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Abstract
Purpose: The aim of this study was to investigate the use of spectral analysis (SA) for voxel-wise
analysis of TSPO PET imaging studies. TSPO PET quantification is methodologically
complicated by the heterogeneity of TSPO expression and its cell-dependent modulation during
neuroinflammatory response. Compartmental models to account for this complexity exist, but
they are unreliable at the high noise typical of voxel data. On the contrary, SA is noise-robust for
parametric mapping and provides useful information about tracer kinetics with a free
compartmental structure.
Procedures: SA impulse response function (IRF) calculated at 90 min after tracer injection was
used as main parameter of interest in 3 independent PET imaging studies to investigate its
sensitivity to (1) a TSPO genetic polymorphism (rs6971) known to affect tracer binding in a
cross-sectional analysis of healthy controls scanned with [11C]PBR28 PET; (2) TSPO density
with [11C]PBR28 in a competitive blocking study with a TSPO blocker, XBD173; and (3) the
higher affinity of a second radiotracer for TSPO, by using data from a head-to-head comparison
between [11C]PBR28 and [11C]ER176 scans.
Results: SA-IRF produced parametric maps of visually good quality. These were sensitive to
TSPO genotype (mean relative difference between high- and mixed-affinity binders = 25 %)
and TSPO availability (mean signal displacement after 90 mg oral administration of
XBD173 = 39 %). Regional averages of voxel-wise IRF estimates were strongly associated
with regional total distribution volume (VT) estimated with a 2-tissue compartmental model
with vascular compartment (Pearson’s r = 0.86 ± 0.11) but less strongly with standard
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2TCM-VT (Pearson’s r = 0.76 ± 0.32). Finally, SA-IRF estimates for [11C]ER176 were
significantly higher than [11C]PBR28 ones, consistent with the higher amount of specific
binding of the former tracer.
Conclusions: SA-IRF can be used for voxel-wise quantification of TSPO PET data because it
generates high-quality parametric maps, it is sensitive to TSPO availability and genotype, and it
accounts for the complexity of TSPO tracer kinetics with no additional assumptions.

Key words: TSPO, PET, Spectral analysis, Parametric mapping

Abbreviations: 2TCM, two-tissue compartment model; 2TCM-1K, two-tissue compartment
model with vascular TSPO compartment; SA, spectral analysis; IRF, impulse response function;
PET, positron emission tomography; CT, computed tomography; ROI, region of interest; SUV,
standardised uptake value; VT, total distribution volume; TSPO, 18kDa translocator protein

Introduction
For more than 30 years, the 18-kDa translocator protein
(TSPO) has been the preferred target for neuroinflammation
imaging with PET [1, 2]. TSPO is a five-transmembrane
domain protein localised on the outer mitochondrial mem-
brane in different cell types including microglia, astrocytes,
endothelial cells, and, in small density, even in neurons [3].
TSPO is implicated in a wide array of vital cellular
functions, including steroidogenesis, mitochondrial respira-
tion, and cellular proliferation [4, 5]. The expression of
TSPO is upregulated in activated microglia and reactive
astrocytes as part of the brain immune response, and, for this
property, TSPO is considered a marker of glia activation [6,
7]. Despite many limitations of TSPO, including its
heterogenous distribution across cells type and its complex
modulation in inflammatory and non-inflammatory condi-
tions [8], TSPO radioligands are commonly used for
inflammation imaging [9].

Quantification of TSPO with PET is challenging regard-
less of the probe used [10]. First-generation [11C]PK11195
suffers by low sensitivity and a poor signal-to-noise ratio
[11], while the use of second-generation TSPO tracers (e.g.
[11C]PBR28, [18F]DPA74, [11C]ER176) is limited by a
single nucleotide polymorphism (rs6971) in the TSPO gene,
which affects their binding affinity [12]. All TSPO radio-
tracers can bind plasma proteins, platelets, and monocytes to
various extents, and this binding can be altered in patholog-
ical conditions affecting the peripheral immune system [13,
14]. In addition, TSPO tracers bind disproportionately to the
endothelium, where the TSPO protein is expressed to a high
level [15]. To overcome this challenge, an alternative 2-
tissue compartmental model that includes an extra compart-
ment for endothelial binding has been validated [15] and
applied to TSPO data of different psychiatric and neurolog-
ical conditions [16–19]. Compartmental models are limited
by the need of arterial blood input function acquired in
parallel of the PET imaging. Non-invasive blood-free
modelling approaches have also been tested. These methods
include the application of pseudo reference anatomical

regions [20, 21], supervised clustering methods using the
grey matter signal of healthy controls as normative regions
[22–24], and simultaneous estimation [25]. However, the
uneven distribution of TSPO in the normal brain and its
changes that occur in pathological states represent another
challenge for the quantification of binding and affect the use
of normative region approaches [26].

Quantification of TSPO PET becomes even more
challenging when it is performed at voxel level. In
addition to the complexities of TSPO tracer kinetics
described above, PET parametric mapping is hugely
penalised by high measurement noise typical of voxel
time-activity curves. Regularisation techniques have been
discussed in the context of different radioligands [27–29]
but never systematically applied and validated for TSPO
PET imaging studies. TSPO parametric mapping with
standardised uptake value (SUV) and the Logan graph-
ical method are commonly applied to describe the
radioactive uptake and estimate the distribution volume
(VT), respectively. However both methods are not able to
account for the complexity of TSPO radiotracer tissue
kinetics, and cannot isolate the specific binding of the
radioligands from their non-displaceable/non-specific sig-
nal [26, 30]. Recently, spectral analysis (SA), a data-
driven basis function quantification method [31], has
been successfully applied for parametric mapping of
[11]PBR28 PET [32]. The method provides a statistical
description of tracer tissue exchanges, accounting for its
kinetic heterogeneity, without any priori assumption on
the type and number of compartments necessary to
describe the data [33]. SA proved to be able to quantify
high-quality TSPO parametric maps using impulsive
response function (IRF) at individual level [32]. How-
ever, up to date, a proper quantitative validation for the
use of SA for TSPO PET parametric mapping is still
missing.

For this reason, we tested the SA-IRF in 3 independent
PET imaging datasets, reusing existing data. Study 1 applied
SA-IRF in a group of healthy controls with the purpose to
investigate the sensitivity of IRF to TSPO genetic
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polymorphism as well as to test its consistency with the
kinetic estimates provided by compartmental modelling. In
Study 2, we tested SA-IRF sensitivity to changes in TSPO
density in a group of subjects who underwent [11C]PBR28
PET before and after the administration of a pharmacolog-
ical dose of the TSPO agonist XBD173. Finally, in Study 3,
we applied SA-IRF to a head-to-head comparison of two
different TSPO PET radioligands ([11C]ER176 and
[11C]PBR28), to test the generalisation of the method to
radioligands with different TSPO affinities.

Materials and Methods

Theory: the Use of SA-IRF for PET Kinetic
Modelling and Parametric Imaging

In SA the tracer activity measured by the scanner in a given
volume of interest (CVOI(t)) at time t is described as the
convolution product between the arterial plasma tracer
radioactivity (indicated as Cp(t)) and the tissue impulse
response function (IRF).

CVOI tð Þ ¼ Cp tð Þ⊗IRF tð Þ ð1Þ

This description is consistent with the definition of a
linear time-invariant (LTI) system, a modelling approach
often used to describe biological systems in tracer kinetic
experiments [34, 35]. Dynamic PET imaging is not an
exception. In this formulation, Cp(t) represents the input of
the system and returns information on the tracer delivery to
the volume of observation [36]. The IRF(t) represents the
impulse response function of the system (i.e. the output of
the system in case of unitary impulse input) and returns
information about the tracer kinetic response in the tissues to
which the tracer is delivered. Different from compartmental
modelling, IRF(t) is not fixed but can be resolved as the
analytical sum of M + 1 distinct decreasing exponential
terms as:

IRF tð Þ ¼ ∑
M

j¼0
α j � e−β jt with β j≥0 ð2Þ

where βj (β0 = 0, β1 G β2 G… G βM, unit 1/min) are the
spectral components and αj (unit, ml/cm3/min) the corre-
spondent amplitudes. M + 1 represents the maximum number
of terms to be included in the model, and this is, in general,
arranged in a large set (generally between 100 and 1000).
The values of βj are predetermined and fixed in order to
cover an appropriate spectral range from the slowest possible
event of the tracer in the tissue up to a value appropriate to
transient phenomena (e.g. the passage of activity through the
tissue vasculature) [37]. The values of αj are estimated from
the blood and tissue time-activity curves by a non-negative

least squares (NNLS) procedure. In practice, only a few
components with αj 9 0 are detected, originating what is
called the kinetic spectrum of the tracer in the tissues
(Fig. 1).

When a particular system meets the conditions to be
modelled with SA [38], the unique identifiability of some
macro-parameters of interest is guaranteed, and numerical
estimates can be derived directly from the kinetic spectrum
[33]. These parameters include the influx rate constant

(K1 ¼ ∑
M

j¼1
α j , unit ml/cm3/min), the net uptake of the tracer

in the tissues (Ki = α0 , unit ml/cm3/min), and the volume of

distribution (VT ¼ ∑
M

j¼1
α j=β j with βj ≠ 0, unit ml/cm3). The

latter is the main parameter of interest used in TSPO PET
studies as indirect proxy of TSPO availability and ultimately
of glia activation and neuroinflammation. Alternatively, SA
IRF(t) can be used directly as a statistical proxy of tracer
binding [39]. In fact, by calculating IRF at a time t∗

approaching the end of the study, the relative contribution
of the fast frequency components would be negligible over
the slow frequency ones. Under the assumptions that high
frequency components are associated to measurement noise
and fast tracer kinetics (i.e. blood to tissue transport), and
slow frequency components to specific binding, this would
correspond to a low-pass filter removing noise and isolating
the informative signal. As a consequence, IRF(t∗) is able to
provide excellent parametric maps [32], preserving a model-
free data-driven approach (Fig. 1b).

Implementation of SA-IRF

In this study we used SA-IRF TSPO PET parametric
mapping. SA-IRF estimates were derived from Eq. (2 and
calculated at t∗=90 min. This time corresponds to a typical
length of C-11 labelled dynamic PET imaging experiments
and represents the latest available measure. The SA model
was implemented using a grid of 100 components, ranging
from 0.005 min1 to 5 min−1 and distributed logarithmically,
consistently with other studies [40–42]. The measurement
equation also included the blood volume fraction (Vb,
unitless) as:

Cmeasured tð Þ ¼ 1−V bð Þ � CVOI tð Þ þ V b � Cb tð Þ ð3Þ

where Cmeasured(t) represents the total activity measured by
the scanner within a specified volume of observation,
CVOI(t) represents the tissue kinetic activity at either region
or voxel level, and Cb(t) the whole blood tracer activity. The
spectrum was estimated using lsqnonneg command as
implemented in MATLAB 2015b (MathWorks), with the
data weighted by inverse of noise standard deviation of the
PET measurement error. This was assumed to be additive,
uncorrelated, having a Gaussian distribution with zero mean

562



Veronese M. et al.: Statistical Parametric Mapping for TSPO PET

and variance equal to the decay-corrected activity divided by
the length of the relative scan interval, multiplied for a scale
factor γ. The proportionality constant γ was estimated a
posteriori as described by Bertoldo et al. [43]. The method
was implemented using SAKE software [44].

Study 1: SA-IRF and TSPO Genotype

Study 1 aimed to investigate the sensitivity of SA-IRF to
TSPO genotype. The new generation TSPO tracers are
affected by genetic variability of TSPO binding site induced
by the rs6971 single-nucleotide polymorphism [12], and
recent studies have demonstrated that tracer signal in the
high-affinity binders (HAB) is 25–35 % higher compared
with the mixed affinity binders (MAB) [32]. We

hypothesised that SA-IRF estimates would have been
significantly higher in HAB participants as compared than
MAB participants irrespective of the area of the brain under
investigation.

For this purpose, we considered a dataset of twenty-one
healthy controls (gender: 16 males/5 females, age: 38 ±
16 years, HABs/MABs: 17/4) from a previously published
study [45]. Briefly, dynamic brain PET scans were acquired
over 90 min, after bolus injection of 329 ± 24 MBq of
[11C]PBR28. Data were acquired with Siemens Biograph™
True Point™ PET/CT scanner (Siemens Medical Systems,
Germany) and reconstructed using discrete inverse Fourier
transform (DIFT [46]) in 26 frames (durations: 8 × 15 s,
3 × 1 min, 5 × 2 min, 5 × 5 min, 5 × 10 min) and the
inclusion of 5-mm isotropic Gaussian smoothing. Attenua-
tion correction was CT based. Arterial blood sampling was

Fig. 1. SA kinetic spectrum and impulsive response function. a Representative kinetic spectrum for a healthy subject, which
revealed 4 different components: a trapping for β = 0 (blue), a slow component for β = 0.053 min−1(green), a fast component for
β = 0.300 min−1 (red), and high frequency component for β = 5 min−1(cyan) likely to be associated to fractional blood volume. b
Associated impulse response function (IRF) for tracer activity (black line) which was measured by the sum of three individual
tissue components of the spectrum (blue, green, and red curves, respectively).
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also acquired with a combination of automatic (first 15 min)
and 12 manual samples (collected at 5, 10, 15, 20, 25, 30,
40, 50, 60, 70, 80, 90 min) to generate a time-continuous
metabolite-free plasma input function. Full details on
experimental protocol, tracer radiosynthesis, image acquisi-
tion, blood data analysis, and image processing are reported
in the original reference [45].

SA-IRF was applied at both regional and voxel level. At
regional level, SA-IRF estimates were compared with VT

estimates obtained by SA [33] and with kinetic modelling.
Both standard 2-tissue compartmental model (2TCM) and
2TCM with endothelial binding (2TCM-1K) [15] were
included in the analysis. For both compartmental models,
the kinetic parameters were quantified with non-linear least
square method using the same weights used for the SA. We
expected SA-IRF estimates to be correlated with VT

estimates, with the magnitude of the correlation be depen-
dent on the consistency between the SA kinetic spectrum
and the compartmental models.

At voxel level, the quality of SA-IRF maps were
qualitatively investigated, while the consistency between
voxel and region SA-IRF and VT estimates was determined
with Pearson’s correlation coefficient.

Study 2: SA-IRF Sensitivity to TSPO Availability

The aim of Study 2 was to investigate the SA-IRF sensitivity
to TSPO availability, modulated by competitive blocking.
We considered an existing dataset composed of 7 patients
with psychosis (gender: all males, age: 46 ± 10 years,
genotype: all HABs) who underwent two [11C]PBR28
PET scans before and after the administration of XBD173,
a selective TSPO agonist [47]. Experimental design and
imaging methods were consistent with Study 1 and fully
described in the original references [48, 49]. All subjects
received an oral dose of 90 mg dose of XBD173, aimed to
reach ~ 70 % of TSPO brain occupancy [49]. Therefore, we
expected SA-IRF estimates to decrease significantly follow-
ing XBD173 administration. Voxel-wise SA-IRF differences
between baseline and blocking estimates were statistically
analysed with SPM12 (Wellcome Center, London, UK). The
blocking dose of XBD173 reduces the amount of specific
binding, while preserving the tracer kinetic components and
thus the number of compartments/components necessary to
describe the data. In addition, the parametric maps for blood
volume fraction (Vb) and the number of kinetic components
were also considered as negative control, because no change
should occur in these parameters after blocking.

Study 3: SA-IRF Sensitivity to TSPO Tracer
Affinity

The aim of Study 3 was to investigate SA-IRF sensitivity to
TSPO tracer affinity, by doing head-to-head comparison
between [11C]ER176 and [11C]PBR28 brain PET scans.

Both tracers are characterised by significant TSPO-specific
binding, with [11C]ER176 having higher affinity and
specific binding than [11C]PBR28 [50, 51]. According to
these characteristics, we hypothesised [11C]ER176 SA-IRF
estimates to be higher than [11C]PBR28 ones across the
brain [52]. For this purpose, we re-analysed a dataset of 7
healthy volunteers (gender: 2 males/5 females, age: 68 ±
5 years, HABs/MABs: 3/4) [53]. The participants had two
90-min PET scan and metabolite-corrected arterial input
function in the same day: a first one with [11C]PBR28 in the
morning and a second with [11C]ER176 in the afternoon (~
3-h difference). Injections were done over 1 min with an
automated pump (743 ± 56 MBq of [11C]PBR28 and 723 ±
85 MBq of [11C]ER176), and acquisitions were performed
with a Philips Gemini TF 64 PET/CT scanner. Full
experimental details are reported in original reference [53].

SA was used to generate IRF parametric maps at 90 min,
which were then compared with a voxel-by-voxel paired t
test using SPM12 (Wellcome Center, London, UK).

Results

Study 1: SA-IRF and TSPO Genotype

As hypothesised, SA-IRF ROI estimates were sensitive to
TSPO polymorphism. Across all regions, MABs SA-IRF
estimates were 36 % ± 4 % smaller than the corresponding
HABs ones. The largest difference was found for cingulate
cortex (41 %), while whole brain had the smallest (27 %). A
summary of these estimate results is reported in Table 1.

SA-IRF ROI estimates were positively correlated with
SA-VT (r = 0.85 ± 0.07), 2TCM1K-VT (r = 0.91 ± 0.02), and
2TCM-VT (r = 0.91 ± 0.04) when compared across the full
dataset (Supplementary Fig. 1). The weakest correlations
were found for the hippocampus (r = 0.85 ± 0.14), but the
region was also characterised by the largest number of
outliers (CV VT 9 10 % or VT 9 50 ml/cm3) and poorer VT

estimate precision as compared to other regions. Notably,
the strength of the association between SA-IRF and VT

estimates depended on TSPO genotype for 2TCM-1K
(HABs r = 0.86, MABs r = 0.73, p = 0.03 | z = 2.11) but
not for SA (HABs r = 0.77, MABs r = 0.75, p = 0.79 |z =
0.27). SA-IRF estimates were significantly correlated with
2TCM-VT only in HABs (r = 0.85, p value G 0.01) but not in
MABs (r = 0.16, p value = 0.78). This might be a conse-
quence of the number of components returned by SA
(Supplementary Fig. 2): in 89 % of the regions, the kinetic
spectrum was consistent with the 2TCM-1K model (i.e. 1
trapping component and 2 reversible components), but in no
region, it was consistent with the standard 2TCM (i.e. no
trapping and 2 reversible components). In the remaining
11 % of ROIs, the estimated spectra were inconsistent with
either model, returning a higher number of components. The
number of spectral components across different regions and
subjects was 3.7 ± 0.5 (mean ± sd).
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Qualitatively, SA-IRF parametric maps were spatially
smooth, with regular voxel intensity within tissues of the
same types (e.g. cortical regions) and grey/white matter
contrast, with little noise and no outliers (i.e. negative or
non-physiological estimates) (Fig. 2a, b). On the contrary,
SA-VT parametric maps were noisy and contained a
significant fraction of outliers (9 20 % of the total voxels)
(Fig. 2c, d). In those voxels in which SA provided reliable
estimates, the kinetic spectra were consistent with the ROI
analysis: 80 % of voxels matched 2TCM-1K modelling,
while the remaining percentage matched the 2TCM (Fig. 2
g/h). The number of spectral components on average was
3.1 ± 0.8, irrespective of the TSPO polymorphisms.

Similar to ROI analysis, SA-IRF estimates at the voxel
level were sensitive to TSPO polymorphism, with a 39 ± 2 %

(mean ± SD) percentage reduction between HABs and
MABs across brain regions. The largest difference was in the
cerebellum and the thalamus (43 %) and the smallest in the
parietal and frontal lobes (36 %). Regional averages of SA-
IRF obtained from voxel estimates correlated positively
(Table 2) with ROI VT estimates, including SA-VT (r = 0.86
± 0.07), 2TCM-VT (r = 0.81 ± 0.09), and 2TCM1K-VT (r =
0.87 ± 0.04). In line with ROI analysis results, the correla-
tion between SA-IRF voxel-wise regional averages and VT
ROI estimates was influenced by TSPO genotype for 2TCM,
and it was positively correlated in HABs (r = 0.73, p value G
0.01) but not in MABs (r = − 0.12, p value = 0.22). The
correlation between the parameters was not affected by
genotype for SA (HABs r = 0.77, MABs r = 0.74, p = 0.69

Table 1. [11C]PBR28 SA-IRF ROI estimates and comparison with compartmental modelling and spectral analysis VT estimates

ROI IRF estimates (min−1) Correlation with VT estimates (Pearson’s r)

HABs
(Mean ± SD)

MABs
(Mean ± SD)

HABs-MABs
Rel Diff
(Mean ± SD)

SA 2TCM1K 2TCM

Whole brain 0.144±0.030 0.106±0.011 37 % ± 8 % 0.91 0.92 0.93
Occipital lobe 0.156±0.035 0.116±0.009 34 % ± 8 % 0.86 0.91 0.92
Temporal lobe 0.141±0.029 0.103±0.009 37 % ± 8 % 0.90 0.93 0.92
Frontal lobe 0.150±0.031 0.108±0.013 38 % ± 9 % 0.89 0.89 0.91
Parietal lobe 0.151±0.033 0.110±0.011 37 % ± 9 % 0.89 0.90 0.93
Insular cortex 0.163±0.034 0.122±0.015 34 % ± 8 % 0.76 0.87 0.83
Cingulate cortex 0.158±0.030 0.112±0.011 41 % ± 9 % 0.88 0.89 0.92
Thalamus 0.154±0.030 0.110±0.014 39 % ± 9 % 0.81 0.89 0.92
Hippocampus 0.142±0.030 0.104±0.008 37 % ± 8 % 0.68* 0.92 0.93
Striatum 0.154±0.031 0.116±0.015 34 % ± 8 % 0.92 0.95 0.81
Cerebellum 0.169±0.037 0.123±0.016 37 % ± 9 % 0.89 0.92 0.95

*Not statistically significant
HABS high-affinity binders, MABS medium-affinity binders

Fig. 2. SA-IRF parametric mapping and TSPO genetic polymorphism. a, b SA-IRF (1/min). c, d SA VT (ml/cm3). e, f SA blood
volume fraction (unitless). g, h Number of components. The images show a representative HAB (top row) and MAB (bottom
row) subject from a [11C]PBR28 PET imaging study. No visualisation filter is applied.
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|z = 0.40) and 2TCM-1K (HABs r = 0.81, MABs r = 0.76,
p = 0.44 |z = 0.76).

Study 2: SA-IRF Sensitivity to TSPO Availability

Figure 3 shows the group average reduction of SA-IRF
computed at 90 min before and after blocking with
XBD173. The effect of blocking was statistically significant
(p value G 0.001, no multiple comparison correction) for all
the regions of interest with an average reduction of 39 ± 2 %
(Table 3). The maximum displacement was in the insular
cortex (ΔIRF: 41 %), and the minimum was in the thalamus
(ΔIRF: 34 %). This significant displacement was confirmed
by the statistical parametric analysis across all brain voxels
(Supplementary Fig. 3).

As hypothesised, the blocking did not alter the blood
volume estimates (Vb-SA: baseline 0.03 ± 0.04, blocking
0.02 ± 0.04, p 9 0.05) or the number of components
(baseline 3.0 ± 0.76, blocking 3.0 ± 0.75, p 9 0.05). This
confirms the insensitivity of these two parameters to the
TSPO availability (Fig. 3 and Supplementary Fig. 4, 5).

Study 3: SA-IRF Sensitivity to TSPO Tracer
Affinity

SA-IRF generated images of excellent quality for both
TSPO PET tracers (Fig. 4). Consistently with the higher
affinity and specific binding of [11C]ER176 to TSPO, IRF
at 90 min was significantly higher with [11C]ER176 than
with [11C]PRB28 across the whole brain (22 % ± 10 %).

Table 2. [11C]PBR28 SA-IRF voxel-wise estimates and comparison with compartmental modelling and spectral analysis VT estimates

ROI IRF estimates# (min−1) Correlation with VT estimates

HABS (Mean ± SD) MABS (Mean ± SD) HABs-MABs
Rel Diff
(Mean ± SD)

SA 2TCM-1K 2TCM

Whole brain 0.144±0.030 0.104±0.017 38 % ± 10 % 0.92 0.92 0.86
Occipital lobe 0.156±0.037 0.111±0.021 40 % ± 12 % 0.88 0.82 0.70
Temporal lobe 0.139±0.030 0.100±0.016 39 % ± 11 % 0.90 0.88 0.70
Frontal lobe 0.146±0.031 0.107±0.019 36 % ± 10 % 0.91 0.82 0.68
Parietal lobe 0.150±0.034 0.110±0.013 36 % ± 9 % 0.90 0.86 0.86
Insular cortex 0.166±0.034 0.121±0.017 37 % ± 9 % 0.74 0.83 0.84
Cingulate cortex 0.158±0.030 0.112±0.016 41 % ± 10 % 0.89 0.90 0.85
Thalamus 0.160±0.029 0.112±0.012 43 % ± 9 % 0.76 0.87 0.91
Hippocampus 0.144±0.030 0.104±0.012 38 % ± 9 % 0.77 0.96 0.92
Striatum 0.158±0.032 0.115±0.019 38 % ± 10 % 0.89 0.84 0.78
Cerebellum 0.172±0.035 0.120±0.028 43 % ± 13 % 0.92 0.91 0.87

#SA-IRF voxel-wise estimates are defined as the average of all the SA-IRF voxel estimates within each region
HABS high-affinity binders, MABS medium-affinity binders

Fig. 3. SA-IRF parametric mapping and TSPO blocking. a, b SA-IRF (1/min). c, d SA blood volume fraction (unitless). e, f
Number of components. The images show a representative subject from a [11C]PBR28 PET imaging study before (top row) and
after (bottom row) XBD173 blocking. No visualisation filter is applied.
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Table 3. [11C]PBR28 SA-IRF voxel-wise estimates at baseline and after administration of blocking drug

ROI IRF estimates (min−1)

Baseline (Mean ± SD) Blocking (Mean ± SD) Mean Rel Diff

Whole brain 0.106±0.025 0.065±0.011 39 %
Occipital lobe 0.096±0.015 0.057±0.009 40 %
Temporal lobe 0.090±0.025 0.056±0.009 38 %
Frontal lobe 0.120±0.036 0.074±0.013 38 %
Parietal lobe 0.101±0.024 0.060±0.011 40 %
Insular cortex 0.124±0.036 0.072±0.015 42 %
Cingulate cortex 0.129±0.035 0.078±0.011 39 %
Thalamus 0.121±0.029 0.080±0.014 34 %
Hippocampus 0.105±0.024 0.064±0.008 39 %
Striatum 0.117±0.032 0.069±0.015 41 %
Cerebellum 0.118±0.028 0.071±0.016 40 %

The statistical difference between the two conditions was tested and found statistically significant for each ROI (p G 0.05)

Fig. 4 SA-IRF parametric mapping and TSPO tracer affinity. Head-to-head comparison of a [11C]PBR28 PET scan (a) and
[11C]ER176 PET scan (b) for a representative healthy subject. No visualisation filter is applied. c Distribution of spectral
components across the brain for the two radiotracers.
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Interestingly, the distribution of spectral components did not
change between the two radiotracers (Fig. 4c), indicating a
similar tracer kinetics across the brain. This corroborates our
previous results with Krzanowski’s tests, which showed that
the covariance of the tracer distribution was the same
between the two tracers [53].

Discussion
In this work, we validated the use of SA-IRF for parametric
mapping of TSPO PET imaging and demonstrated that SA-
IRF (1) has the ability to differentiate between binding
affinity groups due to TSPO polymorphism, (2) is sensitive
to variations of TSPO concentrations, as demonstrated in
baseline and blocked scans, and (3) is sensitive to the
amount of specific binding, as shown by the higher values
for [11C]ER176 compared to [11C]PBR28. The latter is
particularly important, because it proves that SA-IRF can be
extended to other TSPO PET tracers.

The use of SA-IRF as an outcome parameter has been
proposed in the 90s [54] but failed to be widely adopted for
PET quantification, partly because the numerical values
obtained by SA-IRF are not intuitively related to the
biodistribution of the radioligand. However, SA-IRF has
been successfully used in several studies to quantify PET
images. For instance, Hammers et al. [39] showed that the
use of the IRF computed at 60 min as parameter of interest
allowed the use of a wider range of bases to obtain good
test–retest and reliabilities results from a database of
[11C]diprenorphine studies.

Indeed, SA-IRF has several advantages. It is fast and easy
to compute, and does not require any modelling assumption,
since it is completely data driven. This is relevant for those
tracers like TSPO that are characterised by a complex tracer
kinetics in the tissues. Despite needing only few assump-
tions, SA-IRF is well-suited for TSPO PET imaging studies:
it displays good sensitivity to genotype and to TSPO
density. On the other hand, SA-IRF has some limitations.
Because it is based on a statistical representation of the data,
the outcome parameters are sensitive to the implementation
(e.g. distribution and number of components, data binning,
and time of extraction), virtually precluding the retrospective
pooling of data among institutions using different experi-
mental design protocols. On the contrary, the parameters of
kinetic modelling are associated to specific biological
functions and therefore remain consistent across different
methodologies (e.g. a VT estimated with 2TCM should be
equal to the VT estimated with bolus + constant infusion). As
a consequence, SA-IRF is difficult to compare across
different TSPO imaging studies, in absence of standardised
acquisition and analysis protocol. In this respect, SA-IRF
should be complementary to kinetic modelling, and not used
as the only quantification approach. For the reasons
described above, our database of direct head-to-head
comparison between [11C]PBR28 and [11C]ER176 is
particularly useful for validating SA-IRF across these two

ligands. Moreover, while SA-IRF shows potential for TSPO
PET imaging, studies in cross-sectional patients-vs-controls
are needed to test the applicability of SA-IRF methodology
as well its reproducibility, sensitivity, and statistical power
in comparison with standard modelling approaches including
Logan [55], MA1 [56], or compartmental methods solved
with basis functions [57] or other regularisation strategies
[27].

The presence of an additional irreversible component to
model the distribution of TSPO tracers has been first
postulated by Rizzo et al. [15]. Based on the histological
findings of an important TSPO staining in the endothelium
of arteries [23], the model hypothesises that part of the
tracer is trapped in the endothelium during the transfer
from the blood to the tissue. Compared with 2TCM, the
2TCM-1K model provided a more parsimonious descrip-
tion of the data and a better time stability correlated with
mRNA transcripts of the target protein [15]. Using a
database of 18F-DPA-714 scans, Wimberley et al. [58]
subsequently showed that accounting for endothelial TSPO
improved the fit of PET data and revealed a high
correlation between the rate constant into the endothelial
compartment and TSPO mRNA. The present study
corroborates these previous findings by showing that
spectral analysis of the [11C]PBR28 data, both at region
and voxel level, identified irreversible/slowly reversible
components in almost all the ROIs analysed. Although a
correlation existed also for the fully reversible 2TCM VT,
the level of correlation was affected by TSPO genotype,
and, for some ROIs of MAB subjects, the correlation was
not significant.

Finally, we validated the use of SA-IRF for the new
TSPO tracer [11C]ER176. This tracer has favourable
imaging characteristics compared to the existing ones:
although it is still sensitive to TSPO polymorphism [51],
its specific binding is so high that it allows imaging low-
affinity binders as well [51]. A greater amount of specific
binding would allow detecting group differences with
increased statistical sensitivity. In addition, the logistics of
PET studies would be greatly simplified, as subjects would
not need to be genotyped individually before the scan. SA-
IRF can be a useful tool to quantify [11C]ER176, as it
correctly identified its higher signal compared to that of
[11C]PBR28, which is likely due to a larger specific
component [53].

Conclusion
In summary, by using three different databases of TSPO
scans, we showed that SA-IRF is well-suited for voxel-
wise quantification of TSPO PET data. SA-IRF generates
high-quality parametric maps, is sensitive to TSPO
availability and individual TSPO genotype, and reveals
information of tissue tracer kinetics comparable to
compartmental modelling analysis.
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