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Abstract
Purpose  Due to limited imaging options, the visualization of a local relapse of prostate cancer used to pose a considerable 
challenge. However, since the integration of 18F-PSMA-1007-PET/CT into the clinic, a relapsed tumor can now easily be 
detected by hybrid imaging. The present study aimed to evaluate and map the allocate relapse in a large cohort of prostate 
cancer patients focusing on individual patient management conclusions for radiation therapy.
Procedures  The current study included 135 men with prostate cancer after primary treatment who underwent 18F-PSMA-
1007-PET/CT due to biochemical relapse detecting a local relapse. Imaging data were reassessed and analyzed with regard 
to relapse locations. For the correlation of tumor foci with clinical data, we used binary logistic regression models as well 
as the Kruskal–Wallis test and Mann–Whitney test.
Results  In total, 69.6% of all patients (mean age: 65 years) underwent prostatectomy while 30.4% underwent radiation 
therapy. PET imaging detected most frequently a unifocal relapse (72.6%). There was a statistically significantly higher rate 
of ipsilateral cases among the relapsed tumors. Comparing both treatment approaches, tumors relapsed most commonly 
within the posterior region after surgery and transition/peripheral zone after radiation therapy, respectively.
Conclusions  The present study confirms that 18F-PSMA-1007-PET/CT is highly suitable for the localization and allocation 
of a local relapse in patients with prostate cancer. The data enable further optimizing dose prescriptions and target volume 
delineations of radiation therapy in the future.
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Background

Due to its limited expression in extraprostatic tissue and the 
upregulated expression in many malignant prostate lesions, 
prostate-specific membrane antigen (PSMA) as a target is 
highly suitable for theranostics in the era of modern per-
sonalized oncology [1–3]. To date, several ligands targeting 
PSMA—also known as glutamate carboxypeptidase II—
have been developed and are used for imaging and therapy 
of patients with prostate cancer. Conjugated with galium-68 
and flourine-18, which are the most commonly used trac-
ers, PSMA expression can be imaged with a high sensitivity 

and specificity [4, 5]. Since 2011, numerous clinical trials 
have evaluated the role of PSMA-PET/CT as an imaging 
tool focusing on the role as a restaging probe. In one of the 
largest evaluations of a retrospective study including 2533 
patients with recurrent prostate cancer after prostatectomy, 
Afshar-Oromieh reported on a very promising performance 
of 68 Ga-PSMA-11 PET/CT. Pathologic PET/CT scans were 
observed in 43%, 58%, and 72% of men with PSA ≤ 0.2, > 0.2 
to ≤ 0.5, and > 0.5 to ≤ 1.0 ng/ml, respectively [6]. Similar 
results were obtained by a prospective multi-center study 
in 2005 patients: The use of 68 Ga-PSMA-11 as a radi-
otracer leads to a high detection rate in this large cohort 
of men with biochemical relapse after surgery. The authors 
observed positive findings in 44.8% (PSA < 0.25 ng/ml) to 
96.2% (PSA > 10 ng/ml), significantly increasing with rising 
PSA levels [7]. Although 68 Ga-PSMA-11 has a favorable 
tumor-to-background ratio and a high accuracy, the tracer is 

 *	 S. A. Koerber 
	 Stefan.Koerber@med.uni-heidelberg.de

Extended author information available on the last page of the article

/ Published online: 23 August 2022 

http://crossmark.crossref.org/dialog/?doi=10.1007/s11307-022-01766-6&domain=pdf


Molecular Imaging and Biology (2 023) 25:375–383

1 3

excreted by the urinary tract [8, 9]. Thus, the detection of a 
local relapse after primary treatment is challenging.

Since the introduction of a novel tracer, 18F-PSMA-1007, 
restaging after biochemical relapse is highly efficient due 
to a very low renal excretion tract minimizing the risk of 
inconclusive results within the prostate bed [10]. In a cohort 
of 251 patients from three academic centers, 18F-PSMA-
1007-PET/CT demonstrated a high detection rate for 
men with biochemical relapse after surgery which might 
improve patient management by correctly identifying sites 
of relapse at an early stage [11]. Therefore, the purpose of 
this study was to evaluate the role of PSMA imaging, using 
18F-PSMA-1007 as a tracer, in characterizing and map-
ping the local relapse in a large cohort of prostate cancer 
patients after prostatectomy or definitive radiation therapy. 
Our results may contribute to more individualized salvage 
strategies or improvements with regard to primary treatment.

Materials and Methods

Study Design

For this mono-centric study, we initially identified more than 
2000 patients from our database who underwent PSMA-
PET/CT for restaging due to a biochemical relapse after 
primary treatment between June 2011 and April 2019. All 
patients gave written consent to undergo the imaging pro-
cedures. From these patients, 519 men with local relapse in 
hybrid imaging were identified. Finally, 135 men met the 
inclusion criteria (age of 18 or older, sufficient clinical data, 
PET imaging with 18F-PSMA-1007) and were included in 
the present analysis. Clinical parameters such as initial PSA, 
Gleason score, and initial tumor location were anonymously 
collected. The tumor relapse location for each patient was 
identified by reassessment of 18F-PSMA-1007-PET/CT and 
transferred to a template, thus allowing further analysis 
of relapse locations with regard to clinical subgroups. A 
map was created showing infiltrated areas and predominant 
relapse locations in the prostatic fossa.

This present retrospective study was approved by the 
local Institutional Review Board (“S-433/2019”) and con-
ducted in accordance with the Helsinki Declaration and its 
amendments.

Imaging Protocol and Image Analysis

Imaging was performed according to local standard proto-
cols using Siemens mCT flow, Siemens Biograph 6, and Sie-
mens Biograph 20 mCT scanners 90–120 min after applica-
tion of 18F-PSMA-1007. An effective dose of approximately 
4.4–5.5 mSv per 200–250 MBq examination was applied 
[10, 12]. For image evaluation, we used the “syngo TrueD” 

software (Siemens Healthineers, Erlangen/Germany). Maxi-
mum standardized uptake values (SUVmax) were quantified 
via semi-automatic regions of interest (ROI). The images were 
evaluated by two certified nuclear physicians as well as one 
certified radiation oncologist. We classified any tracer accu-
mulation that did not correspond to a physiological uptake 
as malignant. All these findings were collected in a common 
consensus.

The location of tumor relapse after radical prostatectomy 
was evaluated by allocating each tumor to a template of the 
prostatic fossa consisting of 27 regions (SUPPLEMENT 1). 
Tumor locations in patients who received definitive radiation 
therapy were allocated using the PIRADS 2.1 template [13]. 
A map was created showing the region-specific incidence 
within the prostatic fossa which was infiltrated. Summation 
images indicate the predominant locations of tumor relapse. 
The number of local tumor foci was evaluated in each patient. 
For subgroup analysis, the type of primary definitive treatment 
(radiation therapy, surgery), surgical technique (non-robotic-
assisted, robotic-assisted), and location of the primary tumor 
prior to definitive treatment were identified in the database. 
The primary tumor location was categorized into “left side,” 
“right side,” and “both sides”.

Statistical Analysis

We used Microsoft Excel and SPSS Statistics version 27 (IBM, 
Armonk/NY, USA) for statistical analysis. After descriptive 
evaluation, the initial 27 regions were aggregated into a total of 
7 regions to make them feasible for further statistical analysis 
using binary logistic regression models in order to investigate 
correlations between tumor location and clinical parameters. 
Tumor infiltration in either the right or the left prostate lobe, 
in the anterior or posterior region, and in close proximity to 
the bladder, bladder neck, or anastomotic site as well as mono-
focal or bi-/multifocal tumor relapse served as dependent vari-
ables. Independent variables included “type of definitive treat-
ment” (surgery or radiation therapy), “primary tumor location” 
(left or right prostate lobe—including seminal vesicles—or 
both sides), and “surgical technique” (non-robotic-assisted or 
robotic-assisted). Further analysis on the amount of tumor foci 
in relation to the type of primary definitive treatment was per-
formed using non-parametric testing (Kruskal–Wallis test and 
Mann–Whitney test). A p-value below 0.05 was considered 
statistically significant.

Results

Cohort Characteristics

In total, 135 men with prostate cancer and a first biochemical 
relapse were included in the current study. All patients had a 
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histologically confirmed carcinoma after biopsy and under-
went prostatectomy (n = 94; 69.6%) or radiation therapy 
(n = 41; 30.4%) as primary treatment. Most patients received 
robotic surgery (48.1%), and 22 patients underwent retro-
pubic prostatectomy. Intensity-modulated radiation therapy 
(IMRT) with photons was performed for almost 52% of all 
irradiated patients, and other techniques included a combina-
tion of photon and proton irradiation (13.8%), brachytherapy 
(24.1%), carbon ions (6.9%), and protons (3.4%).

Mean age of the cohort was 65 years (range: 47–82 years; 
standard deviation [SD]: 7) and most tumors (46.3%) were 
classified as high risk according to d’Amico risk classifica-
tion [14]. All patients received 18F-PSMA-1007 PET/CT 
imaging due to biochemical relapse at a mean PSA level of 
10.66 ng/ml (range: 0.08–720; SD: 65.05). Table 1 summa-
rizes the patient characteristics of the entire cohort.

Imaging Results

Most local relapses detected by PSMA-PET/CT imaging 
were unifocal (72.6%). Hybrid imaging resulted in 23.0% 
bifocal relapsed tumors, while more than two foci could 
be identified in 4.5% of the cohort. Bifocal or multifocal 
tumor infiltration was particularly frequent among patients 
who received primary radiation therapy (43.9%) compared 
to 20.2% in patients who underwent surgery (p = 0.005). 
For all patients included in the trial, the aspect ratio of all 
local relapses was well balanced with an infiltration rate of 
62.2% (right) compared to 57.8% (left). In general, there 
was a higher rate of relapses in the posterior region (94.8%). 
Detailed region-specific incidence of the prostate and the 

prostatic fossa as well as standardized uptake values are dis-
played in Figs. 1 and 2 and Table 2.

A comparison of PSMA-PET/CT with imaging data 
obtained before primary treatment demonstrated that a local 
relapse has a similar aspect ratio like the primary tumor site. 
Prostate carcinomas on the right led to a significantly more 
frequent relapse on the right (p = 0.025). Although the left 
side did not reach statistical significance, there was also a 
trend towards an ipsilateral occurrence (p = 0.167).

Subgroup Analyses

The common location of relapse for patients who underwent 
prostatectomy was an infiltration of the posterior region 
(89.4%). An infiltration rate of 25.5%, 47.9%, and 66.0% 
was observed for the bladder region, bladder neck, and 
anastomotic site, respectively (Fig. 1). The binary logistic 
regression model confirmed the increased risk for an ipsi-
lateral relapse in the prostate bed (p = 0.040/0.032). Testing 
different hypotheses for subgroup analyses, we only noted a 
trend towards a higher rate of relapse within the site of anas-
tomosis after Da Vinci surgery compared to other techniques 
(p = 0.068) (Table 3).

Within the cohort who underwent definitive radiation 
therapy, a local relapse infiltrated most frequently the tran-
sition zone (82.9%) and peripheral zone (82.9%). An infil-
tration of the seminal vesicle region was quite rare and was 
only observed in 7 patients. A total of 70.7% and 95.1% 
of all relapses infiltrated the anterior region or the poste-
rior region, respectively (Fig. 2). No statistically significant 

Table 1   Patient characteristics Total number of patients n = 135

Age at PSMA-PET/CT [years], mean (range; standard deviation) 65 (47–82; 7)
Gleason score, n = 106
   5 2 (1.9%)
   6 10 (9.4%)
   7 61 (57.5%)
   8 13 (12.3%)
   9 19 (17.9%)
   10 1 (0.9%)

PSA at initial diagnosis [ng/ml], mean (range; standard deviation), n = 97 27 (0.2–444; 57.99)
    < 10 51 (52.6%)
   10–20 21 (21.6%)
    > 20 25 (25.8%)

Risk classification according d’Amico, n = 108
   Low risk 5 (4.6%)
   Intermediate risk 17 (15.7%)
   High risk 50 (46.3%)
   Unknown (intermediate or high risk) 36 (33.3%)

PSA at [18]F-PSMA-PET-CT [ng/ml], mean (range; standard deviation), n = 125 2.15 (0.08–720; 65.05)
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Fig. 1   Map of local relapses after surgery according to frequency (n = 94)

Fig. 2   Map of local relapses 
after radiation therapy accord-
ing to frequency (n = 41)

Table 2   Standardized uptake 
values of all local relapses with 
regard to tumor location

Relapse after surgery, n = 117 SUVmax: mean (standard deviation) SUVmax: range
Anastomotic site 13.04 (12.04) 2.46–56.18
Bladder neck 16.76 (13.46) 3.17–73.84
Bladder 16.76 (15.38) 2.47–46.00
Seminal vesical 12.59 (12.00) 4.34–45.00

relapse after radiation therapy, n = 65 SUVmax: mean (standard deviation) SUVmax mean (range)
Transitional zone 11.44 (10.44) 3.79–50.12
Peripheral zone 12.78 (11.44) 3.79–50.12
Central zone 10.31 (17.30) 4.18–50.12
Anterior fibromuscular stroma (AFS) 21.67 (16.46) 5.66–50.12
Seminal vesicles 22.63 (15.26) 6.11–40.90
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Table 3   Subgroup 
Characteristics Total number of patients who underwent surgery n = 94

Tumor infiltration in selected regions (non-exclusive), n = 94
   Anterior 27 (28.4%)
   Urethral/central bladder 39 (41.1%)
   Posterior 85 (89.5%)
   Bladder region 23 (24.2%)
   Bladder neck 45 (47.4%)
   Anastomotic site 62 (65.3%)

Infiltrated side for tumors who were initially located in the right side, n = 8
   Right side 7 (87.5%)
   Left side 1 (12.5%)
   Exclusively right side 6 (75.0%)
   Exclusively left side 0 (0.0%)

Infiltrated side for tumors who were initially located in the left side, n = 9
   Right side 2 (22.2%)
   Left side 7 (77.8%)
   Exclusively right side 0 (0.0%)
   Exclusively left side 4 (44.4%)

Infiltrated side for tumors who were initially located both sides, n = 19
   Right side 6 (31.6%)
   Left side 7 (36.8%)
   Exclusively right side 4(21.1%)
   Exclusively left side 2 (10.5%)

Tumor infiltration in selected regions after primary retropubic non-robotic-assisted surgery, n = 22
   Bladder and seminal vesicles 6 (27.3%)
   Bladder neck 14 (63.6%)
   Anastomotic site 9 (40.9%)
   Exclusively anastomotic site 4 (18.2%)

Tumor infiltration in selected regions after primary robotic-assisted surgery, n = 25
   Bladder and seminal vesicles 5 (20.0%)
   Bladder neck 9 (36.0%)
   Anastomotic site 18 (72.0%)
   Exclusively anastomotic site 12 (48.0%)

Total number of patients who underwent primary definitive radiation therapy n = 41
Tumor infiltration in selected regions (non-exclusive), n = 41
   Transitional zone 34 (82.9%)
   Peripheral zone 34 (82.9%)
   Anterior fibromuscular stroma 11 (26.8%)
   Central zone 12 (29.3%)
   Seminal vesicles 7 (17.1%)
   Anterior zones 29 (70.7%)
   Posterior zones 39 (95.1%)
   Exclusively anterior zones 2 (4.9%)
   Exclusively posterior zones 12 (29.3%)
   Right side 40 (97.6%)
   Left side 32 (78.0%)
   Exclusively right side 9 (22.0%)
   Exclusively left side 1 (2.4%)
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difference with regard to the site of recurrence was observed 
concerning irradiation technique (Table 3).

Discussion

Our data demonstrated that 18F-PSMA-1007 PET/CT is able 
to reliably detect a local relapse of prostate cancer after pri-
mary treatment. Due to its biodistribution, the radioligand 
is well suited for identifying and characterizing tumor tissue 
within the prostatic fossa. Although minor unspecific uptake 
can be observed (e.g., within the skeleton), 18F-PSMA-1007 
PET/CT may hereby confirm its major role as an imaging 
probe for restaging [15–17]. Considering the superiority of 
PSMA imaging when compared to conventional morpholog-
ical staging such as CT or MRI [18–20], the present analysis 
provides fundamental data with regard to local recurrence 
using molecular imaging probes.

After surgery, the most frequent site of recurrence for 
our cohort was the perianastomotic and posterior region. 
This is in accordance with data obtained from multipara-
metric MRI (mpMRI), where a relapse was found predom-
inantly at the perianastomotic site or retrovesical: From 
70 patients with prostate cancer undergoing mpMRI due 
to biochemical recurrence, 20 carcinomas relapsed within 
these areas [21]. Moreover, Liauw et al. observed in a sim-
ilar cohort that the most frequent locations of recurrence 
were perianastomotic (67%) or retrovesical (33%) [22]. 
For adjuvant or salvage radiation therapy, these results are 
of great interest with regard to target volume delineation. 
To date, there is an increasing trend towards minimizing 
safety margins leading to an optimized organ at risk (OAR) 
sparing [23, 24]. Especially when using modern radio-
therapy techniques such as protons or carbon ions with 
a characteristically sharp dose application while sparing 

the surrounding healthy tissue [25], the reduction of safety 
margins should be exercised with a call for caution con-
sidering the close proximity of the detected relapses to 
neighboring organs such as the bladder or rectum. Image-
guided radiation therapy (IGRT) with the routine use of 
CT or MRI scans may avoid an overzealous OAR sparing 
leading to a relevant loss of dose within the relapsed tumor 
region. Moreover, future trials should address a local dose 
escalation of postoperative radiotherapy due to the high 
rate of ipsilateral relapses. As previously demonstrated in 
the FLAME trial for the definitive concept, the addition of 
a focal boost results in an improved biochemical disease-
free survival (bDFS) for patients with intermediate and 
high-risk prostate cancer [26]. Thus, patients who already 
underwent surgery may benefit from a focal dose escala-
tion within the visible tumor as well (Fig. 3).

Similar conclusions can be postulated for radiation ther-
apy as a primary treatment approach. The FLAME trial 
also observed a decreasing risk of biochemical failure by 
increasing the dose of the gross tumor volume (GTV) [26]. 
Therefore, focal dose escalation strategies may be helpful 
in improving local control for patients undergoing primary 
radiation therapy without additional toxicity. Due to a rela-
tively low rate of relapses within the seminal vesicle region 
for our cohort, international recommendations for the deline-
ation of clinical target volume for prostate cancer stratify-
ing the inclusion of the seminal vesicles according to risk 
classification seem to be efficient [27]. The adherence to 
established contouring guidelines may also offer an expla-
nation for the lack of side-specific recurrence with regard 
to the applied irradiation technique—in contrast to patients 
who underwent radical prostatectomy. Interestingly, there 
was a trend towards a higher rate of perianastomotic relapse 
after robotic-assisted prostatectomy compared to other sur-
gical techniques. Higher rates of nerve-sparing-surgery or 

Fig. 3   An 80-year-old patient 
with PSMA-positive local 
relapse of a high-risk pros-
tate cancer (a, d) undergoing 
salvage radiation therapy with 
simultaneous integrated boost 
(b, e). Imaging almost 3 years 
later showed excellent local 
control (c, f)
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preservation of the bladder neck might explain that trend and 
will be evaluated within future analyses.

Although the present study is—to the best of our knowl-
edge—the largest evaluating and mapping a local relapse of 
prostate cancer after primary treatment using 18F-PSMA-
1007-PET/CT, it has several limitations. First, our investiga-
tion obtained data from only one institution and had a retro-
spective design, which can result in patient selection bias. Due 
to different treatment approaches, we used a heterogenous 
classification of relapse complicating a detailed evaluation of 
the entire cohort. Moreover, subgroup analyses of irradiated 
patients should be interpreted with caution due to the rela-
tively low number of patients who underwent primary radio-
therapy. Nevertheless, the present study was able to confirm 
the important role of 18F-PSMA-1007-PET/CT as a precise 
molecular restaging imaging probe to allocate prostate cancer 
and local relapse. Prospective trials are needed to evaluate the 
role of local dose escalation strategies or individual adapted 
target volume delineation for radiation therapy.

Conclusion

PET/CT using 18F-PSMA-1007 as a tracer is highly efficient 
in detecting a local relapse of prostate cancer after prostatec-
tomy or radiation therapy. The current data may be helpful 
in optimizing future irradiation strategies for both primary 
and adjuvant/salvage radiation therapy.
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