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is increasingly recognized that larger sample sizes are ben-
eficial. Including more samples offers several advantages, 
such as increased statistical power, better representation 
of biological variability, enhanced identification of bio-
markers, improved reproducibility, and enhanced general-
izability of findings (Tolstikov et al., 2020). Even though 
high-throughput technologies revolutionize metabolomics 
by making large-sample detection a reality (Plumb et al., 
2023), however, performing large-scale sample processing 
in metabolomics can be challenging due to the introduc-
tion of pre-analytical factors. Pre-analytical factors refer to 
the various biological and pre-analytical variables that can 
impact the metabolite concentrations. These pre-analytical 
factors include factors during sample processing such as 
anticoagulant type, sample handling, sample processing, 
and storage procedures (Garwolińska et al., 2023), and 
the characteristics, such as sex and age(Cui et al., 2021). 

1 Introduction

Metabolomics aims to achieve a comprehensive understand-
ing of metabolites within biological systems. To maximize 
the reliability and significance of metabolomics analyses, it 
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Abstract
Introduction Pre-analytical factors like sex, age, and blood processing methods introduce variability and bias, compromis-
ing data integrity, and thus deserve close attention.
Objectives This study aimed to explore the influence of participant characteristics (age and sex) and blood processing meth-
ods on the metabolic profile.
Method A Thermo UPLC-TSQ-Quantiva-QQQ Mass Spectrometer was used to analyze 175 metabolites across 9 classes in 
208 paired serum and lithium heparin plasma samples from 51 females and 53 males.
Results Comparing paired serum and plasma samples from the same cohort, out of the 13 metabolites that showed signifi-
cant changes, 4 compounds related to amino acids and derivatives had lower levels in plasma, and 5 other compounds had 
higher levels in plasma. Sex-based analysis revealed 12 significantly different metabolites, among which most amino acids 
and derivatives and nitrogen-containing compounds were higher in males, and other compounds were elevated in females. 
Interestingly, the volcano plot also confirms the similar patterns of amino acids and derivatives higher in males. The age-
based analysis suggested that metabolites may undergo substantial alterations during the 25-35-year age range, indicating a 
potential metabolic turning point associated with the age group. Moreover, a more distinct difference between the 25–35 and 
above 35 age groups compared to the below 25 and 25–35 age groups was observed, with the most significant compound 
decreased in the above 35 age groups.
Conclusion These findings may contribute to the development of comprehensive metabolomics analyses with confounding 
factor-based adjustment and enhance the reliability and interpretability of future large-scale investigations.
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To surmount the barriers associated with sample collection 
and leverage the potential of high-throughput technolo-
gies, researchers often resort to adopting multiple testing 
(Navarro et al., 2023) and covariate adjustment (Bakusic et 
al., 2019), which are commonly employed to mitigate the 
influence of pre-analytical factors. Only when the pre-ana-
lytical factors are effectively avoided, the consistency and 
accuracy of test results and analysis process can be ensured, 
as well as reliable data generated. Therefore, the standard-
ization of experimental protocols and the implementation of 
appropriate quality controls are necessarily needed.

While internal standards can address some inconsisten-
cies in different sample sets (Yang et al., 2021), factors that 
cannot be normalized associated with blood processing 
method and participant characteristics remain challenging. 
The blood processing method used for analysis can also 
influence metabolite composition and levels (Stevens et 
al., 2019; Yin et al., 2013, 2015). Considering anticoagu-
lants is crucial as different tissues or biofluids may have 
distinct metabolic profiles, affecting the interpretation of 
metabolomics data across studies. Sex differences can fur-
ther impact hormonal, genetic, and physiological factors, 
leading to distinct metabolic patterns between males and 
females (Darst et al., 2019). Accounting for sex differences 
in a large-scale study allows for a better understanding of 
sex-specific metabolic patterns, potentially identifying sex-
specific biomarkers or associations. In addition, metabo-
lite levels and metabolic pathways can undergo substantial 
changes throughout the lifespan (Lassen et al., 2023). These 
age-related variations may be influenced by factors such as 
developmental stages, physiological changes, lifestyle, and 
environmental exposures (Darst et al., 2019). Considering 
age differences enhances the interpretation and generaliz-
ability of findings, especially when studying diseases or 
interventions that have age-specific implications.

In this study, we performed a targeted metabolomics 
analysis of 175 compounds from nine different classes on 
a set of 208 blood samples. Our primary objective was to 
examine the influence of three pre-analytical factors, includ-
ing age and sex and anticoagulant (lithium heparin), on the 
metabolic profile of healthy individuals. By investigat-
ing these factors, we aim to provide valuable insights that 
can lay the foundation for more accurate results and robust 
interpretations across multiple datasets, ultimately advanc-
ing our understanding of metabolism and facilitating the 
integration of findings in future large-scale metabolomics 
investigations.

2 Methods

2.1 Materials

All the solvents used in this study, including LC/MS grade 
methanol, acetonitrile, water, ethanol, dimethyl sulfoxide, 
ammonium acetate, and acetic acid, were purchased from 
Fisher Scientific (Pittsburgh, PA, USA). Stable isotope 
labeled amino acid standards, 13 C/15 N-AminoAMix20 
were purchased from Cambridge Isotope Laboratories 
(Tewksbury, MA, USA) to be used as internal standards 
for biological samples (Table S1). A total of 315 metabo-
lite standards were purchased from MetaSci (Toronto, ON, 
Canada). Pooled human serum (used for quality control 
purposes) was purchased from Innovative Research (Novi, 
MI, USA). Detailed information regarding the standards is 
available in Table S2.

2.2 Standard preparation

To prepare the metabolite standards for the study, each stan-
dard was dissolved in the most suitable solvent (water, etha-
nol, or dimethyl sulfoxide) based on their solubility. Stock 
solutions of 10 mM concentration were prepared for each 
standard. A gradient of standards ranging from 10 µM to 1 
mM was generated by diluting the stock solutions. These 
gradients were used for direct infusion analysis. Addition-
ally, mixes of each standard at a concentration of 10 µM 
were prepared to determine the retention times.

2.3 Sample collection and preparation

A retrospective study was performed in the patient cohort. 
Residual serum or lithium heparin plasma samples from 
male or female patients were collected after overnight fast-
ing from Dec 2021 to Apr 2022. All the samples that met 
the criteria sent to the Clinical Laboratory were aliquoted 
and stored at -80 °C, with the institutional review board 
approval at The Ohio State University Wexner Medical Cen-
ter (IRB#2022C0138). Demographic information including 
age, race, and gender was obtained from the electronic med-
ical records (EMR). Exclusion Criteria: 1. Cardiac vascular 
disease (including but not limited to Hypertension, Myocar-
dial infarction, Valvular disease, Drug toxicity, Myocarditis, 
Takotsubo Cardiomyopathy, Cardiac hypertrophy, Arrhyth-
mia, Chronic heart failure, Heart implantation, Cardiac 
contusion/trauma); Diabetes (type 1 and type 2); Crohn’s 
disease; Ulcerative colitis; Hyperlipidemia; Sepsis; Shock; 
Transgender; Thyroid disease; Cancer patients with chemo-
therapy; Pregnancy (female). To ensure diversity among 
our healthy control group, we made deliberate efforts to 
maintain gender balance, achieve a well-distributed age 
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range (including a representation of elderly individuals), 
and secure participants who could provide both plasma and 
serum samples.

The plasma and serum samples underwent centrifuga-
tion (1500 g, 15 min, 4℃), followed by placement in cryo-
genic tubes, freezing in liquid nitrogen, and storage at − 80 
℃ during transportation. Subsequently, the samples were 
thawed at 4 °C and vortexed. A mixture comprising 50 µL 
of serum, 50 µL of spiking solution (consisting of 20 stable 
isotope-labeled amino acid standards, 13 C/15 N-AminoA-
Mix20 in a 50% Water/50% Methanol solution), and 250 µL 
of HPLC-grade methanol was prepared and vortexed again. 
After storing the mixture at -20 °C for 20 min, it was sub-
jected to centrifugation at 14,000 rpm for 20 min, and 150 
µL of the supernatant was collected for subsequent analysis.

2.4 Sample analysis

During the process of constructing the in-house standard 
library, each standard (from 10 μm to 1 mM) was injected 
directly into the mass spectrometer system. Parameters such 
as spray voltage, sheath gas, auxiliary gas, and sweep gas 
were optimized to achieve optimal precursor ion perfor-
mance during the source optimization stage. Subsequently, 
product ion optimization was conducted using the RF lens 
for the precursor ion, with two product ions selected and a 
low mass exclusion set at 50 m/z. The scan type employed 
was the product scan. Both Q1 and Q3 resolutions were con-
figured at 0.7 full width at half maximum (FWHM). The 
collision energy was set to 30 V, and the scan rate was main-
tained at 1000 Da/sec.

After collecting the individual parameters for the 315 
metabolites, we adopted a pooling strategy. This involved 
combining every ten standards (each with non-overlapping 
molecular weights) at a concentration of 10 µM before con-
ducting LC-MS analysis. The purpose of this method is to 
determine if each metabolite can be consistently detected 
using its previously optimized parameters within a mixed 
matrix. Additionally, this process allows for the recording 
of retention times. The mixtures of ten standards underwent 
chromatographic separation and were analyzed using the 
Thermo Vanquish UPLC system (ThermoFisher, Waltham, 
MA, USA) coupled with a TSQ Quantiva Triple Quadrupole 
Mass Spectrometer (ThermoFisher). The mass spectrometer 
was equipped with a heated electrospray ionization probe 
from Thermo Fisher (MA, USA). The chromatographic 
separation was conducted on an XBridge BEH Amide XP 
column (130Å, 2.5 μm, 2.1 mm X 150 mm, 2.5 μm particle 
size) manufactured by Waters Corporation (Milford, MA). 
The analysis employed the Multiple Reaction Monitoring 
(MRM) scan type, utilizing a Selected Reaction Monitor-
ing (SRM) table that contained the optimized production 

ions obtained in the previous step. For the chromatographic 
analysis, mobile phase A comprised a mixture of 5 mM 
ammonium acetate in acetonitrile /water (10:90, v/v) with 
0.1% acetic acid, while mobile phase B was composed of 
5 mM ammonium acetate in acetonitrile /water (90:10, v/v) 
with 0.1% acetic acid. A linear gradient elution program was 
implemented, initiating with 70% B and gradually decreas-
ing to 30% B within 5 min. Subsequently, the mobile-phase 
composition was sustained at 30% B for 4 min, after which 
it was reverted to 70% B within 2 min and maintained for an 
additional 2 min. The entire run duration lasted 13 min. The 
flow rate was set to 0.3 mL/min, and the column tempera-
ture was maintained at 40 °C.

Through manual inspection of peaks in Xcalibur Quan-
browser (ThermoFisher), the retention time and retention 
time windows were extracted and incorporated into the 
SRM table to optimize the targeted method. Overall, 315 
metabolites with high-quality signals from standard tests 
were added to our SRM tables. Subsequently, all prepared 
plasma and serum samples were analyzed using the target 
method for robust and reproducible results. To assess instru-
ment stability during testing and enable data normalization, 
commercial human serum quality control (QC) and blank 
control samples (mobile phase solution) were analyzed fol-
lowing every ten injections of biological samples. Initially, 
107 participants were included, each providing both serum 
and plasma samples. Subsequently, 6 plasma samples were 
excluded as outliers, and 208 samples were kept for subse-
quent analysis.

2.5 Data preprocessing

Following manual peak-picking and peak-correction using 
Xcalibur Quanbrowser (ThermoFisher), a data matrix was 
generated, encompassing the peak intensity of all metabo-
lites across all samples. Metabolites with intensity < 10,000 
arbitrary units (a.u.), on average were removed to avoid 
potential interference from noise signal. This data matrix 
served as the foundation for subsequent analytical processes 
and further analysis. To facilitate comprehensive analy-
sis beyond individual metabolite levels, all the identified 
metabolites were classified into 9 distinct classes based on 
the Human Metabolome Database (HMDB) (Wishart et al., 
2018). Namely, the classes used entailed: amino acids and 
derivatives, aromatic acids and derivatives, carbohydrates 
and derivatives, carboxylic acids and derivatives, lipids, 
nitrogen-containing compounds, nucleic acid-related com-
pounds, Vitamins and coenzymes, and others. This classi-
fication enabled the examination and interpretation of data 
not only at the metabolite level but also at the broader class 
level.
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methods, and age groups (< 25, 25–35, and > 35). Metabo-
lites exhibiting a Variable Importance in Projection (VIP) 
score > 1.5 were considered significant and subsequently 
selected in PLS-DA models. The significant metabolites 
obtained from the regression analysis, volcano plot, and 
PLS-DA were combined and visualized using a Venn plot. 
This plot showed how the changes in metabolite levels var-
ied across the different analysis models. Additionally, the 
selected metabolites were grouped into classes and repre-
sented in a pie chart, indicating which classes were most 
affected by these pre-analytical factors.

3 Results

To investigate the influence of three common pre-analytical 
factors (blood processing methods, sex, and age) on the 
metabolic profile of healthy individuals, 208 samples were 
assembled from a group of healthy individuals (Fig. 1). 
The samples were selected to ensure an even distribution 
across blood processing methods, encompassing both sexes 
and covering a specific age range. The details of the sample 
group are provided in Table 1. To assess the relationship 
between these factors, independence tests were conducted. 
The independence tests aimed to determine whether there 
were any associations or dependencies between any two 
factors concerning all the detected metabolites. The results 
revealed that all factors were found to be independent of 
each other (p-value > 0.05) concerning all the measured 
metabolites. This suggests that the variations observed 
in the metabolic profiles can be attributed to each spe-
cific factor independently, rather than being influenced by 

2.6 Statistical analysis

Overall, the independence test among 3 factors was per-
formed by covariate analysis with a p-value indicating if the 
3 factors were regressed to each other regarding each metab-
olite. First, univariate analyses were conducted to assess the 
relationship between metabolites and the variables of inter-
est. Logistic regression analyses were employed to examine 
the association between each metabolite and sex or blood 
processing methods, while linear regression analyses were 
performed to investigate the relationship between each 
metabolite and age. To adjust for multiple comparisons, 
the FDR correction was utilized, establishing a significance 
threshold of p < 0.05. Metabolites that demonstrated statisti-
cal significance after applying the FDR correction (p < 0.05) 
were considered to significantly fit the models, indicating 
their good regression ability of the models. Subsequently, 
to establish a predetermined threshold (|log2(foldchange)| > 
0.3) for fold change and incorporate a rigorous significance 
test, volcano plots were employed to assess the variations in 
metabolite levels across different blood processing methods 
and sexes. For age analysis, the metabolite intensity of each 
metabolite or metabolite class at specific age or age intervals 
is averaged. A line chart was employed to visually depict 
the overall temporal pattern of these aggregated values, and 
showcase the changing trend across the different age or age 
groups. A pairwise t-test was performed for the significance 
test during age analysis. Lastly, to comprehensively eluci-
date the contribution of the identified metabolites towards 
classification, Partial Least Squares Discriminant Analy-
sis (PLS-DA) was employed to integrate metabolites and 
classify individuals based on their sex, blood processing 

Fig. 1 A. The schematic workflow of the study
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al., 2022), therefore, we believe our evaluation method is 
unbiased and will reflect diverse differences of metabolites 
across different classes.

To find the robust differential metabolites between 
plasma and serum samples, we employed three different 
statistical analysis approaches. Figure 2A illustrates a color 
map depicting the results of logistic regression. The color 
map highlights 20 metabolites that exhibited a significant 
fit to the logistic regression model at a significance level 
of 0.05 after applying the FDR correction. Among these 
metabolites, 14 were found to be significantly higher in 
serum compared to plasma. In Fig. 2B, the volcano plot dis-
plays 24 metabolites that exhibit significant changes. Out 
of these metabolites, 15 were found to be higher in serum. 
The colors of the dots in the volcano plot represent their 
respective compound classes. Notably, amino acids and 
derivatives highlighted in the volcano plot were found to be 
significantly higher in serum, whereas carboxylic acids and 
derivatives were significantly higher in plasma. In the PLS-
DA scoring plot (Fig. 2C), a discernible separation between 
plasma and serum is observed based on their metabolic 
profiles. The PLS-DA analysis reveals that Component 1 
accounts for 15.1% of the variation, while Component 2 

interdependencies among the factors. Thus, each factor was 
analyzed separately. After QC check, 175 metabolites with 
CV < 0.3  were recognized as reliable identification (Figure 
S1, Table S3). Figures S2A and S2B illustrate the distribu-
tion of metabolites across different classes within the target 
list and the subset of metabolites detected on the Quantiva 
instrument. As shown in Figures S2A and S2B, our method 
aimed to scan for 315 metabolites and reliably detected 175 
metabolites, our detection covers major metabolite classes 
such as amino acids and derivatives, carboxylic acids and 
derivatives, and aromatic acids and derivatives, which were 
frequently reported in disease biomarkers studies (Gold et 

Table 1 Characteristics summary of the study population
Biospecimens Plasma (n = 101) Serum (n = 107)
Sex Female 

(n = 48)
Male 
(n = 53)

Female 
(n = 54)

Male 
(n = 53)

Age
< 25 14 11 16 11
25–35 28 26 32 26
35–45 2 12 2 12
45–55 4 4
55–65 3 3
65–75 1 1

Fig. 2 (A) Color map illustrat-
ing metabolites exhibiting 
significant differences between 
plasma and serum samples from 
the same group of individuals, 
selected using logistic regression 
analysis with FDR correction 
(p < 0.05); (B) Volcano plot 
depicting the selection of dif-
ferential metabolites between 
serum and plasma based on fold 
change and p-value; the color 
of each dot corresponds to the 
respective metabolite class. (C) 
PLS-DA plot illustrating the 
discrimination between plasma 
(P) and serum (S) samples based 
on their metabolic profiles; (D) 
VIP plot presenting the top-
ranked metabolites, identified 
with VIP scores greater than 
1.5, derived from the PLS-DA 
plot in Fig. 2C; (E) Venn plot 
displaying the shared and unique 
sets of differential metabolites 
selected through above regres-
sion analysis, volcano plot, and 
PLS-DA; (F) Distribution of 
selected metabolites from the 
analysis conducted above across 
compound classes
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derivatives, carbohydrates and derivatives, and carboxylic 
acids and derivatives were higher in males. Examining the 
PLS-DA plot in Fig. 3C, despite the presence of some out-
liers beyond the 95% confidence interval among males, a 
certain level of separation between female and male sam-
ples was still observed. This separation was confirmed by 
the permutation test (n = 200) with a p-value < 0.005. The 
corresponding top VIP list (Fig. 3D) comprised a total of 
20 metabolites that significantly contributed to the separa-
tion in the PLS-DA score plot. Additionally, the Venn plot 
(Fig. 3E) demonstrated that across the three statistical meth-
ods, 12 metabolites in 5 classes were consistently identified 
as significantly different by sex (Table 3), in which amino 
acids and derivatives were dominantly influenced. Among 
all the selected metabolites, it was observed that not only 
amino acids and derivatives, but also carboxylic acids and 
derivatives were influenced by sex. These findings suggest 
that these particular classes of metabolites warrant greater 
consideration when addressing cases where sex-related 
influences of metabolomics data may be at play.

When considering age analysis, the approach differs due 
to the nature of age being a continuous variable. Therefore, a 
linear regression analysis was performed to explore the rela-
tionship between each metabolite and the age of the blood 
donor. Following FDR correction on p-value to account for 
regression significance, only two metabolites were found to 
exhibit a significant linear correlation with age (Fig. 4A). 
Interestingly, both metabolites, namely ortho-hydroxyphen-
ylacetic acid, and lactate, demonstrated an inverse relation-
ship with patient age as they were found to be decreasing as 
age increased.

To investigate whether specific classes of metabolites 
also exhibited a similar decreasing pattern with age, a line 
chart was used to visualize the changes in individual metab-
olites as well as the aggregated values for each metabolite 

accounts for 8% of the variation. The R2 value of 0.76 and 
Q2 value of 0.67 indicate a good fit and predictive ability 
of the PLS-DA model. Additionally, the permutation test 
(n = 200) yielded a p-value of less than 0.005, confirming the 
statistical significance of the observed separation between 
plasma and serum based on their metabolic profiles. In the 
VIP score plot (Fig. 2D), it is evident that the top-ranked 
metabolites exhibit significantly higher intensity levels 
in serum. Additionally, upon summarizing all significant 
metabolites mentioned earlier, a total of 13 metabolites in 
5 classes are considered to be the most responsive to blood 
sample type difference (Fig. 2E; Table 2). Alpha-ketoglu-
taric acid, lactate, ethanolamine, dopamine, and hypoxan-
thine were higher in the plasma while others were higher in 
the serum. This consistent pattern reinforces the significant 
metabolic differences observed between serum and plasma, 
irrespective of the statistical analysis tools used. In Fig. 2F, 
the classification of 28 selected metabolites in Fig. 2E is 
presented. Notably, amino acids and derivatives (21%) and 
carboxylic acids and derivatives (21%) were the compound 
classes most influenced by the blood processing methods.

Similar to blood processing methods, we did three types 
of statistical analyses to reveal the sex-dependent metabo-
lite differences. Logistic regression analysis revealed that in 
Figs. 3A and 24 metabolites, such as 3,4,5-trimethoxycin-
namic acid, 1-methylnicotinamide chloride, and trans-aco-
nitic acid, showed significant differences between females 
and males. Among these metabolites, the first half were 
detected at higher levels in females, while the second half 
exhibited higher levels in males. The volcano plot in Fig. 3B 
highlighted 21 metabolites that satisfied the criteria for both 
|Log2(foldchange)| >0.3 and p-value < 0.05, thus indicat-
ing their significance. The color of the dots in the plot indi-
cated that the highlighted amino acids and derivatives were 
significantly lower in females, whereas aromatic acids and 

Compound name Compound 
class

VIP Regression significance
 (p-value after FDR 
correction)

Foldchange
(Plasma/Serum)

Student 
t-test
 (p-value)

Arginine Amino 
Acids and 
Derivatives

3.14 2.40E-22 0.61 1.35E-25
Aspartic acid 3.51 7.85E-26 0.46 2.37E-34
Phenylalanine 3.29 4.26E-23 0.67 6.46E-29
Serine 2.46 4.25E-11 0.64 2.42E-20
Alpha-ketoglutaric 
acid

Carboxylic 
Acids and 
Derivatives

1.68 1.33E-02 1.36 3.78E-07

Lactate 2.42 2.57E-11 1.42 2.50E-14
Mevalolactone 3.08 3.92E-22 0.61 1.90E-24
Ethanolamine Lipids 2.27 2.86E-09 1.27 1.54E-12
Dopamine Nitrogen-

containing 
compounds

2.39 7.33E-09 1.57 7.10E-14
Indole-3-aceticacid 2.93 1.49E-16 0.59 1.00E-21

Hypoxanthine Nucleic 
acid-related 
compounds

2.66 1.16E-10 1.65 1.94E-17
Purine 2.45 1.06E-12 0.73 8.39E-15
Thymine 2.85 4.71E-17 0.76 1.70E-03

Table 2 Common significant 
differential metabolites between 
plasma and serum generated from 
3 statistical models
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to those that exhibited an increase (Fig. 4C, n = 1). Addi-
tionally, a notable observation is that a greater number of 
metabolites displayed an increasing trend followed by 
a subsequent decrease (Fig. 4F, n = 18) as opposed to a 
decreasing trend followed by an increase (Fig. 4E, n = 3). 
Moreover, the number of decrease lines as well as signifi-
cance markers indicates that a more pronounced and statisti-
cally significant decrease occurs between age groups 35 ± 5 
and 45 ± 5 years. These significantly changed metabolites 
corresponding to Fig. 4C-F are listed in Table S4 and more 
details about the statistics are included in Table S5. To com-
prehensively illustrate the integrated metabolites’ influence 
on these three age groups, a PLS-DA plot encompassing 

class across different age ranges (Fig. 4B). However, no dis-
cernible pattern emerged from this analysis. To simplify the 
analyses, the continuous age variable was divided into three 
age groups: 25 ± 5 years, 35 ± 5 years, and 45 ± 5 years. 
Furthermore, metabolites that exhibited significant changes 
among these three age groups, as defined by the pairwise 
t-test, were further categorized into four-line charts based 
on their changing trends. Figure 4C, D and E, and 4F pres-
ent the metabolites that demonstrated continuous increase, 
continuous decrease, decrease followed by an increase, and 
increase followed by a decrease trends, respectively. The 
analysis reveals that a much larger number of metabolites 
experienced a decrease with age (Fig. 4D, n = 23) compared 

Fig. 3 (A) Color map illustrating metabolites exhibiting significant dif-
ferences between males and females, selected using logistic regression 
analysis with FDR correction (p < 0.05); (B) Volcano plot depicting 
the selection of differential metabolites between males and females 
based on fold change and p-value; the color of each dot corresponds to 
the respective metabolite class. (C) PLS-DA plot illustrating the dis-
crimination between male (M) and female (F) based on their metabolic 

profiles; (D) VIP plot presenting the top-ranked metabolites, identified 
with VIP scores greater than 1.5, derived from the PLS-DA plot in 
Fig. 2C; (E) Venn plot displaying the shared and unique sets of differ-
ential metabolites selected through above regression analysis, volcano 
plot, and PLS-DA; (F) Distribution of selected metabolites from the 
analysis conducted above across compound classes
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matched sample set from 104 healthy individuals. Sample 
type-based metabolomics analyses have been the focus of 
multiple studies (Kaluarachchi et al., 2018; Liu et al., 2010; 
Nishiumi et al., 2018; Teahan et al., 2006; Yu et al., 2011). 
These studies have consistently reported significant differ-
ences in polar metabolites and lipids between the two blood 
processing methods, that is, plasma and serum, and they 
have attributed the blood processing approaches as a con-
tributing factor to the divergent metabolome.

Furthermore, the means of sample processing can also 
contribute to the wide array of findings in the literature 
(Ishikawa et al., 2014). collected EDTA plasma, with a 
known anticoagulant used in blood processing. The addition 
of anticoagulants in blood collection tubes, which can che-
late the calcium in the blood, has been shown to influence 
the metabolome and lipidome of collected plasma samples. 
Other agents, such as acid citrate dextrose or citrate, can 
also contribute to the overall amino acid profile of biologi-
cal samples when analyzed with high throughput -omics 
technologies (Sotelo-Orozco et al., 2021a).

Previous investigations have consistently reported a sig-
nificantly higher abundance of amino acids (such as phenyl-
alanine, arginine, and serine) in serum samples (Liu et al., 
2010; Yu et al., 2011), which aligns with the outcomes of our 
study. However, other amino acids such as serine, glycine, 
proline, and isoleucine were detected with significance in 
previous studies but were not found to be significantly dif-
ferent in our study. Furthermore, serum samples have been 
reported to exhibit higher levels of glucose, a vital energy 
source, in accordance with previous research findings (Lad-
enson et al., 1974; Liu et al., 2010). Lactate, a byproduct 
of glucose metabolism, displayed significantly lower con-
centrations in serum samples in our analysis. This observa-
tion in our study could potentially be attributed to increased 
glucose utilization during incubation, wherein biochemical 

all three groups was generated (Fig. 4G). Surprisingly, the 
plot revealed an overall trend in the metabolic profile char-
acterized by a distinct shift occurring between the ages of 
25 and 35. Specifically, individuals below 25 years of age 
exhibited the greatest separation from those in the 25–35 
age range, and individuals above 35 years displayed a return 
toward the metabolic profile observed in individuals below 
25 years. This finding suggests that, in comparison to con-
tinuous changes, metabolites may undergo more substantial 
alterations during the 25-35-year period through a turning 
point mechanism. Furthermore, the pairwise PLS-DA anal-
ysis demonstrated that the separation between the 25–35 
and above 35 age groups was more pronounced than that 
between the below 25 and 25–35 age groups. Remarkably, 
these findings align with the results observed in the previ-
ous line charts. This observation was supported by multiple 
indicators, including component 1 (accounting for 16.5% of 
the variation), R2 (0.4), Q2 (0.14), and a permutation test 
p-value (< 0.005). These results collectively emphasize the 
significance of the age range from 25 to 35 years in driving 
notable changes in the metabolic profile, indicating a dis-
tinct metabolic shift during this period.

4 Discussion

With advancements in analytical and computational tech-
niques, the realization of conducting extensive high-through-
put and high-dimensional data analysis in metabolomics 
research has become increasingly feasible. To overcome 
the bias introduced by some pre-analytical factors, such 
as age, sex, and blood processing methods, it is crucial to 
gain a better understanding of how these factors impact 
the measured metabolites. In this study, we first compared 
the metabolic profiles of serum and plasma samples with a 

Compound name Compound class VIP Regression significance
 (p-value after FDR 
correction)

Foldchange
(Female/
Male)

Student 
t-test
 
(p-value)

4-Guanidinobutanoate Amino Acids and 
Derivatives

3.12 1.26E-15 0.76 3.07E-18
Aminoadipic acid 2.11 3.72E-05 0.63 2.24E-08
Creatinine 3.52 1.06E-20 0.74 4.36E-24
L-Homoserine 1.8 9.84E-05 0.72 2.24E-06
O-methyl-D-serine 1.83 8.44E-05 0.72 1.44E-06
Serine 1.72 9.36E-04 1.22 6.49E-06
3,4,5-Trimethoxycin-
namic acid

Aromatic Acids 
and Derivatives

2.03 2.15E-07 1.83 7.45E-08

D-glucuronic acid Carbohydrates 
and Derivatives

1.76 9.04E-07 1.86 3.91E-06
L-(-)-Glyceric acid 2.23 1.17E-06 1.54 2.89E-09
Hexanoic acid Carboxylic Acids 

and Derivatives
1.92 1.42E-08 1.75 8.16E-11

L-Threonic acid 2.21 8.94E-07 1.4 4.38E-09
Acetylcholine Nitrogen-contain-

ing compounds
3.32 5.21E-18 0.72 5.08E-21

Table 3 Common significant 
differential metabolites between 
female and male samples gener-
ated from 3 statistical models
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Previous research has reported sex- and age-related 
disparities in blood metabolites (Chaleckis et al. 2016; 
Ishikawa et al., 2014; Saito et al., 2016). Concerning 
females, males tend to utilize more energy to maintain cellu-
lar needs accompanied by additional muscle (Sotelo-Orozco 
et al., 2021b). As skeletal muscle density is reduced in aging 
adults, this contributes to metabolic deregulations in both 
genders as well (Palmer et al., 2022). Cellular metabolism 
also relies on the orchestrated action of specific enzymatic 
products derived from gene expression rendering genetic 
variation a contributing factor to diverse metabolic pertur-
bations (Carthew, 2021). Thus, it is no surprise that energy 

metabolism occurred in plasma samples. Finally, our find-
ings revealed a discernible pattern wherein a greater number 
of metabolites exhibited significantly higher levels in serum 
samples compared to plasma samples. This observation can 
be partially attributed to the removal of protein in the serum 
samples due to coagulation (Kronenberg et al., 1998). Dur-
ing serum preparation, the volume occupied by the proteins 
was removed, and the remaining constituents with lower 
molecular weights were distributed in a smaller volume. As 
a result, these constituents become more concentrated in the 
serum samples.

Fig. 4 (A) Color map illustrating 
metabolites exhibiting significant 
changing trend by age, selected 
using liner regression analysis 
with FDR correction (p < 0.05); 
(B) Line chart depicting the 
overall temporal pattern of aggre-
gated metabolite/class values, 
showcasing the changing trend 
across different age groups; the 
color of the lines represents the 
respective metabolite classes; C, 
D, E, F. The significant continu-
ous increasing metabolites (C), 
increasing and then decreasing 
metabolites (D), decreasing and 
then increasing metabolites (E), 
decreasing metabolites (F) across 
age groups (< 25, 25–35, > 35 
years); G, H, I. PLS-DA plot 
illustrating the discrimination 
among three age groups (G); 
between < 25 and 25 ~ 35 years 
(H); and between 25 ~ 35 and 
> 35 years (H)
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acknowledged that with age, there are numerous factors 
influencing metabolism. For instance, both the composition 
of gut microbiota and dietary patterns significantly impact 
long-term metabolism. Human gut microbiota is established 
during infancy, responds to environmental exposures during 
childhood, and gradually matures. Subsequently, it remains 
relatively stable until diversity declines in old age. The gut 
microbiota’s association with metabolites encompasses 
various mechanisms, such as the generation of amino acid 
metabolites and the regulation of energy metabolism (Fan 
et al., 2021). Complex nutritional sensing pathways intri-
cately fine-tune metabolic responses to dietary amino acids 
in a highly conserved manner (Soultoukis et al., 2016). In 
turn, these metabolic responses influence long-term human 
health. Due to limited data, these hypotheses may need to be 
explored in future research.

Overall, our study used multiple statistical methods to 
identify the differential metabolites influenced by sex, age, 
and blood processing methods, providing a more robust and 
reliable exploring result and reference for future studies. 
We also have to admit that more characteristic information 
would be needed for additional biological discussion, such 
as diet patterns and race, and we will consider these factors 
in our future study design.

5 Conclusion

In this study, we found significant differences in metabolite 
profiles between two blood processing methods, serum and 
plasma. Several representative amino acids such as arginine 
aspartic acid, phenylalanine, and serine found to be signifi-
cantly higher in serum samples, which is consistent with 
previous literature. Not surprisingly, we also observed sex-
based metabolic sex differences, such as higher noradrena-
line levels in females and higher creatinine levels in males. 
Age-related metabolic differences were tracked in our study 
as well, but limited conclusions can be drawn. However, our 
results did show a decreasing trend in certain metabolites 
(e.g., ortho-hydroxyphenylacetic acid and lactate) within 
older participants concerning those who are young. These 
findings can contribute to the understanding of metabolite 
variations across blood processing methods and participant 
characteristics, emphasizing the importance of considering 
these factors in metabolomics studies.
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metabolism varies within a diverse population (de Boer et 
al., 1988). Another study has also revealed significant gen-
der disparities not only in amino acid metabolism but also 
in lipid metabolism (Krumsiek et al., 2015). Nevertheless, 
our study differs from these prior investigations in terms of 
the significant metabolites identified. This discrepancy can 
be attributed to the different focuses, which centers on lipi-
domics (Ishikawa et al., 2014), and the other centers on the 
Japanese population(Saito et al., 2016). As a result, there is 
no overlap in the significant metabolites identified between 
these previous studies and our current investigation. Nev-
ertheless, certain detected metabolites, such as noradrena-
line, a stress hormone and neurotransmitter in the central 
and peripheral nervous systems, and creatinine, a byproduct 
of muscle metabolism, are expected to exhibit sex differ-
ences, and we observed a significantly higher level of nor-
adrenaline in females in our study. This is thought to be a 
result of estrogen’s ability to block reuptake of noradrena-
line (Sudhir et al., 1996). However, it is important to note 
that the relationship between noradrenaline levels and sex 
lacks consistent conclusions, as noradrenaline levels can be 
influenced by diverse factors, including genetics and envi-
ronmental factors such as stress levels and diet (Pickering, 
1997; Welberg et al., 2001). Similarly, in the case of creati-
nine, a waste product produced by muscle metabolism, the 
observed sex differences are mainly associated with dispari-
ties in muscle mass, and we detected a significant elevation 
in creatinine levels among males compared to females.

Regarding age-associated differences, we observed lim-
ited changes among the metabolites we detected, with ortho-
hydroxyphenylacetic acid and lactate being the notable 
exceptions, both exhibiting a decrease in older participants. 
This outcome may be attributed to the relatively concen-
trated age distribution of our population, with a majority 
(92.3%) falling below the age of 45 years. Previous stud-
ies examining age-related disparities in blood metabolites 
have also reported significant results(Chaleckis et al., 2016; 
Ishikawa et al., 2014; Saito et al., 2014, 2016), likely due 
to the broader age ranges selected, such as the inclusion of 
younger populations (25–34 years old) and older popula-
tions (55–64 years old), which differ significantly from 
the age groups represented in our sample. In comparison 
to specimen and sex analysis, histidine emerges as one of 
several metabolites concurrently influenced by age and 
sex, aligning with findings from another study (Dunn et al., 
2015). However, our research uniquely demonstrates that 
age and sex act as independent influencing factors. Overall, 
it is noteworthy that in one study, age-associated changes 
were more prominent than those associated with differ-
ences in sex or race within the population group. Similarly, 
our study exhibits a similar trend in terms of the quantity 
of differential metabolites (Lawton et al., 2008). It must be 
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