vena cava in the liver segmentation, and 
exclusion of the border of the kidney, see Fig. 1. Also, the 
AI-based segmentations showed imperfections, for instance 
in the kidneys, spleen, and pancreas as can be seen from 
Jaccard values (Table 1), in Fig. 4, and Supplemental Fig. 1. 

Fig. 2   Scatter plot of segmented 
whole organ volumes obtained 
using manual segmentation 
(x-axis) and AI-based seg-
mentation (y-axis). Axes are 
in logarithmic scale. Organ 
volumes obtained using manual 
and AI-based segmentation 
were significantly different for 
the kidneys (P = 0.005), the 
liver (P < 0.001), and the spleen 
(P < 0.001)

Table 1   Calculated Jaccard similarity coefficients of whole organ segmentations performed manually versus AI-based

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6

Scan day 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

Brain 0.53 0.54 0.55 0.53 0.50 0.52 0.53 0.53 0.51 0.56 0.56 0.56 0.43 0.42 0.44 0.48 0.49 0.48
Kidney 0.27 0.13 0.34 0.44 0.38 0.44 0.38 0.36 0.20 0.37 0.36 0.34 0.30 0.31 0.29 0.24 0.16 0.19
Liver 0.67 0.66 0.74 0.72 0.75 0.74 0.74 0.73 0.55 0.73 0.76 0.75 0.71 0.72 0.74 0.70 0.73 0.63
Lung 0.78 0.78 0.80 0.82 0.79 0.82 0.77 0.74 0.74 0.81 0.79 0.78 0.76 0.78 0.77 0.78 0.76 0.77
Pancreas 0.14 0.09 0.14 0.00 0.05 0.00 0.06 0.04 0.06 0.10 0.11 0.10 0.00 0.02 0.00 0.03 0.05 0.01
Spleen 0.52 0.49 0.52 0.53 0.60 0.51 0.46 0.48 0.41 0.44 0.51 0.55 0.48 0.46 0.49 0.30 0.28 0.15
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This pilot study showed however that effective dose estima-
tion is accurate (within 2%) regardless of these variations in 
manual or AI-based organ segmentation. Since whole-body 
dosimetry involves the summation of weighted dose values 
from multiple organs and structures, effective dose calcula-
tion is less susceptible to variabilities that arise by the type 
of segmentation method.

A study by M. Nazari et al. (2021) also used deep learning 
for automated whole organ segmentation on CT images. They 
also found a low discrepancy in dose calculations obtained 
using AI-based and manual segmentation of the kidneys of 
less than 3% in approximately 40% of the patients and less or 
equal to 7% in approximately 90% of the patients (n = 8) [6]. 
They mention a specific case that showed 25% deviation in 
dose estimation obtained using the two segmentation meth-
ods. Further exploration of the deviating case showed the 
discrepancy was due to a larger spill-out effect in the manual 
segmentation. This illustrates the disadvantage of segmenta-
tion by (expert) readers where resulting VOIs are inescapably 
subject to inter- but also intra-reader variability.

Another comparable study demonstrated a mean organ 
dose estimation using AI-based versus manual segmenta-
tion with less than 5% deviation for the brain, lung, and 
bone regions. For the eye and parotid gland, the estimated 
dose differed 7% and 17%, respectively [7]. A multi-
atlas averaging was performed to reduce the discrep-
ancy in estimated organ dose with AI-based and manual 

Fig. 3   Scatter plot of calcu-
lated effective dose per organ 
obtained using manual whole 
organ segmentation (x-axis) 
and AI-based whole organ 
segmentation (y-axis). Axes are 
in logarithmic scale

Table 2   Calculated whole-body effective doses (mSv/MBq) using 
manual versus AI-based whole organ segmentation as a pre-process-
ing step

Patient # Manual AI-based Difference (%)

1 0.64 0.64 0.15
2 0.51 0.51 0.45
3 0.64 0.64 0.97
4 0.67 0.67 0.59
5 0.52 0.53 1.95
6 0.51 0.52 0.37

Fig. 4   Example axial patient 
CT images illustrating impaired 
whole organ segmentations 
performed using the AI-tool 
(right) with respect to manual 
segmentations (left). Poor seg-
mentations by the AI-tool are 
likely caused by streak artifacts
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segmentation [15], resulting in an estimated dose differ-
ence of 4% for the eye and 8% for the parotid gland [7]. 
Another possible approach for future whole organ dose 
estimation could be to use fast AI-based segmentation as 
a starting point and, if necessary, adjust the VOIs manu-
ally for more accurate whole organ registration.

Despite the small differences in calculated effective 
doses in the current study, segmented volumes of organs 
with low contrast to the surrounding tissues, e.g., the 
pancreas, showed large differences between the manual 
and AI-based method assessed by the Jaccard similarity 
coefficient (see Table 1), sometimes even 0.0 indicat-
ing no overlap between the differently segmented organ 
volumes (see Supplemental Fig. 1). The reason for this 
can be explained two-fold: (1) the contribution of the 
pancreas to the overall effective dose is small compared 
to the contribution of all other organs, and (2) there is 
no clear high uptake of the radiotracer in the pancreas, 
and thus, larger errors in segmentation will have a minor 
effect on the effective dose as the contribution from the 
pancreas, because of low uptake, is small. This behavior 
was previously confirmed by E. Trägård et al. [14], where 
they explain that the size of the segmented organ plays a 
role in the obtained coefficients. The smaller the organ, 
the more difficult the automated segmentation, i.e., the 
voxels located at the edge of an organ are difficult to 
assign to a certain tissue type (e.g., assign to one organ or 
the other), whereas voxels inside the organ, away from the 
edge, are easier to classify. Therefore, a higher Jaccard 
similarity coefficient was expected for large and distinc-
tive organs such as the lungs. However, due to unclear 
reasons, the AI-based method had trouble capturing the 
entire organ; an illustrative example is added in Supple-
mental Fig. 2.

The low-dose CT dataset used in the current study 
showed streak artifacts in some cases. Example images, 
including whole organ segmentations, are shown in 
Fig. 4. These were the cases in which the pancreas was 
not accurately segmented by the AI-based tool, but also 
the kidneys, liver, and the spleen showed differences in 
segmented volume. These volumetric differences did not 
lead to inaccurate effective dose estimates in this small 
dataset. However, for smaller or other antibody moie-
ties, accuracy and precision of organ segmentation may 
be more critical to obtain reliable dose estimates. The 
developers of the tool confirmed that in the training set 
of the CNNs, no image artifacts, such as streak artifacts 
observed in our data, were included. To overcome these 
issues in future work, a convolutional neural network 
could be trained to handle these data, including streak 
artifacts. At this time, we recommend that AI-based seg-
mentations should be supervised by an observer and cor-
rected when needed. Nonetheless, with respect to manual 

delineation, a considerable amount of time can be saved 
by supervised AI-based whole organ segmentation.

Conclusion

With the continuous introduction of novel radiotracers, 
whole-body effective doses can be assessed rapidly and 
efficiently through a readily available online AI-based 
organ segmentation tool (using low-dose CTs) as a dosim-
etry pre-processing step.
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