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Abstract
Purpose:  The mammalian brain glucose metabolism is tightly and sensitively regulated. An ischemic 
brain injury caused by cardiac arrest (CA) and cardiopulmonary resuscitation (CPR) affects cerebral 
function and presumably also glucose metabolism. The majority of patients who survive CA suffer from 
cognitive deficits and physical disabilities. Toll-like receptor 2 (TLR2) plays a crucial role in inflamma-
tory response in ischemia and reperfusion (I/R). Since deficiency of TLR2 was associated with increased 
survival after CA-CPR, in this study, glucose metabolism was measured using non-invasive [18F]F-FDG 
PET-CT imaging before and early after CA-CPR in a mouse model comparing wild-type (WT) and TLR2-
deficient (TLR2−/−) mice. The investigation will evaluate whether FDG-PET could be useful as an addi-
tional methodology in assessing prognosis.
Procedures:  Two PET-CT scans using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]F-FDG) tracer were carried 
out to measure dynamic glucose metabolism before and early after CPR. To achieve this, anesthetized 
and ventilated adult female WT and TLR2−/− mice were scanned in PET-CT. After recovery from the 
baseline scan, the same animals underwent 10-min KCL-induced CA followed by CPR. Approximately 
90 min after CA, measurements of [18F]F-FDG uptake for 60 min were started. The [18F]F-FDG standard-
ized uptake values (SUVs) were calculated using PMOD-Software on fused FDG-PET-CT images with 
the included 3D Mirrione-Mouse-Brain-Atlas.
Results:  The absolute SUVmean of glucose in the whole brain of WT mice was increased about 25.6% 
after CA-CPR. In contrast, the absolute glucose SUV in the whole brain of TLR2−/− mice was not signifi-
cantly different between baseline and measurements post CA-CPR. In comparison, baseline measure-
ments of both mouse strains show a highly significant difference with regard to the absolute glucose 
SUV in the whole brain. Values of TLR2−/− mice revealed a 34.6% higher glucose uptake.
Conclusions:  The altered mouse strains presented a different pattern in glucose uptake under normal 
and ischemic conditions, whereby the post-ischemic differences in glucose metabolism were asso-
ciated with the function of key immune factor TLR2. There is evidence for using early FDG-PET-CT 
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Positron emission tomography with computed tomography 
(PET-CT) with the use of 2-deoxy-2-[18F]fluoro-D-glucose 
([18F]F-FDG) as tracer allows to investigate cerebral glucose 
metabolism. There are stimulating study results using this 
method in different models of neuronal diseases, and also in 
hypoxic-ischemic and traumatic brain injury [27–31]. But so 
far, there are only sparse data regarding cardiac arrest brain 
injury [32, 33].

Therefore, we investigated brain glucose metabolism with 
[18F]F-FDG PET-CT in wild-type (WT) and TLR2-deficient 
(TLR2−/−) mice before induction of CA (baseline metabo-
lism) and early after (post) CA-CPR.

Materials and Methods
Animals

Wild-type (WT, C57BL/6  J, n = 14) and TLR2-deficient 
(TLR2−/−, B6.129-Tlr2tm1Kir/J, n = 13) 4–5-month-old mice, 
both female, were used with a bodyweight of approximately 
20 g each. Animals were housed in a temperature-controlled 
environment (22 °C) under a 12:12-h dark/light cycle with 
free access to water and food (approved by the Ethical Com-
mittee for Care and Use of Laboratory Animals, permission 
number: LALLF M-V/TDS/7221.3–1-068/15). For measure-
ments of cytokines and signaling molecules, native serum 
samples from seven WT mice without any intervention 
were used as a native control (permission number: LALLF 
7221.3–1.1–022/11).

Study Groups and Experimental Protocol

Two groups of mice, WT- and TLR2−/− mice, were studied. 
Each group consisted of ten animals for analysis. The experi-
mental protocol, which is outlined in detail in Fig. 1, envis-
aged baseline PET imaging, recovery from anesthesia for at 
least 7 days, followed by a standardized model of cardiac 
arrest and resuscitation, and then followed by a post-interven-
tion PET imaging. During the whole experimental time, the 
animals had free access to water and food. No fasting protocol 
was used because the model of resuscitation should be as 
close as possible to the emergency of sudden CA, and hypo-
glycemia prior to CA appears to be predictive for a poor car-
diac outcome [34]. PET-CT measurements were performed 
at the same daytime, started between 9 am and 2 pm. Blood 
plasma samples were collected immediately after completion 
of the second PET-CT.

Anesthesia

All interventions (baseline PET imaging, cardiac arrest and 
resuscitation, post-intervention PET imaging) were per-
formed under general anesthesia. Mice were anaesthetized 
by intraperitoneal injection of 12 µg/g ketamine and 8 µg/g 
xylazine. A custom-made micro catheter for the [18F]F-FDG 

as an additional diagnostic 
tool after resuscitation. Further 
studies are needed to use PET-
CT in predicting neurological 
outcomes.
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Introduction
Out-of-hospital cardiac arrest (CA) strikes every year about 
95.9/100,000 adults worldwide [1]. Prognosis remains very 
poor: European data shows in-hospital mortality of nearly 
90% of patients [2, 3]. And even in survivors in particular 
neurological prognosis is very limited. In consequence, only 
less than 10% of patients return to a self-controlled life [4, 
5]. The major mechanism for cerebral damage is of course 
the circulatory arrest that directly leads to a lack of oxygena-
tion of brain tissue [6]. Persistent hypoxemia further aggra-
vates global cerebral ischemia and the induced neuronal cell 
damage [7]. Although cardiopulmonary resuscitation (CPR) 
and return of spontaneous circulation (ROSC) lead to cer-
ebral reperfusion and oxygenation, a further consequence 
is a severe ischemia–reperfusion (I/R) injury leading to an 
excessive systemic inflammatory response, often called post-
cardiac arrest syndrome [8–10]. Cerebral inflammation is 
characterized by activation of glial cells, an influx of periph-
eral immune and inflammatory cells, high concentrations of 
reactive oxygen species (ROS), and release of pro-inflam-
matory mediators such as cytokines and adhesion molecules 
[11–14]. Toll-like receptors (TLRs) are an integral part of the 
innate immune response in many pathologies. In particular, 
TLR2 plays a central role in the activation of inflammatory 
response under I/R. It initiates downstream signal pathways 
to induce the release of pro-inflammatory cytokines (e.g., 
TNF-α, IL-1β), enzymes such as iNOS, and adhesion mol-
ecules as ICAM-1 [15, 16]. Furthermore, TLR2 mediates 
crosstalk between the cellular and humoral innate immune 
response [17]. So, TLR2 is also involved in the immunologi-
cal response to ischemic brain injury [18–23]. Interestingly, 
TLR2-deficient (TLR2−/−) individuals showed lower release 
of pro-inflammatory cytokines, which improved survival after 
CA-CPR in the mouse model [24].

The human brain consumes about one-fifth of the whole 
body’s glucose as its primary source of energy with very com-
plex regulatory mechanisms [25, 26]. Monitoring cerebral 
glucose metabolism therefore might enable to add functional 
information on the extent of cerebral damage, its recovery, 
and potentially also assessment of neurological prognosis. 
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injection was placed into the tail vein (baseline) and animals 
were then immediately intubated employing a 22-gauge can-
nula. Mechanical ventilation was initiated with fraction of 
inspired oxygen (FiO2) of 0.4, a tidal volume of 10 µl/g, and 
a respiratory rate of 120 breaths per minute.

Positron Emission Tomography Imaging

Baseline and post-intervention [18F]F-FDG PET studies were 
performed in a small animal PET-CT (Siemens Inveon PET/
CT, Siemens Healthineers, Erlangen). Animals together with 
the ventilator were carefully transferred to the PET bed and 
fixed. The acquisition of 60-min dynamic PET as list mode 
data set was started immediately before the injection of [18F]
F-FDG (2-deoxy-2-[18F]fluoro-D-glucose) in 0.2 ml normal 
saline (Table 1), which was injected via a tail vein catheter at 
baseline and post-intervention via a central venous catheter.

All PET studies were reconstructed as series 3D PET 
images of multiple frames with various time durations 
(15 × 20 s; 10 × 60 s; 9 × 300 s) using a 2D-ordered subsets 
expectation maximization algorithm (four iterations, six 
subsets) resulting in a voxel size of 0.86 × 0.86 × 0.79 mm. 
Whole-body CT scan was used for attenuation correction and 
PET studies were also corrected for random coincidences, 
dead time, scatter, and decay.

Cardiac Arrest and Resuscitation

The model of CA-CPR was conducted as described pre-
viously [24, 35]. Briefly, CA was induced by injection of 
80 µg/g potassium chloride via a central venous catheter 
inserted into the right jugular vein, and mechanical ventila-
tion was interrupted. Resuscitation was initiated following 
10 min of CA, precordial chest compressions begun with a 

Fig. 1.   Study protocol and timeline of experimental procedure. [18F]F-FDG—2-deoxy-2-[18F]fluoro-D-glucose, CA cardiac arrest, CPR 
cardiopulmonary resuscitation, CVC central venous catheter, d days, min minutes, PET positron emission tomography, TLR Toll-like 
receptor, TVC tail venous catheter, WT wild type.

Table 1.   Hemodynamic and 
physical parameters before and 
after CA-CPR and injected 
amount of tracer [18F]F-FDG 
and glucose level. Data shown 
as mean ± SEM. No significant 
difference was seen between 
experimental groups (Mann–
Whitney U test) or between 
baseline measurements and post 
CA-CPR (Wilcoxon signed-rank 
test). Injected quantity of [18F]
F-FDG tracer was almost the 
same for both groups and time 
points. $ In each row, there are 
the values which served for the 
statistical comparison, see p value 
in the last column. This required 
repetitions in the comparison of 
baseline measurements between 
mouse strains

Parameter Experimental groups in PET imaging p-values

WT mice (n = 10) TLR2−/− mice (n = 10)

Baseline
PET-CT

PET-CT
post CA-CPR

Baseline
PET-CT

PET-CT
post CA-CPR

Before CA-CPR
  Heart rate (1/min) 222 ± 4 214 ± 9 0.136
  MAP (mm Hg) 71.67 ± 4.79 80.75 ± 6.69 0.308
  Body temperature (°C) 35.89 ± 0.06 35.94 ± 0.05 0.932

CPR
  ROSC time (s) 66.5 ± 8.6 72.5 ± 8.7 0.356
  ROSC rate 100% 100%
  Epinephrine (μg) 12.5 ± 1.12 13.5 ± 1.5 0.46

1 h post CA-CPR
  Heart rate (1/min) 374 ± 33 311 ± 20 0.452
  MAP (mm Hg) 48.33 ± 1.67 58.33 ± 6.01 0.518
  Body temperature (°C) 36.280.08 36.22 ± 0.10 0.564
  Mean 16.65 ± 0.27 16.77 ± 0.67 0.878
  [18F]F-FDG (MBq) $ 17.44 ± 0.65 15.78 ± 0.51 0.398

16.65 ± 0.27 17.44 ± 0.65 0.481
  Range (MBq) 15.14–17.97 13.72–20.36 15.02–22.01 13.99–18.65
  Glucose (mmol/l) 15.79 ± 7.29 17.73 ± 4.87 0.505
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frequency of 450/min, 0.4 µg/g epinephrine was injected, and 
ventilation was resumed (220/min; FiO2 1.0). After 2 min of 
CPR, respiratory rate was reduced to 120/min, FiO2 to 0.6, 
and turned to FiO2 0.4 after 20 min of successful resuscita-
tion. Following ROSC, all animals received 200 µl of isotonic 
saline to prevent dehydration. One hour after ROSC, the post-
intervention PET studies were performed as described above.

Image Analysis

Image analysis was performed using PMOD v3.7 (PMOD 
Technologies LLC, Zurich, Switzerland). For standard-
ized delineation of the target regions, the implemented 
T2-weighted mouse brain MR template by Mirrione et al. was 
used [36, 37]. The animal-specific CT datasets were spatially 
normalized to the MRI dataset of this atlas. The respective 
transformation matrices were used to also normalize the PET 
datasets into the Mirrione matrix. All transformations were 
performed using a rigid matching algorithm as implemented 
in PMOD. The predefined region VOIs of the Mirrione atlas 
were used to extract time-activity curves (TAC) from the 
dynamic PET data. To also determine the glucose uptake in 
the late phase (static) in the defined brain regions, the last 
three frames of the dynamic data set (15 min) were aver-
aged. The uptake values were presented as mean standardized 
uptake value (SUVmean) and were obtained by normalizing 
tissue radioactivity concentration to injected dose and body-
weight of the specific animal.

Analysis of Blood Plasma Samples

Glucose was measured from plasma samples using Bayer’s 
ContourXT with Contour next sensors for blood glucose 
determination (Ascensia Diabetes Care DeutschlandAG, 
Leverkusen, Germany). The concentration of glucose was 
given in mmol/l.

To assess early inflammatory processes, the plasma 
cytokines interleukin-6 (IL-6), interleukin 1β (lL-1β), tumor 
necrosis factor α (TNFα), and the signal molecule vascu-
lar endothelial growth factor A (VEGF-A) were measured 
using electrochemiluminescence-based assays from Meso 
Scale Diagnostics (MSD, Rockville, MD, USA). Therefore, 
a U-PLEX assay was used according to the manufacturer’s 
recommendations and all samples were analyzed in dupli-
cates. Analyses were done using the MESO QuickPlex SQ 
120 instrument (MSD) and DISCOVERY WORKBENCH® 
4.0 software (MSD). For the purposes of statistical analy-
ses, any value that was below the lowest limit of detection 
(LLOD) for the assay was considered negative and assigned 
a value of 0 pg/ml.

Statistics

Results are presented as boxplots showing the quartiles, the 
5th and 95th percentiles (whiskers), the median (line) and 
the mean (x), or mean ± standard deviation (SD). Differences 

in glucose uptake were assessed and significance was tested 
using Wilcoxon signed-rank test for related and Mann–Whit-
ney U test for independent samples (SPSS 22). With respect to 
significance, we first set the level of significance to p ≤ 0.05. 
To account for multiple testing, Bonferroni correction was 
used. On the basis of the known variance of individual 
experiments, the effect sizes r were determined ( r = Z∕

√

n ; 
r < 0.1; weak, 0.1 ≤ r < 0.3; mean, r > 0.5; large). To evalu-
ate the kinetics of dynamic measurements, the curves were 
parted in an exponential and a linear part describing the rapid 
uptake of the tracer and the much slower decay, respectively. 
Logarithmic or linear regression was used to assess correla-
tion. Correlation coefficient R was calculated and therefore 
│R│ < 0.1, slight correlation; 0.1 ≤ │R│ < 0.3, moderate cor-
relation; and │R│ > 0.5, strong correlation. Determination 
coefficient R2 represents a measurement for the goodness-
of-fit and was used for the regression lines in Fig. 3. The 
significance levels of the measurements of the blood plasma 
samples were calculated using the Kruskal–Wallis test for 
independent samples with Bonferroni correction.

Results
Fourteen animals were studied in WT group, and 13 animals 
in the TLR2−/− group. Due to technical or medical compli-
cations or unsuccessful CPR, 4 animals in the WT group 
and 3 animals in the TLR2−/− group had to be excluded. 
Accordingly, in each group, 10 animals could be involved in 
data analysis. Hemodynamic, as well as procedural data of 
CPR and PET-scans, are given in Table 1 and did not differ 
between both groups.

Increased Uptake of Glucose in WT Mice 
Post‑cardiac Arrest and Cardiopulmonary 
Resuscitation

Absolute uptake values determined in PET-CT images analy-
sis (Fig. 2) showed an increase in glucose uptake over time 
(Fig. 3). Data showed an exponential increase at the first 400 s 
of all measurements. In this part, the kinetics were almost the 
same, supported by a strong positive correlation R between 
baseline and PET scans post CA-CPR (WT, R = 0.986; 
TLR2−/−, R = 0.996). As well, no difference appeared in the 
kinetics of exponential glucose uptake in baseline PET scans 
over time among the mouse strains seen by a strong positive 
correlation (WT vs. TLR2−/−, R = 0.969). After the saturation 
of glucose uptake, the curve followed a linear course with a 
slight slope compared to the maxima (Fig. 3). The correlation 
coefficients displayed a strong positive correlation within the 
TLR2−/− animal group between baseline and PET scans post 
CA-CPR (R = 0.845), and in comparison with the baseline 
PET scans (WT vs. TLR2−/−, R = 0.961). In the WT animals, 
we found a moderate positive correlation in the curve pro-
gression (baseline vs. post CA-CPR, R = 0.162). The analy-
sis of correlation shows that glucose uptake followed very 
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similar kinetics over time in investigated groups and baseline 
and PET scans post CA-CPR.

When analyzing the last 15 min of measurement and plot-
ted as absolute [18F]FDG uptake, a difference in quantity of 
glucose uptake could be revealed (Fig. 4). In Fig. 4a, the 
absolute uptake of [18F]FDG in the whole brain of every 
individual animal involved in data analysis is presented at 
baseline and post CA-CPR. In WT animals, 6/10 displayed an 
increase post CA-CPR, 1/10 showed reduced SUVmeans post 
CA-CPR, and 3/10 were at the same level with the SUVmeans. 
In contrast, the SUVmeans of all 10 TLR2-deficient animals 
displayed no differences between baseline and post CA-CPR 
uptake values. The absolute uptake of [18F]FDG in the whole 
brain was significantly higher in the group of WT animals 
post CA-CPR in comparison with baseline measurements 
(baseline SUVmean, 0.882 ± 0.055 vs. post CA-CPR SUVmean, 
1.108 ± 0.021; n = 10, p = 0.017, r = 0.757 (large effect size), 
Fig. 4b). Approximately 140 min after CA-CPR, glucose 

uptake in the brain was increased by 25.6%. In contrast, the 
absolute glucose uptake in the whole brain of TLR2−/− mice 
was not significantly different between baseline and meas-
urements post CA-CPR (baseline SUVmean, 1.187 ± 0.031 
vs. post CA-CPR SUVmean, 1.120 ± 0.036; n = 10, p = 0.114, 
Fig. 4b). Hence, the different mouse strains presented a dif-
ferent pattern in glucose uptake at baseline and post-CPR.

Baseline Brain Glucose Uptake Is More Intense in 
TLR2−/− than in WT Mice

In comparison, baseline measurements of both mouse 
strains, WT vs. TLR2−/−, show a highly significant differ-
ence with regard to the absolute glucose uptake in the whole 
brain (n = 10, p = 0.001, r = 0.71 (large effect size)). Base-
line mean glucose uptake values of WT mice were SUVmean 
0.882 ± 0.055, and in TLR2−/− mice, the glucose uptake 
displayed with SUVmean 1.187 ± 0.031 was about 34.6% 

Fig. 2.   Representative examples of [18F]F-FDG uptake images taken between 50 and 60  min after injection of tracer in WT- and 
TLR2−/−-mouse brain baseline and post CA-CPR.
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higher (Fig. 4b). Furthermore, the differences in the brain 
regions in absolute [18F]F-FDG uptake values between the 
animal strains in baseline PET scans were investigated and 
are given in Fig. 4c. The higher absolute SUV of glucose in 
TLR2−/− mice extended in baseline measurements signifi-
cantly over all brain regions in comparison to the WT mice 
(Fig. 4c). The p values range between p < 0.001 for olfactory 
bulb as well as cerebellum and p = 0.011 for the hypothala-
mus (Fig. 4c).

Pattern of Glucose Uptake in Various Brain 
Regions Differs Between WT and TLR2‑Deficient 
Mice After Cardiac Arrest and Cardiopulmonary 
Resuscitation

In the WT animals, the absolute glucose uptake was increased 
post CA-CPR (Fig. 5a) in every brain region. Significant 
uptake increase was found in the basal forebrain, superior 
colliculi, inferior colliculi, hypothalamus, amygdala, mid-
brain, cerebellum, and brain stem. The increase of the SUV 
in the olfactory bulb, cortex, and striatum was not signifi-
cant with a difference under 17%. The overall increase varied 
from 12.02% in the striatum and 42.04% in the hypothalamus 
(Fig. 5b).

Unlike in the group of TLR2−/− mice, by trend, a 
decreased uptake of glucose post CA-CPR compared to the 
baseline measurements was noted. Significant differences 
were found in the olfactory bulb, cortex, striatum, and hip-
pocampus (Fig. 5c). The decrease of glucose uptake was not 
significant with a difference of less than 9%, ranging from 
13.91 (striatum) to − 1.22% (cerebellum).

When looking at the results of absolute data of investi-
gated animal groups, apart from the fact that WT mice gener-
ally exhibited an increase and TLR2−/− a decrease of glucose 
uptake, the regions that were significantly different when 
comparing baseline and measurements post CA-CPR were 
partly opposite (Fig. 5a and c). Whereas in TLR2−/− mice, 
significant differences in forebrain occurred (see Fig. 5 red 
text and insert); this was not the case in the same brain areas 
of WT animals. In the WT group, significant differences were 
detected in the posterior cortical areas (= hindbrain; Fig. 5, 
insert).

Plasma Glucose in WT and TLR2−/− Mice After 
CA‑CPR and PET‑CT at the Same Level

Plasma glucose levels after completing the second PET-
CT post CA-CPR were not different between WT mice 
and TLR2−/− mice (p = 0.505; Table  1). For the native 

Fig. 3.   Total cerebral uptake of [18F]F-FDG measured in PET-CT for 1 h. Absolute [18F]F-FDG uptake (SUVmean) in WT- and TLR2−/− mouse 
brains were measured at baseline and post CA-CPR and presented during 1 h of measurement.
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Fig. 4.   Global cerebral metabolism measured using [18F]FDG-PET-CT and baseline regional [18F]F-FDG uptake in WT and TLR2−/− mice in abso-
lute SUV. Absolute [18F]F-FDG uptake (SUVmean) in WT- and TLR2−/− mouse brain regions was measured at baseline and post CA-CPR (a, b). a 
SUVmeans of whole brain were presented for each animal as mean ± SD. b SUVmeans of whole brain for the groups of animals were shown as box-
plots. * p value = 0.017 (Wilcoxon signed-rank test), # p value = 0.001 (Mann–Whitney U test). c The absolute [18F] FDG uptake values of base-
line PET scans in WT(white)- and TLR2−/− (black) mouse brain regions displayed in comparison. Data shown as SUVmean ± SD; (p values WT vs. 
TLR2−/− mice): *1 0.000, *2 0.001, *3 0.002, *4 0.003, *5 0.005, *6 0.001, *7 0.001, *8 0.002, *9 0.009, *10 0.011, *11 0.002, *12 0.007, *13 0.000, *14 0.004.
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control samples, the plasma glucose was determined at 
10.18 ± 3.6 mmol/l, ranging in the same as Bascuñana et al. 
[39] described. This tends to be lower compared to the mean 
of plasma glucose of the WT mice after CA-CPR and PET-
CT (15.79 ± 7.29 mmol/l; see Table 1), but the difference was 
not significant (p = 0.6).

Cytokines and VEGF‑A in WT and TLR2−/− Mice 
After CA‑CPR and PET‑CT

Immune factors were quantified after completion of PET-CT 
in resuscitated mice, WT and TLR2−/−, approximately 3 h 
after induction of CA, and also in native controls. In trend, 
cytokine levels of IL-6, Il-1β, and TNF-α were elevated in 
WT mice compared to the TLR2-deficient mice. However, 
these values do not reach significance (Fig. 6). In contrast, 
comparing the levels of WT mice with the native controls, 
IL-6 and TNF-a were significantly increased (Fig. 6). IL-1β 

has shown the same trend, but failed significance with 
p = 0.073 (Mann–Whitney U test, Bonferroni corrected).

VEGF-A signaling molecule was increased in WT mice 
compared with TLR2−/− mice as well as native controls 
(Fig. 6).

Discussion
The present study strengthens the evidence that cerebral glu-
cose uptake increases in the early phase after CA and CPR, 
and that this effect can be assessed by [18F]F-FDG PET. Our 
data is the first that quantifies this effect at the early phase 
after CPR in a murine model using the baseline measure-
ment as control. In addition to general differences between 
the groups and pre- and post-intervention, the inter-individual 
differences were presented. Furthermore, this study primarily 
shows that this effect of enhanced glucose uptake is extenu-
ated in TLR2-deficient individuals.

Fig. 5.   Absolute regional cerebral metabolism measured using [18F]FDG-PET-CT. a and c Absolute [18F]F-FDG uptake (SUV) in WT (a) 
and TLR2−/− (c) mouse brains were measured at baseline and post CA-CPR. Data shown as SUVmean ± SD. a p values for WT (Wilcoxon 
rank-sum test): *1 0.017, *2 0.017, *3 0.017, *4 0.007, *5 0.017, *6 0.022, *7 0.013, *8 0.013. Because of Bonferroni correction hippocampus 
(p = 0.037), central gray (p = 0.028), and thalamus (p = 0.028) failed significance. c p values for TLR2−/− mice (Wilcoxon rank-sum test): *a 
0.011, *b 0.011, *c 0.011, *d 0.021. Because of Bonferroni correction superior colliculi (p = 0.038) failed significance. b and d Percentage 
variation of absolute [18F]F-FDG uptake in baseline and post CA-CPR measurements in WT (b) and TLR2−/− (d) mice. Inset: Schematic 
representation of mouse brain regions subdivided in forebrain (red) and hindbrain (grey) (after 57): Bst brain stem, Cbm cerebellum, 
Ctx cortex, Hip hippocampus, Hyp hypothalamus, Mdb midbrain, Ofl olfactory bulb, Str striatum, Thl thalamus.
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Enhanced Absolute Glucose Uptake in the Brain 
of WT Mice Early After CA‑CPR

It is widely agreed that the acute phase of cerebral hypoxic 
injury produces a marked depression of cerebral glu-
cose metabolism that persists for several hours in vari-
ous species [32, 38, 39]. Decreased glucose consumption 
could be explained by neuronal cell damage and follow-
ing insufficiency or loss of transmitting impulses in neu-
ronal cells [26]. In contrast to descriptions of decreasing 
brain metabolism after CA-CPR, in WT mice, we found 
enhanced absolute glucose uptake early after CA-CPR for 
all brain regions and this increase reached significance in 
the hindbrain. Despite this finding, our study indicated that 
the post CA-CPR [18F]F-FDG uptake in the whole brain of 
WT mice is individually different since 4/10 mice did not 
showed an increased glucose uptake. Investigations done 
with a comparable mouse model of CA-CPR also discov-
ered significant increases in [18F]F-FDG uptake in the brain 
of mice 72 h post-CA [33]. Zhang et al. [33] chose with 
72 h a considerably later time point for [18F]F-FDG-PET 
imaging, which possibly reflects progression of late brain 
injury. They speculate whether mitochondrial respiration is 
suppressed by CA-induced brain injury in the used animal 
model [33]. The results could therefore reflect an increase 
in glucose uptake due to a switch of glucose metabolism 
from oxidative respiration to glycolysis, similar to the War-
burg effect in cancer [33]. It is obvious to assume that this 
switch of glucose metabolism occurred at an early time 
point after CA, but has yet to be proven. Although the etiol-
ogy of increased glucose metabolism is unclear and some 
earlier studies show an impaired glucose metabolism after 
cardiac arrest ([18F]F-FDG PET, canine 39; [18F]F-FDG 
PET and autoradiographic images analysis, rats 32; ger-
bil 40; biochemical analysis, rats 41), an increased glu-
cose metabolism can be also explained by the upregulated 
inflammatory response initiated with hypoxic impairment. 
For several immune cells including macrophages, T cells, 
and neutrophils, in particular, if they are activated, elevated 
glycolysis has been described. Activated and infiltrating 
inflammatory cells utilize glucose at a much higher level 
than peripheral non-inflammatory cells [,27, 42,43]. An 
early increase in [18F]F-FDG uptake in the whole brain 
with high significance in cortex and cerebellum was 
observed 5 h following the induction of systemic inflamma-
tion like sepsis-associated encephalopathy (SAE) in mice 
[31]. In vitro measurements with autoradiography imag-
ing after lipopolysaccharide stimulation in mice also pre-
sented enhanced [18F]F-FDG uptake in spleen and lymph 
nodes, because B cells increase their glucose consumption 
very early after TLR treatment [44]. Such findings could 
explain the rise in [18F]F-FDG uptake we measured and 
make them the most likely cause of the increase as CA-
CPR induces cerebral inflammatory processes. Hosmann 
et al. [45] established a microdialysis setting in vivo to 

investigate the impact of resuscitation methods on cere-
bral and peripheral metabolism for lactate, glucose, and 
glutamate simultaneously. Their results that cerebral glu-
cose levels fell below the detection limit during CA-CPR, 
returned to baseline level after ROSC, and are significantly 
elevated 16 to 48 min after ROSC support our findings [45]. 
As previously mentioned, Zhang and colleagues discovered 
a rise in glucose uptake 72 h post-CA with significance in 
the hindbrain; in contrast, the increase in the regions of the 
forebrain failed to reach significance [33] corresponding to 
our results presented for the immediate period after ROSC.

TLR2−/− Mice Showed No Difference Between 
Baseline Brain Glucose Uptake and Early After 
CA‑CPR But Displayed Higher Glucose Level 
than WT Mice

In WT mice, an increase of [18F]F-FDG uptake post CA-
CPR was observed, whereas in TLR2−/− mice, no difference 
of [18F]F-FDG uptake between baseline and post CA-CPR 
measurements was detected. As described for rats, the cer-
ebral glucose levels also possibly fall during CA-CPR in 
TLR2−/− mice and return to normal after ROSC [45], but do 
not rise immediately after ROSC. Maybe at this early point 
in time when the PET scans were done, the lack of TLR2, 
one of the key innate immune sensors, restricted the signal-
ing of early immune response that usually occur under I/R 
damage. The TLR2−/− mouse strain has shown a reduced 
increase in immune response 8 h following CA-CPR as well 
[24]. Hence, the mouse strains used for the study presented 
completely different pattern of glucose uptake in the brain at 
baseline and post CA-CPR, although the blood glucose level 
was the same at the end of PET-CT post CA-CPR. An earlier 
study done with the same mouse strains and the same animal 
model of CA-CPR described a different increase of plasma 
levels between WT and TLR2−/− mice 8 h following CA-
CPR such as IL-6 in WT group was increased about 100-fold, 
whereas in TLR2−/− group, the increase was only 5 times 
[24]. Our results of cytokines in blood plasma 3 h following 
CA-CPR also suggest these differences in the increase but did 
not reach significance. This may be due to the early time of 
measurement. These differences in the increase of inflamma-
tion markers in the mouse strains used support the assump-
tion that elevated inflammation raises the need for glucose. In 
addition to a reduced increase of inflammation markers, Bergt 
et al. [24] revealed evidence that a lack or inhibition of TLR2 
signaling is associated with improved survival and upgraded 
preservation of motor function and cognitive capacity follow-
ing CA-CPR. Activation of TLR2 initiate the transcription of 
genes associated with innate immune responses and inflam-
mation, which leads to tissue injury by the initiation of apop-
totic pathways also in the brain [19]. So, the lack of TLR2 
could explain the equal levels of glucose uptake at baseline 
and post CA-CPR in the brain, because of the significant 
lower inflammatory reaction in TLR2−/− mice after CA-CPR 
[24]. VEGF-A is a potent angiogenic factor and it has the 
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ability to induce transient vascular leakage [46]. I/R have 
been shown to be relevant stimuli for rapid VEGF expres-
sion [47, 48]. In our study, plasma protein level of VEGF-
A was significantly increased in WT mice within 3 h after 
ROSC. VEGF serum protein levels were also increased after 
ROSC in a swine model of CA-CPR [49]. There is increasing 
evidence that the expression of VEGF is elevated following 
activation of TLR2 [50, 51]. Induction of VEGF after CA-
CPR possibly causes increased vascular permeability and 
thus blood–brain barrier opening [52] leading to a vasogenic 
edema. VEGF-induced brain stem edema may be the primary 
cause of the increased mortality seen in the first 3 days after 
successful resuscitation from CA. The not elevated plasma 
VEGF-A in the TLR2−/− mice in our study could give evi-
dence for the better survival of this mice [24]. Information on 
the role of TLR2 deficiency in cerebral I/R injury are varying. 
In addition to inflammatory signals leading to tissue injury, 
TLR2 induces also protective signals that result in production 
of cytoprotective molecules such as heat shock proteins and 
Bcl-2, an anti-apoptotic molecule [53]. There are suggestions 
that activation of innate immunity in the brain is an ambigu-
ous event that can be advantageous or disadvantageous for 
the fate of the host depending on the specific conditions of 
neuronal injury and the balance between inflammatory and 
protective signals [54].

If we consider the results of baseline glucose uptake 
and post CA-CPR, the different patterns of glucose uptake 
detected amongst the mouse strains support the important 
well-known role of TLR2 in inflammatory reaction and now 
extend to a potential cross-link to energy metabolism. These 
results could lead to additionally using glucose metabolism 
as a method for predicting the course of inflammation in post-
cardiac arrest syndrome.

Higher Baseline Glucose Level in TLR2−/− Mice

In our study, the baseline absolute brain glucose uptake 
values in the TLR2−/− mice were much higher than in WT 
mice. To address these differences in the baseline glucose 
metabolism, further investigations for characterizing the nor-
mative profile of WT and TLR2−/− mice have to be done. 
In TLR2−/− mice fed a high-fat diet, body weight gain was 
significantly less compared with WT mice [55]. The high-
fat diet–induced increases in fasting blood glucose levels, as 
well as in circulating insulin and leptin levels, were absent in 
TLR2−/− mice. High-fat feeding induced increases in over-
all fat mass, and in fat mass of different pockets were abro-
gated in TLR2−/− mice [55]. Therefore, we speculate that the 

TLR2−/− mice have altered metabolism and different baseline 
glucose levels due to knockout. On this assumption, it also 
seems possible that the higher glucose uptake in WT mice 
could be due, in part or in whole, to the switch to glycolysis 
after hypoxia, although both mouse strains were subjected to 
exactly the same ischemic insult.

However, our present study has some limitations. First, 
the use of anesthesia during the experimental procedure may 
have affected the distribution of brain glucose metabolism 
[38], as anesthesia, especially the use of ketamine/xylazine, 
is known to reduce metabolism throughout the murine brain 
and result in a lower uptake of [18F]F-FDG compared to iso-
flurane or awake [38]. At the same time, ketamine/xylazine 
anesthesia generate increased blood glucose levels [38], due 
to a known pharmacological effect of xylazine. Because of 
the experimental setting in the present study, it has to be 
taken into consideration that all baseline PET scan recordings 
were started after induction of anesthesia, tail vein catheter, 
and bedding, whereas PET scans following CA-CPR were 
started about 2 h after induction of anesthesia. At that time, 
the effect of anesthesia was decreased and the mice were 
at rest and still unconscious. Second, after CPR, only one 
time point was studied. We were interested in mechanisms 
of the early phase after global ischemic insult because this 
is the phase for diagnostics and concentrated efforts to find 
the optimal treatment strategy. Third, furthermore, FDG-PET 
provides information about the uptake of glucose and the first 
part of glycolysis but does not evaluate glucose metabolism 
beyond this [56].

Conclusion
We found that cardiac arrest and resuscitation induced a dif-
ferent glucose metabolism post-ischemia associated with the 
function of key immune factor TLR2 compared to the basal 
grade of glucose metabolism. Upcoming experiments will 
be focused on the different baseline glucose uptake in TLR2-
deficient mice and what influence do an elevated glucose 
metabolism have on the post-cardiac arrest syndrome and 
outcome. PET targeting brain metabolism and further devel-
opment of new tracers provide new tools to track the progres-
sion of diseases and may help uncover the pathophysiological 
changes in the brain after ischemic injury. More studies on 
PET-based predictions on the outcome are needed.
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