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Abstract
Introduction The (un)targeted analysis of endogenous compounds has gained interest in the field of forensic postmortem 
investigations. The blood metabolome is influenced by many factors, and postmortem specimens are considered particularly 
challenging due to unpredictable decomposition processes.
Objectives This study aimed to systematically investigate the influence of the time since death on endogenous compounds 
and its relevance in designing postmortem metabolome studies.
Methods Femoral blood samples of 427 authentic postmortem cases, were collected at two time points after death (854 
samples in total; t1: admission to the institute, 1.3–290 h; t2: autopsy, 11–478 h; median ∆t = 71 h). All samples were ana-
lyzed using an untargeted metabolome approach, and peak areas were determined for 38 compounds (acylcarnitines, amino 
acids, phospholipids, and others). Differences between t2 and t1 were assessed by Wilcoxon signed-ranked test (p < 0.05). 
Moreover, all samples (n = 854) were binned into time groups (6 h, 12 h, or 24 h intervals) and compared by Kruskal–Wallis/
Dunn’s multiple comparison tests (p < 0.05 each) to investigate the effect of the estimated time since death.
Results Except for serine, threonine, and PC 34:1, all tested analytes revealed statistically significant changes between t1 
and t2 (highest median increase 166%). Unpaired analysis of all 854 blood samples in-between groups indicated similar 
results. Significant differences were typically observed between blood samples collected within the first and later than 48 h 
after death, respectively.
Conclusions To improve the consistency of comprehensive data evaluation in postmortem metabolome studies, it seems 
advisable to only include specimens collected within the first 2 days after death.
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1 Introduction

Metabolomics (metabolic profiling) aims to comprehen-
sively analyze endogenous low molecular weight com-
pounds within biological systems, (e.g., amino acids and 
lipids). It represents the downstream output of the -omics 
cascade (genomics, transcriptomics, proteomics/peptidom-
ics) and is also highly influenced by environmental factors, 
such as lifestyle habits, diseases, and drug intake. Over the 
years, a number of metabolomics techniques have been 
established in a variety of disciplines for biomarker search 
or for generating hypotheses, as different environmental 
stimuli may lead to particular changes within the metabo-
lome (Castillo-Peinado & Luque de Castro, 2016; Johnson 
et al., 2016; Patti et al., 2012; Steuer et al., 2019, 2021; 
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Wishart, 2016; Zeki et al., 2020). In this regard, untargeted 
metabolome acquisition approaches which theoretically 
measure all compounds simultaneously are used. Data acqui-
sition is followed by sophisticated data evaluation strategies 
and statistical methods to identify compounds of interest. 
Depending on the data set and underlying question, sim-
ple univariate statistics, i.e., (non)parametric significance 
testing in combination with fold-change analysis, as well 
as multivariate statistics for multifactorial phenomena, or 
holistic models applying machine learning algorithms can be 
applied (Anwardeen et al., 2023; Chen et al., 2023; Pomyen 
et al., 2020; Procopio et al., 2023). Recently, the (un)targeted 
analysis of endogenous compounds has also gained interest 
in the field of forensic postmortem investigations, e.g., for 
assessment of biomarkers of the postmortem interval (PMI) 
(Bonicelli et al., 2022; Chighine et al., 2023; Donaldson & 
Lamont, 2013, 2014; Locci et al., 2019, 2021; Mora-Ortiz 
et al., 2019; Pesko et al., 2020; Peyron et al., 2019), post-
mortem redistribution (PMR) (Brockbals et al., 2020, 2021), 
or the improved interpretation of the cause of death (COD) 
(Cao et al., 2023; Elmsjo et al., 2021, 2022; Nariai et al., 
2022; Ward et al., 2022).

However, the highly dynamic nature of the metabolome 
needs to be considered during the study design to allow 
observed effects to be attributable to the research question. 
Postmortem specimens are considered even more challeng-
ing as death is a dynamic process in itself, which introduces 
other, unpredictable variations. From numerous investiga-
tions and routine experience, the phenomenon of PMR is 
well recognized in forensic toxicology. PMR refers to all 
artificial changes in the postmortem concentrations of drugs 
after death (Pelissier-Alicot et al., 2003; Skopp, 2004, 2010). 
While certainly not fully understood, passive diffusion, deg-
radation, or drug neo-formation represent the most com-
mon underlying mechanisms, as do factors such as the drug 
properties (lipophilicity, protein binding affinity, volume of 
distribution, basicity). Both ante- and postmortem biochemi-
cal processes also play a role (Drummer & Gerostamoulos, 
2023; Peters & Steuer, 2018). Recent studies suggest the 
COD, manner of death (Elmsjo et al., 2021, 2022; Ward 
et al., 2022) and, the PMI between death and sample col-
lection (Bonicelli et al., 2022; Chighine et al., 2023; Don-
aldson & Lamont, 2013, 2014; Locci et al., 2019, 2021; 
Mora-Ortiz et al., 2019; Pesko et al., 2020; Peyron et al., 
2019) contribute to the postmortem metabolome composi-
tion. For instance, decreased levels of short-, medium- and 
long-chain acylcarnitines in human blood were observed to 
be related to oxycodone intoxication (Elmsjo et al., 2022). 
Elmsjo et al., reported higher concentrations of cortisol, phe-
nylacetylglutamine, valerylcarnitine, or phenylalanine, or 
decreased concentrations of palmitoylcarnitine and various 
lysophosphatidylcholines in blood samples were associated 
with deaths attributed to pneumonia relative to a control 

group (Elmsjo et al., 2021). Previous studies also investigate 
the potential of using PMI-dependent concentration changes 
of endogenous molecules for biochemical estimation of the 
time of death. A variety of endogenous compounds were 
shown to increase with time, including different amino 
acids (hydroxyproline, tyrosine, phenylalanine), creatinine, 
citrate cycle intermediates (α-ketoglutarate, succinate), lac-
tate, niacinamide, taurine, or uracil (Donaldson & Lamont, 
2014; Du et al., 2018; Mora-Ortiz et al., 2019; Pesko et al., 
2020). In contrast to human forensic investigations, where 
femoral blood or serum are the most commonly used matrix 
most studies on PMI estimation were performed in either 
animal models and/or specimens other than femoral blood 
(Chighine et al., 2023; Donaldson & Lamont, 2014; Du 
et al., 2018; Locci et al., 2019, 2021; Mora-Ortiz et al., 
2019; Pesko et al., 2020); that said, there is still a lack of 
comprehensive studies with sufficient case numbers (Zelent-
sova et al., 2020). According to a recent publication, PMI 
can be considered the main driving force of postmortem 
metabolome changes, highlighting the need for more data 
and standardization for postmortem metabolomics studies 
that aim to answer research questions other than assessing 
the PMI (Chighine et al., 2021).

Our current study aimed to comprehensively investigate 
the influence of the time since death on the endogenous 
compound composition of human femoral blood samples. 
To this end, we have compiled a unique, exceptionally exten-
sive postmortem data set consisting of 427 cases, each with 
paired blood samples (854 in total) collected at two differ-
ent time points after death. This dataset should allow the 
systematic investigation of blood collection time after death 
and its relevance in future postmortem metabolome study 
designs.

2  Experimental

2.1  Chemical and reagents

Acetylcarnitine (C2), adenine, adenosine, alanine, arginine, 
carnitine (C0), cholic acid, cortisol, cortisone, creatinine, 
decanoylcarnitine (C10), dodecanoylcarnitine (lauroyl-
carnitine, C12), glycocholic acid, hexadecanoylcarnitine 
(palmitoylcarnitine, C16), hippuric acid, histidine, ino-
sine, isoleucine, kynurenine, leucine, levothyroxine, lysine, 
methionine, octadecanoylcarnitine (stearoylcarnitine, C18), 
octanoylcarnitine (C8), ornithine, phenylalanine, proline, 
propionylcarnitine (C3), reserpine, riboflavin, serine, tau-
rine, taurocholic acid, tetradecanoylcarnitine (myristoylcar-
nitine, C14), threonine, tryptophane, tyrosine, uracil, uric 
acid, valine, and 5,10,15,20-tetrakis-(pentafluorphenyl)-
porphyrin were purchased from Sigma-Aldrich (Buchs, 
Switzerland). The lipids 1-palmiotyl-2-hydroxy-sn-glyc-
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ero-3-phosphocholine (lyso PC 16:0), 1-oleoyl-2-hydroxy-
sn-glycero-3-phosphocholine (lyso PC 18:1), 1-palmi-
toyl-2-oleoyl-sn-glycero-3-phosphocholine (PC 34:1), 
1-stearoyl-2-linoleoyl-sn-glycero-3-phosphocholine (PC 
36:2), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanol-
amine (PE 34:1) and 1-palmitoyl-2-arachidonoyl-sn-glyc-
ero-3-phosphoethanolamin (PE 36:4) were purchased from 
Avanti Polar Lipids and were delivered by LuBio Science 
(Zurich, Switzerland). Deuterated and heavy-labeled inter-
nal standards (IS), arginine 13C6, creatinine N-methyl-D3, 
and phenylalanine-D1 (purity > 98%) were purchased from 
Cambridge isotope laboratories, which were delivered by 
ReseaChem Life Science (Burgdorf, Switzerland) or Sigma-
Aldrich (Buchs, Switzerland). Water, acetonitrile (ACN) and 
methanol (MeOH) of HPLC grade were obtained from Fluka 
(Buchs, Switzerland). All other chemicals used were from 
Merck (Zug, Switzerland) and of the highest grade available.

2.2  Postmortem femoral blood samples

Femoral blood samples from authentic forensic cases were 
collected at two time points after death during the routine 
toxicological investigation at the Victorian Institute of 
Forensic Medicine (VIFM), Melbourne, Australia. Upon 
mortuary admission of a deceased, approximately 2 to 5 mL 
of postmortem femoral blood was collected by leg punc-
ture (blind stick) as soon as practicable, as per provisions 
of the Coroners Act 2008 (Victoria) (t1). A second femoral 
blood sample was collected during the medico-legal autopsy 
(t2) after preparation of the femoral vein. For cases where 
the time of death (ToD) could only be narrowed down to a 
specific day but no exact time (n = 163) and admission to 
the VIFM on a later day, ToD was defined as 12 pm of the 
estimated day of death. If admission to the VIFM was on the 
same day as the estimated day of death, ToD was specified to 
be between 12 am and mortuary admission of the body (t1). 
These timings were used to calculate the pre-admission and 
pre-autopsy intervals per case [defined as the time between 
death and sample collection at mortuary admission (t1) / 
autopsy (t2)]. All postmortem blood samples were preserved 
in 1% w/v sodium fluoride and potassium oxalate and stored 
at 4 °C until shipment. Samples were transported to the 
Zurich Institute of Forensic Medicine (ZIFM, Switzerland; 
exempt specimens, no import/export permission required) 
in a temperature-controlled environment at 4 °C and imme-
diately frozen at − 80 °C upon receipt until re-analysis for 
drug and metabolome changes. Anonymized information 
on the estimated ToD and sampling time points were pro-
vided for further data analysis. From an initial 477 cases 
(Brockbals et al., 2021), 427 were included in the current 
study. Case selection was based on the detectability of one 
or more drugs (of abuse) independent to the cause of death. 
Re-analysis of the samples in an anonymized format for the 

specific research project was approved by the Ethics Com-
mittee of the VIFM (EC 20-2019; EC 23-1275). The indi-
viduals cannot be identified from the information provided. 
Hence, no written informed consent from the individuals or 
their relatives was needed for this study. Additionally, the 
study was conducted in full conformance with the Swiss 
ethical laws, particularly those covering the use of human 
material in research.

2.3  Sample preparation

To 150 μL of postmortem blood, 15 μL IS solution 
(0.025 mM creatinine-d3, 0.03 mM L-arginine (13C6), and 
0.04 mM L-phenylalanine-D1) were added, followed by 
the addition of 450 μL of a MeOH/acetone mixture (90:10 
v/v) for protein precipitation. The samples were shaken 
and stored at − 20 °C overnight. Subsequently, the samples 
were resuspended, centrifuged at 14′000 rpm for 15 min, 
and one aliquot (50 μL) of the supernatant was transferred 
to an autosampler vial for analysis by reversed-phase chro-
matography (RP) as detailed below. A second aliquot (50 
μL) was stored at − 80 °C for analysis by hydrophilic inter-
action chromatography (HILIC) approximately 1 month 
later. Before analysis, all samples were centrifuged again 
(14′000 rpm for 15 min).

In addition, a femoral blood pool sample was prepared 
from 11 authentic postmortem blood samples collected 
at the ZIFM, stored in aliquots at − 80 °C, thawed, and 
extracted identically to the study samples each day for qual-
ity control purposes.

2.4  HR‑MS analysis

Analysis was performed on a Thermo Fisher Ultimate 3000 
UHPLC system (Thermo Fisher Scientific, San Jose, CA, 
USA) coupled with a high-resolution (HR) time of flight 
(TOF) instrument system (TripleTOF 6600 Sciex, Turbo V 
ion source, Concord, Ontario, Canada) as described in detail 
elsewhere (Boxler et al., 2019; Steuer et al., 2020).

Briefly, two chromatographic columns were applied, 
(a) a RP column (XSelect HSST RP-C18 column; 
150 mm × 2.1 mm i.d; 2.5 µm particle size; Waters, Baden, 
Daettwil, Switzerland) with 10 mM ammonium formate and 
0.1% (v/v) formic acid in water or 0.1% (v/v) formic acid in 
methanol as mobile phases A and B, respectively; gradient 
elution starting at 100% A with a flow rate of 0.5 mL/min, 
increase to 100% B between 1 and 15 min, held for 3 min 
and re-equilibrated for 2 min (0.7 mL/min flow rate after 
15 min); 20 min total run time; (b) a Merck SeQuant ZIC 
HILIC column (150 mm × 2.1 mm i.d; 3.5 µm particle size) 
with 25 mM ammonium acetate and 0.1% (v/v) acetic acid in 
water and 0.1% (v/v) acetic acid in ACN as mobile phases C 
and D, respectively; gradient elution at a flow rate of 0.5 mL/
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min over 15 min; starting conditions were 95% D, decreased 
to 40% D between 1 and 10 min, further decreased to 10% 
D until 12 min, hold for 1 min and re-equilibrated for 4 min.

HR-MS (resolving power (full width at half-maximum, 
FWHM at 400 m/z) of 30,000) and MS/MS (resolving power 
15,000 in  MS2) data were acquired by data-dependent acqui-
sition (DDA) after electrospray ionization (ESI) in positive 
mode for RP chromatography and negative mode for HILIC 
chromatography, respectively. The following settings were 
applied: full scan over a mass range from m/z 50 to m/z 
1000 (accumulation time 50 ms, CE 5 eV) and MS2 scan 
(accumulation time for each DDA experiment 100 ms, CE 
35 eV with a CE spread of 15 eV) after dynamic background 
subtraction on the five most intense ions with an intensity 
threshold above 100 cps and exclusion time of 5 s (half peak 
width) after two occurrences in high sensitivity mode. Data 
acquisition was controlled by Analyst TF software (version 
1.7, Sciex).

All sample extracts were divided into 17 batches, with 
samples t1 and t2 from one case assigned to the same batch. 
Per batch, samples were measured in randomized order 
(total time period 1 month per chromatographic method). 
A system suitability test (SST) containing arginine, corti-
sol, cortisone, creatinine, glycocholic acid, hippuric acid, 
leucine, raffinose, riboflavin, and tryptophan (concentra-
tion 10 μg/ml each) was measured at the beginning of each 
measurement batch to check the general instrument perfor-
mance via retention time and peak area comparison after 
peak integration in MultiQuant V 2.1 (Sciex). Automatic 
MS and MS/MS calibration was performed every 10 sample 
injections using a pooled blood sample (450 μL supernatant) 
fortified with 45 μL of a self-prepared calibration solution 
(creatinine, leucine, arginine, hippuric acid, tryptophane, 
inosine, cortisol, cortisone, riboflavin, glycocholic acid, tau-
rocholic acid, reserpine, levothyroxine and 5,10,15,20-tet-
rakis-(pentafluorphenyl)-porphyrin, 7.1 μg/ml per analyte). 
Additionally, a pooled blood sample was repeatedly injected 
following each calibration and evaluated for intra- and inter-
batch differences in retention time and peak area.

2.5  Data processing and data analysis

Data analysis was done in a targeted approach through peak 
integration of 38 analytes (given in Table 1) in MultiQuant 
V 2.1 (Sciex). After raw data export to Microsoft Excel, 
further data analysis was performed using Microsoft Excel, 
GraphPad Prism 10.0.2, and R (R_Core_Team, 2023) in R 
Studio (R Version 4.3.1. “Beagle Scouts”; RStudio version 
2023.03.0 + 386) with the following R packages: tidyverse 
(Wickham et al., 2019), gridExtra (Auguie, 2017), trellisco-
peis (Hafen & Schloerke, 2021), flextable (Gohel & Skint-
zos, 2023), ggforce (Pedersen, 2022), readxl (Wickham & 
Bryan, 2023), and lubridate (Grolemund & Wickham, 2011).

2.5.1  Quality control

ISs were monitored to identify outliers (Grubbs test (Graph-
Pad Prism 10.0.2) on batch-normalized IS peak areas, 
p < 0.05) and for quality control purposes, considering a 
variation (relative standard deviation, RSD) of < 30% as 
sufficiently robust among the authentic samples. The mean 
and range of retention times and peak areas of all 38 ana-
lytes were determined in the pool samples. Intra- and inter-
batch differences were calculated using Microsoft Excel. 
Deviations (standard deviation) of a maximum of 0.05 min 
or 0.2 min, and 20% or 30% in peak areas were considered 
acceptable within and between batches, respectively.

2.5.2  Evaluation of normalization procedures

To account for inter-batch differences originating from tech-
nical variation, all analyte peak areas were normalized to 
the mean (n = 5) of the batch’s pool-sample analyte peak 
area (batch correction). Two different sample normalization 
strategies were evaluated: normalization to heavy-labeled 
ISs (IS-normalization) and probabilistic quotient normaliza-
tion (PQN).IS-normalization was performed by dividing the 
analyte’s peak through the IS area. Metaboanalyst 6.0 (Pang 
et al., 2024) was used for PQN normalization of the whole 
data set (38 analytes, 854 samples).

2.5.3  Postmortem changes between two time points 
of the same case (paired)

Percent differences of raw peak areas between t2 and t1 were 
calculated for each case (n = 427) and analyte. Subgroups, 
in terms of increasing time intervals, were formed accord-
ing to the time difference (Δt) between t2 and t1 as fol-
lows: 0–12 h,12–24 h, 24–36 h, 36–48 h, 48–72 h, 72–96 h, 
96–120 h, 120–144 h, and > 144 h. A paired Wilcoxon 
signed ranked test (p < 0.05; ns > 0.05, * < 0.05, ** < 0.01, 
*** < 0.001; p-values adjusted for multiple testing according 
to “holm”) was applied between t2 and t1 peak areas for all 
cases and in Δt subgroups.

2.5.4  Postmortem changes over time (unpaired analysis)

Subgroups were formed according to the time difference 
of each individual blood sample (tx_ToD, n = 854) to 
the known or estimated ToD as follows: 0–6 h (group 1), 
6–12 h (group 2), 12–24 h (group 3), 24–36 h (group 4), 
36–48 h (group 5), 48–72 h (group 6), 72–96 h (group 7), 
96–120 h (group 8), 120–144 h (group 9), > 144 h (group 
10). Statistical differences between groups were assessed 
by application of a Kruskal Wallis test (p < 0.05; ns > 0.05, 
* < 0.05, ** < 0.01, *** < 0.001) followed by Dunn’s multi-
ple comparison test (p < 0.05; ns > 0.05, * < 0.05, ** < 0.01, 
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*** < 0.001) after false-discovery rate correction by the 
Holm method. Percent differences of the median normalized 
peak area of each group to group 1 (0–6 h) were calculated.

2.5.5  Correlations

The percent changes (paired and unpaired analysis) were 
correlated with the possible influencing factors logP (lipo-
philicity), molecular weight (MW), and retention time in 
two different chromatographic settings by Spearman corre-
lation analysis in GraphPad Prism 10.0.2. The correspond-
ing characteristics and references used for correlations are 
summarized in Table 1.

3  Results

3.1  Sample cohort and analysis

The sample cohort consisted of blood samples from 427 
authentic forensic cases with two collection time points 
after death (t1 and t2) per case (n = 854 blood samples). 
Median (and range) collection times after death were 8 h 
(1.3–290 h) for t1, and 88 h (11–478 h) for t2, respectively, 
resulting in a median Δt between t1 and t2 samples of 71 h 
(6.4–434 h). The different sampling procedures for t1 and 
t2 revealed no statistically significant differences for 24 ana-
lytes when exemplarily comparing t1 and t2 samples col-
lected between 24 and 36 h (best-balanced time-group with 
n = 33 t1 vs. n = 45 t2 samples, nonparametric Mann–Whit-
ney test, p < 0.05). The 12 analytes with significant findings, 
all pointed towards lower concentrations at t2 (median dif-
ference − 31%). Manner of death was natural in 195 cases, 
accidental in 69 cases, suicide in 57 cases, and remained 
unknown in 106 cases. The age of the deceased at the ToD 
ranged from 15 to 98 years (mean/median 59 years). No cor-
relation could be observed between age of the deceased and 
the time between death and t1 (Spearman rank correlation 
coefficient: 0.23, linear model  R2 = 0.04; data not shown). 
Additionally, no trend was found that would indicate longer/
shorter time intervals until first sample collection or Δt with 
different manner of deaths (data not shown in detail). All 
cases included in the current study tested positive for at least 
one drug or alcohol during a comprehensive routine drug 
screening (Di Rago et al., 2021); 210 for opioids, 216 for 
benzodiazepines, 216 for antidepressants, 97 for antipsy-
chotics, 43 for cannabis, and 36 for stimulants (ampheta-
mines, cocaine). Significant influences of storage and ship-
ping conditions were considered negligible, as shown in a 
preceding study (Brockbals et al., 2021). QTOF analysis 
allowed for sufficient targeted processing of 38 endogenous 
compounds following separation by standard RP chroma-
tography. For analytes with a low RP retention time, trends Ta
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in time-dependent changes were confirmed by HILIC chro-
matography mode before inclusion in the results (n = 18 
analytes as detailed in Table S2).

3.2  Quality control and evaluation of normalization 
strategies

IS were used for quality assessment throughout the analyti-
cal batch. A performed Grubbs test indicated three samples 
as potential outliers based on one out of the three IS, but no 
sample was classified as a potential outlier for all three IS. 
IS RSDs as well as RSDs of all analytes within the QC pools 
and the authentic samples are provided in the supplementary 
information (Table S1). The set criteria of ± 30% for pool 
samples and IS were fulfilled for all analytes in RP mode 
except for (lyso)phospholipids, serine, and threonine.

All samples were batch-corrected to account for instru-
ment variation over a 1-month measuring period. In addi-
tion, two common normalization strategies were evaluated. 
In targeted (semi-quantitative) analysis, using the respec-
tive isotopically labelled IS of an analyte represents the 
gold standard to account for variation resulting from the 
laboratory handling, while PQN is a common normalization 
method in untargeted analysis accounting for many features 
(Dieterle et al., 2006). Effects of the different procedures 
are exemplified in Fig. 1 for two compounds with matching 
heavy-labelled IS (creatinine, phenylalanine), and two addi-
tional compounds with high time-dependent effects in the 
current study (C0 and taurine), for paired (A) and unpaired 
analysis (B). General trends of increasing concentrations 
over time and observed significant differences remain com-
parable among the two normalization approaches compared 
to only batch-corrected data, while the magnitude of change 
is lower for PQN normalization.

3.3  Postmortem changes in endogenous 
compounds between two time points 
of the same case (paired; t2 vs. t1)

An overview of medianpercent differences for the chosen 
38 analytes over all analyzed cases is provided in Table 1. 
Exemplified for (acyl)carnitines with increasing carbon side 
chain length and different amino acids, the extent and distri-
bution of time-dependent changes is depicted in Fig. 2; for 
all other analytes visual representation can be found in the 
Supplementary information in Fig. S1. Except for serine, 
threonine, and PC 34:1, all compounds revealed significant 
differences between t2 and t1 (p < 0.05). For octanoylcarni-
tine (C8), decanoylcarnitine (C10), lauroylcarnitine (C12), 
arginine, ornithine, proline, valine, cortisol, lyso PC 16:0, 
and lyso PC 18:1 median decreases were observed, while all 
other analytes showed significant median increases from t1 
to t2. Overall, changes mainly ranged from− 50% to + 100% 

(corresponding to a fold change of two) when considering 
their interquartile range. Exceptions presented carnitine 
(C0), acetylcarnitine (C2), decanoylcarnitine (C10), lauroyl-
carnitine (C12), alanine, taurine, cholic acid, uracil, and lyso 
PE 18:0. Here, maximum median differences between t2 and 
t1 reached from − 63% [decanoylcarnitine (C10)] to 166% 
(cholic acid) and 141% (taurine). Still, large inter-individual 
variations were observed for all samples and also subgroups 
with increasing Δt intervals (< 6 h—> 144 h) (see supple-
mentary information Table S2).

Endogenous compounds were categorized into four pat-
terns of median changes depending on the length of the Δt:

(a) Steady increase: alanine, creatinine, proline, tryp-
tophane, taurine, uracil, valine, carnitine (C0), acetyl-
carnitine (C2), propionylcarnitine (C3), steraroylcarni-
tine (C18), lysoPE 18:0, PE 34:1, PE 36:2.

(b) Constant median change for the time intervals of 
approximately 24 to 36 h followed by an increase with 
longer Δt: histidine, leucine/isoleucine, lysine, methio-
nine, phenylalanine, tyrosine, uric acid, palmitoylcar-
nitine (C16), cholic acid.

(c) Decrease: cortisol, decanoylcarnitine (C10), lauroyl-
carnitine (C12).

(d) No or < 30% change over time: arginine, inosine, orni-
thine, serine, threonine, octanoylcarnitine (C8), myris-
toylcarnitine (C14), kynurenine, lysoPC 16:0, lysoPC 
18:1, PC 34:1, PC 36:2.

Representative examples are depicted in Fig. 3a for tau-
rine taurine (a), tyrosine (b), decanoylcarnitine (C10) and 
cortisol (c), and octanoylcarnitine (C8) (d).

3.4  Postmortem changes in endogenous 
compounds according to their time since death 
(unpaired; tx_ToD)

To determine whether the actual time after death plays a 
decisive role, or is even more important than the time inter-
val between t2 and t1, all samples (n = 854) were binned into 
groups according to the individual samples’ time since death 
(ToD to t1 and ToD to t2, tx_ToD) and were statistically 
compared for differences in an analyte’s normalized peak 
area. In nine cases, t1 and t2 blood samples were binned 
within the same group therefrom five cases had a sampling 
time > 144 h. A Kruskal–Wallis test revealed significant 
changes between above mentioned groups for all tested 
endogenous compounds except for arginine, octanoylcar-
nitine (C8), cortisol, and PC 34:1 (Table 1). Median per-
cent differences of each group (1–10) to group 1 (0–6 h, 
earliest) are summarized in Table S2 of the Supplementary 
information. The highest median changes were observed for 
carnitine (C0) (+ 274%), taurine (+ 361%), and cholic acid 
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(+ 1190%), as well as decanoylcarnitine (C10) (− 80%) and 
lauroylcarnitine (C12) (− 42%).

As shown in Fig. 4, the correlation per analyte of its 
median Δt changes from paired analysis to the highest 
median %change of each group (2–10) to group 1 (unpaired 
analysis) indicated good agreement (spearman correla-
tion  R2 0.91) despite other expected influencing factors in 
unpaired analysis. Figure 3b exemplifies box plots of the 
normalized peak area (left y-axis) and the median percentage 

change to time group1 (right y-axis). Boxplots of all other 
analytes are presented in Fig.S2. Also, for individual com-
pounds, the time-dependent changes of the unpaired samples 
matched well with paired Δt data (Fig. 3a,b). The exception 
was cortisol, which decreases significantly between t2 and 
t1 (paired analysis) but showed no trend in the normalized 
peak areas with respect to the respective time since death 
of the blood samples. In contrast, myristoylcarnitine (C14), 
and lyso PC18:1 showed no trend as a function of Δt length 

Fig. 1  Evaluation of different 
data normalization strate-
gies: only batch-correction 
(black squares), PQN (blue 
circles), and IS-correction 
(grey triangles) for paired 
analysis between t2 and t1 
(a) and unpaired analysis of 
individual blood samples (b). 
For (a), median and range 
(95% confidence interval) of 
percent change between t2 and 
t1 according to the different 
time interval lengths (12 or 
24 h intervals) are depicted. For 
(b), median percent changes of 
the corresponding time group 
to group 1 (0–6 h) are given. 
The dotted line represents no 
change; values above zero 
increase with more extended 
time intervals, and values below 
zero decrease, respectively. 
GraphPad Prism 10.0.2 was 
used for figure creation
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but an increase or decrease as a function of time since death 
(Table S2).

For statistical analysis between all groups, Dunn’s post-
hoc test was applied on Kruskal–Wallis significant analytes. 
Significant differences are given as a so-called p-value heat 
map for the chosen examples in Fig. 3c and all remaining 
compounds in the Supplementary information in Fig. S3. 
Significant changes between groups most often appeared 
with increasing time since death, while the initial 36 or even 
48 h indicated relatively stable normalized peak areas. Few 
exceptions were observed for alanine, taurine, tryptophan, 
valine, carnitine (C0), and acetylcarnitine (C2), in line with 
findings from paired analysis between t2 and t1.

3.5  Correlations

To find the underlying causes for the varying behavior 
between different compounds, the percent changes (paired 
and unpaired analysis) were correlated with the possible 
influencing factors. No correlations existed between percent 
change and lipophilicity or molecular weight (supplemen-
tary information Fig. S4A, B). In RP chromatography, the 
highest percent changes occurred for compounds eluting 
in the first two minutes and around 15 min of the chroma-
togram (Fig. S4C). HILIC chromatography (ESI negative) 
used for selected compounds indicated a similar extent of 
percental change despite compound elution around five to 
ten minutes. Further direct comparison of the observed post-
mortem changes for 18 compounds between RP and HILIC 
chromatography (Tables S2 and S3) also did not find any 
differences caused by the applied chromatography, with the 
exception of proline and valine. Both amino acids revealed 
increases in HILIC chromatography, in line with other amino 
acids, and appeared to be stable or slightly decreased when 

analyzed in RP mode. Examples from lysine (no difference, 
retention time RP 0.8, HILIC 9.6, respectively) and proline 
(different postmortem behavior, retention time RP 0.9 min, 
HILIC 6.2 min, respectively) are given in Fig. 5.

4  Discussion

(Un)targeted metabolome approaches have gained sig-
nificant interest in forensic toxicology analysis, including 
postmortem cases (Bonicelli et al., 2022; Brockbals et al., 
2020, 2021; Chighine et al., 2023; Donaldson & Lamont, 
2013, 2014; Elmsjo et al., 2021, 2022; Locci et al., 2019, 
2021; Mora-Ortiz et al., 2019; Pesko et al., 2020; Peyron 
et al., 2019). Due to study design and ethical restrictions 
in controlled human studies, postmortem research typically 
involves random routine cases. However, the metabolome 
is highly dynamic and, even in living people, susceptible to 
many environmental factors influencing the metabolic pro-
file or particular biomarkers. Postmortem specimens such 
as blood represent an even greater challenge given the well-
recognized issues of postmortem changes or PMR, seen with 
drugs (Butzbach, 2010; Drummer & Gerostamoulos, 2023; 
Mantinieks et al., 2021; McIntyre & Escott, 2012; Pelissier-
Alicot et al., 2003; Peters & Steuer, 2018; Skopp, 2010). 
So far, little is known about such (additional) confounding 
factors originating from death itself, but severe influences 
are expected, particularly from the time since death. A bet-
ter understanding of these factors will significantly improve 
the experimental design of future postmortem metabolome 
studies.

Our current study comprised one of the most extensive 
data sets in the context of postmortem studies and is char-
acterized by two blood collection time points per case. 

Fig. 2  Boxplots of percent differences between t2 and t1 in the indi-
vidual cases (paired samples) for acylcarnitines (a) and different 
amino acids (b). Zero (dotted line) represents no change between 

the two time points, while the grey area corresponds to differences 
between −  50% and + 100% (fold-change of two). GraphPad Prism 
10.0.2 was used for figure creation
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Despite the non-controlled sample collection, the study 
cohort can be considered representative of typical forensic 
postmortem cases, as different manners of death, a large 
age range, and a wide variety of collection time points 
were included. No systematic differences or correlations 

in age of the deceased or manner of death in relation to 
the PMI were found.

Thirty-eight endogenous compounds were chosen for 
detailed, time-dependent evaluation of postmortem changes 
from an untargeted acquired data set. These included 

Fig. 3  a Median and range (95% confidence interval) of percent 
change between t2 and t1 according to the different time interval 
lengths (12 or 24 h intervals). The dotted line represents no change; 
values above zero increase with more extended time intervals, and 
values below zero decrease, respectively. b Median percent change 
of the corresponding time group to group 1 (0–6  h, black squares). 
Light grey boxplots indicate normalized peak areas per time group. 
The dotted line represents no change; values above zero increase 

with more extended time intervals, and values below zero decrease, 
respectively. c p-value heat map highlighting significant changes 
determined by Dunn’s multiple comparison post-hoc test (p < 0.05) 
between individual postmortem time groups. Light grey area indi-
cates non-significant results, dark grey to black areas indicate sig-
nificant changes (p < 0.05), with darker areas representing a lower 
p-value. GraphPad Prism 10.0.2 was used for figure creation
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metabolites of different compound classes with significantly 
different physicochemical properties, such as amino acids, 
acylcarnitines, (lyso)phopsholipids, bile acids, steroids, etc. 
The targeted processing method originally (during method 
development) included more endogenous compounds, from 
which we focused on analytes that could be measured with 
sufficient analytical precision. Of those, some could not reli-
ably be detected in the postmortem sample cohort and were 
dropped subsequently, e.g. the nucleobase adenine and the 
nucleoside adenosine (Boxler et al., 2019). Of course, it is 

only a small selection of analytes and not representative of 
the complete metabolome. However, the chosen targeted 
compounds were previously described in (postmortem) or 
generally forensic metabolome studies. They were proposed 
as predictive biomarkers, e.g., as intoxication markers for 
oxycodone poisoning (Elmsjo et  al., 2022) or the post-
mortem interval (Donaldson & Lamont, 2014; Mora-Ortiz 
et al., 2019). Batch normalization was performed based on 
pooled sample peak areas measured within the same batch 
to account for analytical bias. In addition, individual sample 
normalization to account for, e.g., extraction effects is com-
monly applied. For targeted (semi-/quantitative) analysis, 
matching isotopically labelled IS per analyte represent the 
gold standard for normalization. In (targeted) metabolomics, 
most often, such IS are not available for all compounds of 
interest. If a general IS (isotopically labelled, but not match-
ing the analyte of interest) is used to normalize another ana-
lyte, the analyte of interest needs careful evaluation during 
method development and validation, and in the worst case 
the use of a general IS can increase variation rather than 
compensate for it (Boxler et al., 2019). In untargeted metab-
olomics, where compounds of interest are a priori unknown, 
specific or general IS-use is therefore unfeasible. PQN was 
demonstrated as a versatile sample normalization strategy of 
untargeted datasets of thousands of features, where a quo-
tient for each feature is calculated in relation to a reference 
sample (pool), and the median of all feature quotients is 
used as a sample’s individual normalization/dilution factor 
(Dieterle et al., 2006). However, PQN can be biased, if, e.g., 
a large proportion of the features are changed because of a 
systematic rather than a dilution/extraction variation effect 

Fig. 4  Correlation between the median percent change between t2 
and t1 (paired analysis, x-axis) and the highest percent change com-
pared to time group 1 (0–6  h, unpaired analysis, y-axis) for the 38 
endogenous compounds. Correlation analysis was done by Spearman 
correlation,  R2 = 0.91). Each data point represents one endogenous 
compound. GraphPad Prism 10.0.2 was used for figure creation

Fig. 5  a Median and range 
(95% confidence interval) of 
percent change between t2 and 
t1 according to the different 
time interval lengths (12 or 
24 h intervals). Results from RP 
chromatography are given in 
black squares, those of HILIC 
chromatography in blue circles. 
b Median percent change of the 
corresponding time group to 
group 1 (0–6 h, black squares 
for RP, blue circles for HILIC 
chromatography). Light grey 
boxplots indicate normalized 
peak areas per time group in 
RP chromatography, light blue 
boxplots for HILIC chromatog-
raphy. The dotted line represents 
no change; values above zero 
increase with more extended 
time intervals, and values below 
zero decrease, respectively. 
GraphPad Prism 10.0.2 was 
used for figure creation
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(Correia et al., 2022). In this current semi-targeted analysis, 
only 38 compounds were evaluated, from which several were 
already described to show PMI-dependent changes (Donald-
son & Lamont, 2014; Mora-Ortiz et al., 2019). It is therefore 
possible, that PQN might attribute actual effects of the PMI 
to dilution effects, consequently underestimating the real 
time- dependent effect (Fig. 1). Given the descriptive nature 
of the current study, the final data evaluation was based on 
batch-normalized data only, to avoid overfitting effects of 
PQN normalization.

When performing a paired analysis of two blood samples 
from the same individual, it could be proposed that varia-
bles other than the time could be excluded. All case-specific 
parameters, like cause or manner of death, age, etc., remain 
identical. However, looking only at the %Δt change between 
t2 and t1 left out the actual time effect, i.e., the time since 
the death occurred. For instance, specific forensic postmor-
tem cases can have a time difference between t1 and t2 of 
12 h, but information, if death occurred one, two, or more 
days before blood collection, is not considered. We, there-
fore, additionally compared metabolite changes according 
to the time since death, although higher variability can be 
expected. Individual analysis increased the total number of 
samples to 854, as t1 and t2 were evaluated separately. Both 
data evaluation strategies (time intervals between paired 
t1 and t2 samples vs. unpaired analysis in groups accord-
ing to the time since death of individual samples) returned 
very well-matching results (Figs. 3, 4). Cortisol poses one 
crucial example, where paired data evaluation was able to 
indicate time-dependent changes, but evaluation of random 
(non-paired) samples showed no trend. Generally, increases 
outweighed decreases over time (Table 1). Concerning the 
median and interquartile changes, almost all analytes ranged 
between a fold change of plus/minus two, but inter-individ-
ual variation was high (Figs. 2, and S1). Taurine and uracil, 
as two compounds exceeding the described range and show-
ing time-dependent concentration increases, were already 
described as potential biomarkers of the PMI. However, in 
contrast to the current results, concentration decreases over 
time were described in mice (Mora-Ortiz et al., 2019).

If univariate statistics are employed for metabolome data 
evaluation in controlled studies of living people, often fold-
changes of 1.5 or 2 are used as one of several filter criteria 
for interesting features. Considering our (paired) results, it 
was shown that already the time factor can introduce such 
variation for some analytes (Fig.  2). Depending on the 
research question and sample selection, higher fold-changes 
might be advisable in postmortem metabolome analysis to 
improve biological significance and avoid random find-
ings. As in line with former works (Chighine et al., 2021), 
PMI is one of the main influencing factors on the metabo-
lome; controlling or accounting for different PMIs within 
the study cohort is highly important for future postmortem 

metabolome studies. Our data suggest that the influence of 
PMI is most homogenous within the first 48 h after death. 
As such, the most reliable results would be obtained if a 
sufficiently high number of blood samples taken within the 
first 48 h after death can be used, ensuring the least influ-
ence of the PMI on concentration changes of endogenous 
analytes. Alternatively, PMI among study groups should be 
as balanced as possible.

Using correlation analysis, we attempted to find causes 
for the observed differences in postmortem behavior depend-
ing on the substance. Based on existing knowledge of exog-
enous compounds, e.g., lipophilicity, the volume of dis-
tribution (Vd), or the ratio of cardiac to peripheral blood 
(C/P-ratio) can help predict PMR (Han et al., 2012; Skopp, 
2010), we aimed to compare different chemical properties 
of the endogenous compounds. Thereby, Vd is not avail-
able for endogenous metabolites, as they are typically not 
administered in known amounts to calculate their expected 
blood/plasma concentration in relation to the dose. C/P 
ratios or general distribution of endogenous metabolites 
would be interesting for further investigation of underlying 
PMR mechanisms but was out of scope for the current study 
that focused on femoral blood samples only. No correla-
tions between logP or molecular weight and the extent of 
postmortem change could be observed (Fig. S4). Compari-
son of retention time and %change pointed towards more 
severe postmortem changes for those analytes eluting within 
the first two minutes of the RP chromatography. This could 
be due to similar physicochemical properties of these sub-
stances but also due to matrix effects. Typically, the first 
three minutes, as well as the end of a RP chromatography, 
are prone to matrix effects, given salts and extremely polar 
vs. highly lipophilic compounds (phospholipids), respec-
tively (Van Eeckhaut et al., 2009).

Further, it is well known that postmortem samples are 
more susceptible to matrix effects than samples of living 
persons (Drummer, 2007; Saar et al., 2009). Eighteen ana-
lytes were additionally evaluated in a different chromato-
graphic system (HILIC) and ESI negative ionization, a typi-
cally complementary method, to exclude matrix effects as 
the leading cause of the observed time-dependent changes. 
Only for proline and valine, a different time-dependent 
behavior was observed when changing the analytical meth-
odology, which points towards a matrix effect for these two 
compounds in RP chromatography (Fig. 5, Tables S2, S3). 
Apart from that, HILIC has led to the same results as RP 
(Figs. S4 and  5, Tables S2, S3), but with overall higher 
variation. So far, no common physico-chemical properties 
could be deduced, allowing for a likelihood prediction of 
postmortem changes in endogenous metabolites.

The water content of postmortem blood samples dem-
onstrates high variation ranging from 60 to 90% (Skopp, 
2004), possibly contributing to a certain (minor) extent to 
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the observed concentration changes. PQN normalization 
could compensate for these effects, however, as discussed 
above, more compounds/features in an untargeted data pro-
cessing workflow will be necessary for a conclusion.

The changes in endogenous substances probably occur 
due to the lack of energy after death, accompanied by the 
cessation of aerobic and partial continuation of anaerobic 
metabolic pathways. Other studies in animal models found 
modulations in metabolites associated with anaerobic 
metabolism, such as lactate (Mora-Ortiz et al., 2019). In 
the broadest sense, our results also confirm previous stud-
ies with limited numbers of animals showing significant 
increases in amino acid levels. Different underlying mecha-
nisms were discussed, among others, protein catabolism in 
postmortem cells leading to accumulation in blood after cell 
lysis or decreased protein synthesis (Donaldson & Lamont, 
2014). A higher number of endogenous compounds or an 
untargeted data evaluation will be necessary to uncover bio-
logical mechanisms, e.g., through pathway analysis. Ideally, 
future research should apply an adapted experimental setup 
to include/extend the analysis to macromolecules (carbohy-
drates, proteins, lipids, DNA or RNA) and different (blood-
surrounding) tissues that might influence concentrations of 
small endogenous molecules through distribution, changes 
in protein binding, or general postmortem degradation.

5  Conclusions

The current study comprises one of the most extensive data 
sets in the context of time-dependent postmortem studies 
focusing on endogenous compounds. Comparable to drugs, 
we observed changes in blood levels of nearly all endog-
enous compounds in a time-dependent manner after death. 
Our paired analysis of two individual blood samples col-
lected from the same individual proved highly valuable, as 
time since death represents the only variable. Additional 
unpaired sample evaluation purely based on the time since 
death, generally indicated, similar results to those of the 
matched time intervals, despite more confounders and higher 
variation. As PMI is one of the main influencing factors on 
postmortem metabolome changes, controlling or account-
ing for different PMIs within the study cohort is highly 
important for future postmortem metabolome studies. Most 
reliable results can be expected if blood samples preserved 
within the first 48 h after death can be used and/or PMI 
among study groups is balanced.
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