Skip to main content
Log in

Nonconvex Laplacian Manifold Joint Method for Morphological Reconstruction of Fluorescence Molecular Tomography

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Fluorescence molecular tomography (FMT) is a promising technique for three-dimensional (3D) visualization of biomarkers in small animals. Morphological reconstruction is valuable and necessary for further applications of FMT owing to its innate requirement for knowledge of the molecular probe distributions.

Procedures

In this study, a Laplacian manifold regularization joint 1/2-norm model is proposed for morphological reconstruction and solved by a nonconvex algorithm commonly referred to as the half-threshold algorithm. The model is combined with the structural and sparsity priors to achieve the location and structure of the target. In addition, two improvement forms (truncated and hybrid truncated forms) are proposed for better morphological reconstruction. The truncated form is proposed for balancing the sharpness and smoothness of the boundary of reconstruction. A hybrid truncated form is proposed for more structural priors. To evaluate the proposed methods, three simulation studies (morphological, robust, and double target analyses) and an in vivo experiment were performed.

Results

The proposed methods demonstrated morphological accuracy, location accuracy, and reconstruction robustness in glioma simulation studies. An in vivo experiment with an orthotopic glioma mouse model confirmed the advantages of the proposed methods. The proposed methods always yielded the best intersection of union (IoU) in simulations and in vivo experiments (mean of 0.80 IoU).

Conclusions

Simulation studies and in vivo experiments demonstrate that the proposed half-threshold hybrid truncated Laplacian algorithm had an improved performance compared with the comparative algorithm in terms of morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6

Similar content being viewed by others

References

  1. Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377. https://doi.org/10.1038/nbt899

    Article  CAS  PubMed  Google Scholar 

  2. Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86. https://doi.org/10.1126/science.1082160

    Article  CAS  PubMed  Google Scholar 

  3. Weissleder R, Pittet MJ (2008) Imaging in the era of molecular oncology. Nature 452:580–589. https://doi.org/10.1038/nature06917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ntziachristos V (2010) Going deeper than microscopy: the optical imaging frontier in biology. Nat Methods 7:603–614. https://doi.org/10.1038/nmeth.1483

    Article  CAS  PubMed  Google Scholar 

  5. Van Dam GM, Themelis G, Crane LM, Harlaar NJ, Pleijhuis RG, Kelder W, Sarantopoulos A, De Jong JS, Arts HJ, Van Der Zee AG et al (2011) Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat Med 17:1315

    Article  PubMed  Google Scholar 

  6. Doleschel D, Mundigl O, Wessner A, Gremse F, Bachmann J, Rodriguez A, Klingmüller U, Jarsch M, Kiessling F, Lederle W (2012) Targeted near-infrared imaging of the erythropoietin receptor in human lung cancer xenografts. J Nucl Med 53:304–311

    Article  CAS  PubMed  Google Scholar 

  7. Willmann JK, Van Bruggen N, Dinkelborg LM, Gambhir SS (2008) Molecular imaging in drug development. Nat Rev Drug Discov 7:591–607

    Article  CAS  PubMed  Google Scholar 

  8. Zhang X, Badea CT, Johnson GA (2009) Three-dimensional reconstruction in free-space whole-body fluorescence tomography of mice using optically reconstructed surface and atlas anatomy. J Biomed Opt 14:064010

    Article  PubMed  PubMed Central  Google Scholar 

  9. Tarvainen T, Vauhkonen M, Arridge S (2008) Gauss–newton reconstruction method for optical tomography using the finite element solution of the radiative transfer equation. J Quant Spectrosc Radiat Transf 109:2767–2778

    Article  CAS  Google Scholar 

  10. Cao N, Nehorai A, Jacob M (2007) Image reconstruction for diffuse optical tomography using sparsity regularization and expectation-maximization algorithm. Opt Express 15:13695–13708

    Article  PubMed  Google Scholar 

  11. Donoho DL, Tsaig Y, Drori I, Starck J-L (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58:1094–1121

    Article  Google Scholar 

  12. Ye J, Chi C, Xue Z, Wu P, An Y, Xu H, Zhang S, Tian J (2014) Fast and robust reconstruction for fluorescence molecular tomography via a sparsity adaptive subspace pursuit method. Biomed optics express 5:387–406

    Article  Google Scholar 

  13. Yi H, Chen D, Li W, Zhu S, Wang X, Liang J, Tian J (2013) Reconstruction algorithms based on l1-norm and l2-norm for two imaging models of fluorescence molecular tomography: a comparative study. J Biomed Opt 18:056013

    Article  Google Scholar 

  14. Shi J, Liu F, Zhang G, Luo J, Bai J (2014) Enhanced spatial resolution in fluorescence molecular tomography using restarted l1-regularized nonlinear conjugate gradient algorithm. J Biomed Opt 19:046018

    Article  PubMed  Google Scholar 

  15. Ye J, Du Y, An Y, Mao Y, Jiang S, Shang W, He K, Yang X, Wang K, Chi C et al (2018) Sparse reconstruction of fluorescence molecular tomography using variable splitting and alternating direction scheme. Mol Imaging Biol 20:37–46

    Article  CAS  PubMed  Google Scholar 

  16. Okawa S, Hoshi Y, Yamada Y (2011) Improvement of image quality of time-domain diffuse optical tomography with lp sparsity regularization. Biomed optics express 2:3334–3348

    Article  Google Scholar 

  17. Chen X, Yang D, Zhang Q, Liang J (2014) L 1/2 regularization based numerical method for effective reconstruction of bioluminescence tomography. J Appl Phys 115:184702

    Article  Google Scholar 

  18. Zhao L, Yang H, Cong W, Wang G, Intes X (2014) L p regularization for early gate fluorescence molecular tomography. Opt Lett 39:4156–4159

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhu D, Zhao Y, Baikejiang R, Yuan Z, Li C (2014) Comparison of regularization methods in fluorescence molecular tomography. In: Photonics, vol 1. Multidisciplinary Digital Publishing Institute, Basel, pp 95–109

    Google Scholar 

  20. Guo H, Yu J, He X, Hou Y, Dong F, Zhang S (2015) Improved sparse reconstruction for fluorescence molecular tomography with l 1/2 regularization. Biomed optics express 6:1648–1664

    Article  Google Scholar 

  21. He X, Wang X, Yi H, Chen Y, Zhang X, Yu J, He X (2017) Laplacian manifold regularization method for fluorescence molecular tomography. J Biomed Opt 22:045009

    Article  Google Scholar 

  22. Liu X, Yan Z, Lu H (2015) Performance evaluation of a priori information on reconstruction of fluorescence molecular tomography. IEEE Access 3:64–72

    Article  Google Scholar 

  23. Mohajerani P, Ntziachristos V (2015) An inversion scheme for hybrid fluorescence molecular tomography using a fuzzy inference system. IEEE Trans Med Imaging 35:381–390

    Article  PubMed  Google Scholar 

  24. Behrooz A, Zhou H-M, Eftekhar AA, Adibi A (2012) Total variation regularization for 3d reconstruction in fluorescence tomography: experimental phantom studies. Appl Opt 51:8216–8227

    Article  PubMed  Google Scholar 

  25. Freiberger M, Clason C, Scharfetter H (2010) Total variation regularization for nonlinear fluorescence tomography with an augmented Lagrangian splitting approach. Appl Opt 49:3741–3747

    Article  PubMed  Google Scholar 

  26. He W, Pu H, Zhang G, Cao X, Zhang B, Liu F, Luo J, Bai J (2014) Subsurface fluorescence molecular tomography with prior information. Appl Opt 53:402–409

    Article  PubMed  Google Scholar 

  27. Jiang S, Liu J, An Y, Zhang G, Ye J, Mao Y, He K, Chi C, Tian J (2016) Novel l 2, 1-norm optimization method for fluorescence molecular tomography reconstruction. Biomed Optics Expr 7:2342–2359

    Article  CAS  Google Scholar 

  28. Liu Y, Liu J, An Y, Jiang S, Ye J, Mao Y, He K, Zhang G, Chi C, Tian J (2017) Novel trace norm regularization method for fluorescence molecular tomography reconstruction. In: Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVI, vol 10047. International Society for Optics and Photonics, Bellingham, p 100470

    Google Scholar 

  29. Liu Y, Liu J, An Y, Jiang S (2017) Novel regularized sparse model for fluorescence molecular tomography reconstruction. In: International Conference on Innovative Optical Health Science, vol 10245. International Society for Optics and Photonics, Bellingham, p 1024507

    Chapter  Google Scholar 

  30. Ale A, Schulz RB, Sarantopoulos A, Ntziachristos V (2010) Imaging performance of a hybrid x-ray computed tomography-fluorescence molecular tomography system using priors. Med Phys 37:1976–1986

    Article  PubMed  Google Scholar 

  31. Xu Z, Chang X, Xu F, Zhang H (2012) 1_{1/2} regularization: A thresholding representation theory and a fast solver. IEEE 23:1013–1027

    Google Scholar 

  32. Song X, Pogue BW, Jiang S, Doyley MM, Dehghani H, Tosteson TD, Paulsen KD (2004) Automated region detection based on the contrast-to-noise ratio in near-infrared tomography. Appl Opt 43:1053–1062

    Article  PubMed  Google Scholar 

  33. He X, Yu J, Wang X, Yi H, Chen Y, Song X, He X (2018) Half thresholding pursuit algorithm for fluorescence molecular tomography. IEEE Trans Biomed Eng 66:1468–1476

    Article  PubMed  Google Scholar 

  34. Wang K, Chi C, Hu Z, Liu M, Hui H, Shang W, Peng D, Zhang S, Ye J, Liu H, Tian J (2015) Optical molecular imaging frontiers in oncology: the pursuit of accuracy and sensitivity. Engineering 1:309–323

    Article  Google Scholar 

  35. Liu M, Guo H, Liu H, Zhang Z, Chi C, Hui H, Dong D, Hu Z, Tian J (2017) In vivo pentamodal tomographic imaging for small animals. Biomed Optics Expr 8:1356–1371

    Article  CAS  Google Scholar 

  36. Alexandrakis G, Rannou FR, Chatziioannou AF (2005) Tomographic bioluminescence imaging by use of a combined optical-pet (opet) system: a computer simulation feasibility study. Phys Med Biol 50:4225–4241

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jacques SL (2013) Optical properties of biological tissues: a review. Phys Med Biol 58(R37):R61

    Google Scholar 

  38. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imag 16:187–198

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded by the Ministry of Science and Technology of China (2017YFA0205200), National Natural Science Foundation of China (81227901, 81527805, 81930053, and 61671449), Chinese Academy of Sciences (KFJ-STS-ZDTP-059, YJKYYQ20180048, and QYZDJ-SSW-JSC005), and Innovative Talents Promotion Plan of Shananxi (2017SR5024).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Tian.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Meng, H., He, X. et al. Nonconvex Laplacian Manifold Joint Method for Morphological Reconstruction of Fluorescence Molecular Tomography. Mol Imaging Biol 23, 394–406 (2021). https://doi.org/10.1007/s11307-020-01568-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-020-01568-8

Key words

Navigation