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Abstract
Purpose: Pharmacokinetic modeling can be applied to quantify the kinetics of fluorescently
labeled compounds using longitudinal micro-computed tomography and fluorescence-mediated
tomography (μCT-FMT). However, fluorescence blurring from neighboring organs or tissues and
the vasculature within tissues impede the accuracy in the estimation of kinetic parameters.
Contributions of elimination and retention activities of fluorescent probes inside the kidneys and
liver can be hard to distinguish by a kinetic model. This study proposes a deconvolution
approach using a mixing matrix to model fluorescence contributions to improve whole-body
pharmacokinetic modeling.
Procedures: In the kinetic model, a mixing matrix was applied to unmix the fluorescence blurring
from neighboring tissues and blood vessels and unmix the fluorescence contributions of
elimination and retention in the kidney and liver compartments. Accordingly, the kinetic
parameters of the hepatobiliary and renal elimination routes and five major retention sites (the
kidneys, liver, bone, spleen, and lung) were investigated in simulations and in an in vivo study. In
the latter, the pharmacokinetics of four fluorescently labeled compounds (indocyanine green
(ICG), HITC-iodide-microbubbles (MB), Cy7-nanogels (NG), and OsteoSense 750 EX (OS))
were evaluated in BALB/c nude mice.
Results: In the simulations, the corrected modeling resulted in lower relative errors and stronger
linear relationships (slopes close to 1) between the estimated and simulated parameters,
compared to the uncorrected modeling. For the in vivo study, MB and NG showed significantly
higher hepatic retention rates (PG0.05 and PG0.05, respectively), while OS had smaller renal
and hepatic retention rates (PG0.01 and PG0.01, respectively). Additionally, the bone retention
rate of OS was significantly higher (PG0.01).
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Conclusions: The mixing matrix correction improves pharmacokinetic modeling and thus
enables a more accurate assessment of the biodistribution of fluorescently labeled pharmaceu-
ticals by μCT-FMT.
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Computed tomography, Intensity diffusion, Relative blood volume, Elimination routes, Retention
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Introduction
Fluorescence-mediated tomography (FMT) is an imaging tech-
nique used to assess the three-dimensional distribution of
fluorescent probes in preclinical studies [1–3]. In recent years,
the sensitivity and accuracy of FMT have notably increased,
resulting in improved detection of fluorescent probes in deep
tissue regions [4–7]. Therefore, FMT is a promising modality to
quantify the whole-body biodistribution of probes in mice [8–11].
In this context, the application of FMT can also help reduce the
number of mice required for biomedical and histological
examinations in longitudinal studies.

One main limitation of the FMT technique is the lack of
accurate and sharp localization of fluorescently labeled com-
pounds in vivo, especially in deep tissue regions [12, 13]. In
previous studies, combining FMT with a high-resolution anatom-
ical imaging modality, such as micro-computed tomography
(μCT), could substantially enhance its diagnostic quality [12, 14–
16]. The shape information and organ-specific absorption and
scattering maps derived from the μCT scans can be incorporated
into FMT reconstruction algorithms, thus improving the quanti-
fication and localization of fluorescence signals [6, 7, 14, 17, 18].
Additionally, the organ-specific pharmacokinetic profiles can be
extracted by fusing the FMT images and μCT-based organ
segmentation [17–19].

Pharmacokinetic modeling is used to quantify kinetic
behaviors from pharmacokinetic curves [20–25]. Compart-
mental modeling has been routinely applied to derive kinetic
parameters in previous studies, facilitating a better under-
standing of the information contained in the dynamic in vivo
imaging data [26]. In contrast to high-resolution imaging
methods like CT and ultrasound, in FMT, the fluorescence is
blurred between adjacent organs and tissues due to the lower
resolution. Fluorescence of small imaging voxels compara-
ble to the finite spatial resolution of FMT (1–3 mm)
influences each other between neighboring tissues [3, 8,
27, 28]. The limitations of the reconstruction for this ill-
posed problem in FMT also cause blurriness, which could be
remarkably improved by the incorporation of CT scans [6].

Additionally, vasculature inside organs also affects the
fluorescence measurements of tissue compartments [8].
Furthermore, fluorescence data obtained from the liver and
kidneys do not just represent retention kinetics of probes but
also contain dynamic information about probe
elimination—the liver, for example, consists of hepatocytes
for elimination activities and Kupffer cells as retention sites

[29–31]. In pharmacokinetic modeling, the fluorescence
contributions of elimination and retention in the kidney
and liver compartments should be considered. To reduce
these fluorescence blurring and mixing effects, we introduce
a mixing matrix into the pharmacokinetic modeling to
deconvolute the underlying accurate parameters.

Thus, this study aimed to improve parameter estimation
in pharmacokinetic modeling using longitudinal μCT-FMT
data. For the first time, the mixing matrix was applied to
unmix the fluorescence blurring from neighboring tissues
and blood vessels and differentiate the elimination and
retention sub-compartments in the liver and kidneys. The
relevance of the mixing matrix was assessed in simulations
and comparatively analyzed using in vivo data.

Materials and Methods
In Vivo μCT-FMT Imaging

All animal experimental procedures were approved by the
Governmental Review Committee on Animal Care. Healthy
BALB/c nude mice (Charles River Laboratory, Sulzfeld, Ger-
many) were anesthetized to be imaged by hybrid μCT-FMT
(μCT: Tomoscope 30s Duo, CT Imaging GmbH, Erlangen,
Germany; FMT: FMT 2500, PerkinElmer, Waltham,MA, USA),
at 0.25, 2, 4, 8, 24, 48, and 72 h after intravenous injection.

In the animal experiments, four fluorescently labeled com-
pounds (five female mice per group, 2 nmol in 100 μl solution per
mouse)—indocyanine green (ICG, with a molecular weight of
774.96 g/mol), HITC-iodide-microbubbles (MB, with a diameter
of 2–3 μm), Cy7-nanogels (NG, with a diameter of 117 ± 5 nm),
and OsteoSense 750 EX (OS, with a molecular weight of 1101.1
g/mol)—were chosen to cover various elimination routes and
retention sites, as described in detail elsewhere [18]. These
fluorescent compounds have well-known but different pharma-
cokinetic properties. After intravenous administration, ICG is
almost exclusively eliminated by the liver with low non-specific
retention in cells and tissues. MB and NG are mainly taken up by
the Kupffer cells and biodegraded by the liver. The bone-targeting
OS is mainly eliminated by the kidneys. All of them are water-
soluble and can be fluorescently excited by the 745-nm FMT
channel.

The 3D fluorescence images were obtained by FMT recon-
struction, which uses μCT information acquired for each mouse
and time point (Fig. 1a) [6]. The reconstruction method
“corrected” the fluorescence underestimation caused by a rich
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blood supply in some major organs, such as the liver and kidneys
[6]. Based on the fused μCT and 3D fluorescence image data, the
fluorescence biodistribution data (from 7 time points) of 8 organs
(the heart, kidneys, bladder, liver, intestine, bone, spleen,
and lung) was extracted using μCT-based organ segmentation
(Fig. 1b) [18].

Pharmacokinetic Modeling

Our simplified whole-body pharmacokinetic model describes the
exchange of fluorescently labeled compounds between compart-
ments [18]. This model was carefully designed to balance the
number of unknown parameters and the measurements, thus
achieving global convergence in simulations.

The whole-body pharmacokinetic model consists of two
main elimination routes and five major retention sites. To be
specific, several features are incorporated to make the model
physiologically realistic and applicable in this study using
intravenous injection (Fig. 1c):

(i) The blood compartment is the driving force of compound
distribution (blood) [18].

(ii) Compounds are assumed to irreversibly retain in five
major compartments (liver, kidney, spleen, bone, and
lung) [29, 32].

(iii) Compounds are eliminated by the hepatic and/or renal
elimination routes (liver, intestine, kidney, and bladder)
[29].

(iv) Compounds can diffuse into the rest of the body and
back into the blood (others).

Without loss of generality, the mass-balancing formula-
tion in the context of pharmacokinetic modeling could be
described as:

dI
dt

¼ KI ð1Þ

where vector I represents the amount of fluorescently
labeled compounds in compartments, and K is the sparse
adjacency matrix representing the multi-parameter set,
consisting of eight unknown kinetic parameters. The
unknown parameters are calculated by fitting the model
to the longitudinal μCT-FMT data. A constraint 0.001 G
Kij G 0.02 is implemented in parameter estimation to ensure
a physiologically meaningful range of kinetic parameters.

Mixing Matrix Correction

The fluorescence measurements in segmented organs ob-
tained from hybrid μCT-FMT are not exclusively the
fluorescence intensity inside the corresponding compart-
ments. In this study, we introduce a mixing matrix (M) to
“correct” the measurement of selected organs (Im) and
compute the fluorescence intensity in compartments (I):

Im ¼ MI ð2Þ

Fig. 1. Whole-body pharmacokinetic modeling using μCT-FMT. a Fluorescence reconstruction with μCT information, b
combined with μCT-based organ segmentation (heart, red; kidney, yellow; bladder, gold; liver, dark red; intestine, light green;
bone, beige; spleen, green; lung, pink). c Simplified whole-body pharmacokinetic model. The blood flow (blood) facilitates
compound distribution to major organs (liver, kidneys, spleen, bone, and lung). Compounds could retain in major organs and
are usually eliminated by the liver or kidneys. Corresponding kinetic rates (retention rates and elimination rates) are represented
by kinetic parameters (K). Eight unknown kinetic parameters (solid arrows) are iteratively estimated by pharmacokinetic
modeling. Four known parameters (dashed arrows) were derived from animal experiment data (from Al Rawashdeh and Zuo
et al. [18]).

Zuo S. et al.: Mixing Matrix-Corrected Whole-Body Pharmacokinetic Modeling Using μCT-FMT 965



where M is a sum of three mixing terms:

(i) fluorescence blurring between adjacent compartments,
(ii) fluorescence blurring from regional blood vessels, and
(iii) fluorescence fusion of the elimination and retention

activities of compounds inside the kidneys/liver.

The first mixing term, the fluorescence blurring from
neighboring tissues due to photon diffusion and the
limited spatial resolution of the FMT device, is termed
“intensity diffusion” [28, 33]. To obtain the matrix of
“intensity diffusion,” a three-dimensional Gaussian filter
(FWHM: 0.5 mm) was applied to the mask of each
organ segmentation. Then, the intensity average is
computed in the other organ mask to obtain the
corresponding “intensity diffusion” value (IDV). The
IDV matrix was obtained using the hybrid μCT-FMT
data:

IDV ¼

0:717 0:022 0:023
0:039 0:818 0:013
0:007 0:002 0:872

0:122 0:000 0:000
0:043 0:000 0:000
0:022 0:000 0:013

0:000 0:000 0:115
0:000 0:000 0:086
0:002 0:000 0:071

0:019 0:004 0:012
0:000 0:000 0:002
0:000 0:000 0:008

0:682 0:001 0:004
0:044 0:650 0:000
0:004 0:000 0:898

0:000 0:000 0:248
0:044 0:000 0:252
0:007 0:000 0:067

0:000 0:000 0:009
0:000 0:000 0:000
0:005 0:002 0:011

0:002 0:005 0:046
0:005 0:000 0:001
0:074 0:001 0:018

0:806 0:000 0:129
0:000 0:742 0:249
0:005 0:002 0:785

2
666666666664

3
777777777775

;

where each IDV represents the fluorescence contribu-
tion from adjacent compartments (row: lung, blood, liver,
bone, spleen, intestine, kidneys, bladder, and others) to
the measured organs (column: lung, blood, liver, bone,
spleen, intestine, kidneys, bladder, and others).

The second mixing term represents the fluorescence
blurring from vasculature inside the organs, determined by
the relative blood volume of organs (rBV). The rBV data
were obtained from previous studies [34].

The third mixing term incorporates the elimination
and retention sub-compartments in the liver and kidneys
(Fig. 1c). The mixing matrix involving these three
mixing terms was included in the forward model and
the iterative model fitting to deconvolute the kinetic
parameters.

Kinetic Parameter Estimation

With the mixing matrix-corrected forward model, an
iterative strategy based on the kinetic model was applied to
estimate the best-fit kinetic parameters.

(i) Mixing Matrix-Corrected Kinetic Modeling

A fine-grained prediction bI f (Fig. 2a) is computed by
applying the 4th-order Runge-Kutta algorithm to the
differential equation (Eq. 1):

dbI f

dt
¼ KbI f : ð3Þ

This prediction is computed at a sufficiently high
temporal resolution to avoid numerical errors stemming
from using coarse steps in the Runge-Kutta method. The fine

prediction bI f is then coarsely sampled to obtain the coarse

prediction bIc (Fig. 2b) at defined time points, such as the 7
time points at 0.25, 2, 4, 8, 24, 48, and 72 h in the in vivo

experiments. bIc is further modified by the mixing matrix M

to generate the mixed prediction bIm —the prediction of
measurement in organs (Fig. 2c):

bIm ¼ MbIc ð4Þ

(ii) Cost Function-Based Parameter Estimation

To estimate the best-fit K, the cost function is defined as:

f Kð Þ ¼ ∑ bIm−Im
� �2

þ cK2 ð5Þ

In this model fitting problem, the first part ∑ bIm−Im
� �2

represents the sum-squared error between the prediction bIm (Fig.
2c) and measurement Im (Fig. 2d). The regularization term cK2 is
a parameter penalty to avoid extremely large solutions of K.

Then, the nonlinear conjugate gradient method is used to
minimize the penalized cost function f(K). Iteratively,
gradients are computed using adjoint algorithmic differenti-
ation to determine a descent direction and perform a line
search [35]. Accordingly, the eight unknown kinetic param-
eters are estimated by iteratively conducting these two steps.

Simulations

Numerical simulations were performed to assess whether
kinetic parameters can be deconvoluted using this model and
to estimate the effect of the mixing matrix. One hundred
groups of kinetic parameters were randomly generated,
independently and uniformly distributed in the range 0.001

to 0.02. Fine measurements bI f were then simulated based on
the proposed kinetic modeling. Coarsely sampled measure-

ments bIc were extracted from the fine measurements bI f at
0.25, 2, 4, 8, 24, 48, and 72 h. Besides, a 10 % relative noise
was randomly added to the sampled measurements. With the
noisy measurements, the mixing matrix-corrected model was
applied to estimate the kinetic parameters.
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The performance of the kinetic parameter estimation with
mixing matrix correction was studied and compared to the
estimation without correction. The feasibility and reliability of the
corrected modeling were evaluated in terms of the linear
relationships of parameters and the relative errors of the estimated
parameters compared to the uncorrected modeling.

To investigate the dependency of the corrected modeling on
sampling density, different temporal sampling schemes were

applied.More densely sampled measurementsbIc (at 7, 20, and 50
time points) were extracted from the fine measurements bI f .
Furthermore, the corrected modeling with more early sampling
points at the pharmacokinetic process, such as 7-early, i.e., seven
measurements at 0, 0.25, 0.5, 2, 12, 24, and 48 h, more densely
sampled in the first hour, was investigated to explore the influence
of data sampling during the early phase of probe distribution.

Statistical Analysis

In simulations, linear regression analysis was used to
examine the linear relationship and the goodness of fit
between the randomly chosen and estimated parameters. In
the in vivo study, the kinetic parameters estimated by the
uncorrected and mixing matrix-corrected modeling were
compared using a paired two-tailed t-test.

Results

Simulations

Mathematical simulations were designed to evaluate if the
mixing matrix-corrected model could recover the kinetic
parameters and to assess the effect of the mixing matrix on
the parameter estimation.

Figure 3 shows the comparison of kinetic parameters
estimated by the corrected and uncorrected modeling. With

mixing matrix correction, all eight estimated parameters are
approximately linear related to simulated parameters (slopes
close to 1 and high R-squared values). In contrast, the
parameters estimated by the uncorrected model have higher
variances and are less linear, especially the hepatic and renal
retention parameters. For example, the slope of the hepatic
retention rate (KLiver) is 1.042 ± 0.014 with correction,
whereas the uncorrected modeling is −0.009 ± 0.018 (Fig.
4). The strong linear relationship between the estimated and
simulated parameters confirmed that the mixing matrix
correction could significantly improve the parameter estima-
tion in whole-body pharmacokinetic modeling.

The relative errors of kinetic parameters were also
compared. Figure 4 shows the error distribution of the
estimated parameters using the corrected and uncorrected
modeling. With mixing matrix correction, estimated param-
eters have smaller relative errors, especially for the kidney
and liver’s elimination and retention rates. Despite 10 %
noise added to the measurements, the kinetic parameters
estimated by the corrected modeling only have an average
relative error of 9.77 %, compared to the average relative
error of 98.41 % by the uncorrected modeling. Additionally,
we found that larger simulated parameters (90.005) could
result in smaller relative errors in parameter estimation,
which is reasonable because small parameter changes are
hard to estimate under the presence of noise.

To assess the dependency of parameter estimation on
sampling density, we investigated the effect of different
temporal sampling schemes on parameter estimation using
mixing matrix-corrected modeling.

Table 1 shows that sampling with more data points
reduces the relative errors of estimated parameters. More-
over, the same amounts of measurements with more early
samples in the pharmacokinetics (especially within the first
hour) can suppress much more noise in parameter estima-
tion, such as the “7-early” sampling scheme with 5.76 %

Fig. 2. Modeling steps of the pharmacokinetic curves. a Fine-grained (high temporal resolution) prediction bI f is generated based

on the pharmacokinetic model. b Coarse prediction bIc is then extracted from the fine curves at sparse time points 0.25, 2, 4, 8, 24, 48, and

72 h after i.v. injection. c Mixed prediction bIm is calculated by multiplying the coarse prediction bIc using the mixing matrix. d The
measurement Im is from animal experiment data using hybrid μCT-FMT (ICG) [18].
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averaged relative errors compared to the “7” sampling
scheme with 9.77 %. The noise reduction is reasonable

because of the fast exchange of compounds between
compartments in the early phase of probe distribution.

Fig. 3. Comparison of estimated parameters using the uncorrected and mixing matrix-corrected kinetic modeling in
simulations. Measurements were simulated using the mixing matrix, and random noise was added. Only the estimates using
the mixing matrix have strong linear relationships with the original parameters (slopes and R-squared close to 1) for all
parameters. a, b Without the mixing matrix, the kidney and liver’s elimination rates, the estimates have higher variances (small
R-squared values) and a higher values bias. c, d Without the mixing matrix, the renal and hepatic retention rates cannot be
recovered. e–h The other estimated parameters (bone, spleen, lung, and others) with uncorrected modeling have less linear fit
lines.
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In Vivo Study

The kinetic parameters of four fluorescently labeled com-
pounds were estimated using the mixing matrix-corrected

modeling and the uncorrected one using longitudinal μCT-
FMT imaging data. The kinetic modeling consists of seven
kinetic parameters consisting of two elimination routes and
five retention sites.

Fig. 4. Relative errors of estimated parameters using the uncorrected and mixing matrix-corrected kinetic modeling in
simulations. Measurements were simulated using the mixing matrix, and random noise was added. The relative errors of
estimated parameters are notably smaller using mixing matrix correction, especially for the kidney and liver’s elimination and
retention rates. Smaller relative errors are achieved with parameters larger than 0.005. Simulated parameters are randomly
generated, to obtain simulated measurements.

Zuo S. et al.: Mixing Matrix-Corrected Whole-Body Pharmacokinetic Modeling Using μCT-FMT 969



Elimination

Figure 5 shows that ICG, MB, and NG are mainly
eliminated by the liver, whereas OS is eliminated by the
liver and kidneys. It was noted that using the mixing matrix
correction, the hepatic elimination rate of ICG and the renal
elimination rate of OS were slightly larger, compared to the
rates without the correction (OS: PG0.05) (Fig. 5a, d).
However, the hepatic elimination rates of MB and NG were
significantly smaller using the mixing matrix (PG0.01 and
PG0.01, respectively) (Fig. 5b, c).

Retention

Figure 6 shows that the usage of the mixing matrix correction
lowers the variances of retention parameters. MB and NG were
mainly retained in the liver (Fig. 6b, c). With correction, the renal
retention rates of ICG, MB, NG, and OS were smaller (MB:
PG0.05 and OS: PG0.01, respectively). With the corrected
modeling, OS had a significantly higher retention rate in the bone
(2.06 ± 0.37 % ID/min) than in the kidneys (0.10 ± 0.00 % ID/
min) and liver (0.10 ± 0.00 % ID/min), consistent with the bone-
specific property of OS. In addition, the corrected bone retention
rate of OS (2.06 ± 0.37 % ID/min) was significantly larger,
compared to ICG, MB, and NG (0.95 ± 0.60, 1.17 ± 0.46, and
0.62 ± 0.26 % ID/min respectively). In the corrected modeling,
slightly larger spleen and lung retention rates were obtained for all
four probes.

The corrected modeling incorporated the retention and
elimination sub-compartments in the liver. This incorpora-
tion resulted in slightly lower hepatic elimination rates of
MB (Fig. 5b, PG0.01) and NG (Fig. 5c, PG0.01) but higher
hepatic retention rates of MB (Fig. 6b, PG0.05) and NG (Fig.
6c, PG0.05). Additionally, the renal and hepatic retention
rates of OS were significantly smaller using correction (Fig.
6d, PG0.01 and PG0.01, respectively).

Discussion
Pharmacokinetic modeling is a useful tool to obtain kinetic
parameters and facilitates a better understanding of

compounds’ kinetic behaviors. Our study aimed to improve
the parameter estimation using mixing matrix correction
based on longitudinal μCT-FMT data. The mixing matrix
“corrected” the measured pharmacokinetic curves, and
actual fluorescence intensities of compartments were thus
computed. The correction of fluorescence measurements
could avoid serious bias in parameter estimation in this study
using intravenous injection, especially for compounds
distinctively retained in the liver and/or kidneys.

In the simulations, when using the mixing matrix-
corrected modeling, stronger linear relationships between
the estimated and simulated parameters were achieved,
compared to the uncorrected one. The linear relationships
of the renal and hepatic retention rates mainly depend on the
differentiation of the retention and elimination sub-
compartments in the liver and kidneys. Smaller relative
errors of estimated parameters are expected since the mixing
matrix-corrected modeling minimizes the influence of
fluorescence blurring from surrounding organs and the
regional blood flow in well-perfused organs, especially in
the liver, kidneys, and bone. The high degree of accuracy in
parameter estimation indicates that the proposed modeling
with mixing matrix correction is robust and reliable.

We also found that sampling with more data points,
mostly significantly sufficient measurements in the early
pharmacokinetics (particularly within the first hour), could
notably suppress the noise and reduce relative errors in
parameter estimation. However, the time sampling scheme
in the animal experiment is highly limited by the perfor-
mance of the hybrid μCT-FMT imaging device (13 min per
hybrid μCT-FMT scan) [17, 18]. Although the inclusion of
μCT imaging provides a more accurate localization of
fluorescently labeled compounds [6, 18], it extends the
scanning duration and limits the amount of sampling in the
early phase. Important pharmacokinetic information is lost
because of insufficient measurements from the early stage of
probe distribution. The limitation could be overcome by
including temporal averaging in the model, or by using a
faster device [36]. Such a faster FMT could be developed
using CMOS cameras. These relatively inexpensive and fast
cameras are smaller, and multiple cameras could be used,

Table 1. Relative errors of kinetic parameters with six temporal sampling schemes using the mixing matrix-corrected modeling. 7-early means 7
measurements with more dense sampling in the early pharmacokinetics (especially within the first hour), 20-early and 50-early in a similar way. A 10 %
relative noise is randomly added to the simulated measurements

Relative error

Temporal sampling 7 20 50 7-early 20-early 50-early

KKidneyElimination 14.9 % 13.9 % 12.5 % 10.3 % 6.37 % 4.88 %
KLiverElimination 12.2 % 12.8 % 11.4 % 6.60 % 4.78 % 4.62 %
KKidney 8.65 % 5.99 % 5.23 % 4.26 % 3.83 % 3.72 %
KLiver 8.69 % 6.19 % 5.58 % 5.29 % 3.89 % 3.66 %
KBone 10.6 % 7.74 % 6.01 % 5.41 % 3.84 % 3.57 %
KSpleen 9.49 % 7.32 % 5.79 % 4.65 % 3.97 % 3.78 %
KLung 7.50 % 6.08 % 5.05 % 4.40 % 3.82 % 3.58 %
KOthers 6.14 % 6.44 % 6.48 % 5.17 % 5.29 % 5.14 %
Average relative error 9.77 % 8.31 % 7.26 % 5.76 % 4.47 % 4.12 %
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e.g., one for the excitation and one for the emission channel.
Multiple lasers could be used and operated in interleaved
mode, requiring less physical movement.

In the in vivo results, the estimated parameters are
physiologically meaningful, consistent with the expected
elimination and retention properties of these four compounds
[18]. ICG and NG had the highest hepatic elimination rates,
while OS had the highest renal elimination rate. The hepatic
retention was highest for MB and NG, while bone retention
was highest for OS.

For the assessment of compound elimination in the
in vivo data analysis, a minor but noteworthy change is that,
for OS elimination, the renal elimination rate is slightly
larger than the hepatic elimination rate using the mixing
matrix-corrected modeling. This is physiologically meaning-
ful since probes with a hydrodynamic size below the
glomerular filtration threshold (G8nm) and positively
charged typically undergo substantial renal clearance [29,
31].

The retention rates of compounds were significantly
different when using the mixing matrix correction. The
hepatic retention rates of MB and NG were considerably
larger than the renal retention rates, which is consistent with

previous studies [29, 30]. The prolonged retention of these
compounds is caused by the rapid uptake but relatively slow
excretion by the liver. The bone retention rate of OS was
significantly larger than ICG, MB, and NG, consistent with
OS’s bone-specific property. Additionally, the spleen and
lung retention rates of ICG, MB, and NG are slightly larger.
This is reasonable because of the uptake by the mononuclear
phagocyte system in these organs [29, 31, 37, 38]. However,
the overestimation of the lung retention rate for OS might be
a result of the fluorescence spillover in the lung from the
neighboring bone tissues [18, 39].

Besides, the pharmacokinetic properties of the fluores-
cently labeled compounds, i.e., MB and NG, might be
influenced by numerous aspects, such as the charge, size,
shape surface modifications, solubility, and affinity to
plasma proteins or specific receptors [18]. The proposed
kinetic modeling can be used to investigate the impact of
fluorescence labeling on pharmacokinetic properties, e.g., by
comparing compounds with different fluorescent labeling
methods.

In this study, some modifications were adopted in the
pharmacokinetic modeling, based on the previously pre-
sented compartmental modeling [25, 40]. The proposed

Fig. 5. Hepatic and renal elimination of ICG, MB, NG, and OS using the uncorrected and mixing matrix-corrected modeling. a–
c ICG, MB, and NG are mainly eliminated by the liver. d With correction, the renal elimination rate of OS was slightly higher
compared to the rates without the correction (PG0.05). b, c MB and NG’s hepatic elimination rates are smaller using correction
(PG0.01 and PG0.01, respectively). The paired two-tailed t-test was used in the comparison of elimination rates between the
corrected and uncorrected modeling using μCT-FMT data, n=5.
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whole-body modeling incorporates the main elimination
routes and major retention sites, which comprise the
complete biodistribution of compounds inside the body.
The bone targeting property of OS was observed in the
animal results, compared to ICG, MB, and NG. This
suggests that our proposed modeling can be applied to other
fluorescent compounds targeting specific cells and tissues,
e.g., a tumor-targeting fluorescent probe.

In this model, the retention sites are simplified only as
trapped compartments, where the transfer of compounds
between compartments is irreversible. The irreversible
retention is physiologically meaningful and suitable,
representing the trap of macromolecules in the liver, such
as albumin-binding ICG, MB, and NG [29, 31, 37, 38].
However, in some whole-body modeling studies, especially
in PET using small radiolabeled compounds with reversible
binding to specific organs, the transfer between the blood
and tissue compartments is reversible [41, 42]. Besides,
limited by the image quality and the temporal resolution, a
good blood signal curve was not available in the μCT-FMT
kinetic modeling, especially in the early phase of the
pharmacokinetic process. In contrast, with high temporal
resolution (~seconds), PET kinetic modeling strongly

depends on the “arterial input function” and good image
quality. This transfer property and the “arterial input
function” should be reconsidered to extrapolate the model
to PET kinetic data in future studies. Furthermore, consid-
ering the complexity of the hepatobiliary elimination and the
limited resolution of FMT, the liver is regarded as an
isolated organ, whereas 80 % of the hepatic blood supply is
from the spleen, gut, and pancreas [43, 44]. These
simplifications of the hepatic elimination route need to be
reconsidered in animal studies, especially using oral
administration.

In the hybrid μCT-FMT imaging, anesthetized mice were
imaged to obtain pharmacokinetic curves. Motion artifacts
caused by breathing and cardiac movements contribute to
fluorescence blurriness and result in inaccurate
biodistribution data. Therefore, a mouse bed was applied in
the experiments to restrain mice’s motion and limit the
impact on fluorescence measurement [17], though, in future
in vivo studies, the remaining motion artifact problems could
be considered to improve the pharmacokinetic analysis.

Despite these limitations, we have demonstrated that the
proposed whole-body modeling can improve the parameter
estimation with a significantly higher degree of accuracy by

Fig. 6. Retention of ICG, MB, NG, and OS in selected organs using the uncorrected and mixing matrix-corrected modeling. a–
d ICG, MB, NG, and OS had negligible renal retention rates when using the corrected modeling compared to the uncorrected
one. b, c MB and NG show a higher hepatic retention rate (PG0.05 and PG0.05, respectively). d With correction, OS has a higher
bone retention rate (PG0.01), while lower renal and hepatic retention rates (PG0.01 and PG0.01, respectively). The paired two-
tailed t-test was used in the comparison of elimination rates between the corrected and uncorrected modeling using μCT-FMT
data, n=5.
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involving a mixing matrix. With the new approach, the
differences in retention sites can be shown notably more
explicit using μCT-FMT animal data. This indicates that the
corrected modeling might be a promising tool to assess the
pharmacokinetics of organ-specific compounds using in vivo
data.
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