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Abstract
Introduction  The cupping test is a widely used method for quality assessment of Arabica coffee. However, the cupping test 
is limited by the low number of certified panelists and the low throughput. Therefore, an analytical-based quality assessment 
may be a promising tool to complement the cupping test. A present, there is no report investigating quality marker candidates, 
focusing only on “specialty” grade Arabica coffee from Indonesia.
Objective  This study identified the potential quality marker(s) in Arabica Specialty coffee at different stages (green beans, 
roasted beans, and brewed coffee.
Methods  The metabolite profiles of ten different Arabica specialty-grade coffees were analyzed with different cup scores 
using gas chromatography–mass spectrometry (GC/MS). From the ten samples, green coffee beans, roasted coffee beans, 
and brewed coffee were selected. In addition, an orthogonal projection to latent structure (OPLS) regression analysis was 
conducted to obtain a potential quality marker based on the variable importance in projection (VIP). The potential quality 
marker(s) were validated by GC/MS metabolome profiling and OPLS analysis of different sets of samples consisting of 35 
Arabica specialty-grade coffee samples.
Results  In Arabica coffee samples, the OPLS model of the three stages showed galactinol to have a high VIP score. Galac-
tinol showed a consistent positive correlation with cup scores at all stages of coffee production (green beans, roasted beans, 
and brewed coffee). The correlation suggests galactinol is a potential quality marker after further validation using different 
samples.
Conclusion  GC/MS combined with OPLS regression analysis suggested galactinol as a quality marker and provide an early 
screening method for Arabica coffee quality that complements the cupping test performed by certified panelists.
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1  Introduction

High-quality coffee, such as specialty coffee, has recently 
gained considerable attention (International Trade Centre, 
2012). Therefore, the importance of quality assessment of 
high-quality coffee is also increasing. Coffea arabica (Ara-
bica) and Coffea canephora (Robusta) are commercially 
essential coffee species. Arabica coffee is considered as a 
high-quality coffee due to its original superior sensory prop-
erties to that of Robusta coffee (Putri & Fukusaki, 2018). 
Therefore, the quality assessment of high-quality Arabica 
coffee is critical.

The standardized quality assessment method for Arabica 
coffee is the cupping test established by the Specialty Coffee 
Association of America (SCAA). Based on this standard, the 
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specialty coffee grade is given to the coffee with a final score 
higher than 80 out of 100 and later influences the price of 
the Arabica coffee in the market (Specialty Coffee Associa-
tion of America, 2015; Tolessa et al., 2017). Although the 
SCAA cupping test is considered the most reliable method 
for evaluating Arabica coffee quality, the test is limited by 
a lack of skilled panelists worldwide and low throughput 
due to the decreasing sensitivity of panelists during evalu-
ation. Analytical-based quality assessment has been dem-
onstrated to avoid these limitations as the coffee flavor is 
strongly related to the presence of compounds (Farah et al., 
2006; Ribeiro et al., 2012). Identifying marker compounds 
correlated with cupping quality may be a promising way to 
complement cupping test-based quality assessment. Hence, 
a high-throughput quality assessment can be achieved by 
providing rapid screening methods using marker compounds 
of coffee quality.

Food metabolomics is the application of metabolomics 
technique on a complex food matrix, obtaining compre-
hensive profile of food metabolome and correlating it with 
various factors that could influence food quality and food 
safety (Wu et al., 2022). The metabolomics techniques also 
have been employed in coffee studies to investigate the cof-
fee quality and its correlated compounds to identify marker 
for coffee quality determination (Iwasa et al., 2015; Toci 
& Farah, 2014). However, these studies targeted various 
quality coffee with a wide range of final cup scores, includ-
ing “specialty” and “not specialty” grades, while there are 
more classes within the specialty grade itself based on the 
SCAA protocol, namely “very good” (80–84.99), “excel-
lent” (85–89.99) and “outstanding” (90–100) (Specialty 
Coffee Association of America, 2015). Furthermore, pre-
vious studies investigating the metabolites correlated with 
coffee quality covered different classes of compounds with 
different analytical instruments, such as LC/MS and HS-GC/
MS, in brewed coffee and powdered roasted coffee (Roc-
chetti et al., 2020; Sittipod et al., 2019, 2020). However, no 
reports are available on investigating metabolites correlated 
with coffee quality using only “specialty” grade coffee that 
could be applied to all coffee forms (green coffee beans, 
roasted coffee beans, and brewed coffee). Hence, a metabo-
lomic approach was applied to investigate the metabolites 
correlated with coffee quality, described as cup score, using 
specialty coffee Arabica from Indonesia. Metabolic profil-
ing of aqueous extracts of green beans, roasted beans, and 
brewed coffee was subjected to gas chromatography–mass 
spectrometry (GC/MS) analysis. Subsequently, a prediction 
model of cupping scores was created using orthogonal pro-
jection to latent structure (OPLS) regression analysis. Based 
on the variable importance in projection (VIP), an indica-
tor of the importance of compounds involved in construct-
ing the model, the compounds highly correlated with cof-
fee quality were suggested. The study is the first to analyze 

the correlation between metabolites and coffee quality to 
identify candidate marker compounds for quality determina-
tion using green beans, roasted beans, and brewed specialty 
Arabica.

2 � Materials and methods

2.1 � Chemicals

The chemicals used in this study are described in previ-
ous studies (Jumhawan et al., 2013; Putri et al., 2019). All 
the chemicals were of analytical grade. Methanol (99.8%), 
pyridine (99.5%), and ribitol were purchased from FUJI-
FILM Wako Pure Chemical Industries, Ltd. (Osaka, Japan). 
Chloroform (99%) was purchased from Kishida Chemicals 
(Osaka, Japan). Methoxyamine hydrochloride was purchased 
from Sigma-Aldrich (Milwaukee, WI, USA). N-Methyl-N-
(trimethylsilyl) trifluoroacetamide (MSTFA) and a standard 
alkane mixture (C10–C40) were purchased from GL Science 
Inc. (Tokyo, Japan).

2.2 � Coffee beans sample collection

All coffee beans were collected and provided by the Indone-
sian Coffee and Cocoa Research Institute (ICCRI), Jember, 
Indonesia, during the Indonesian Specialty Coffee Compe-
tition (Kontes Kopi Spesialti Indonesia). All the samples 
were coded in number (Table S1) and divided into two sam-
ple sets. The sample set 1 consisted of ten kinds of green 
(raw, not roasted) and roasted Arabica coffee beans, coded 
as A/008, A/034, A/009, A/001, A/018, A/026, A/067, 
A/025, A/063, and A/039, were used for constructing the 
model (Table S1—Sample set 1). Furthermore, the sample 
set 2 consisted thirty-five green Arabica coffee beans, were 
used to validate the findings from the model constructed 
from the sample set 1 by expanding the number of samples 
(Table S1—Sample set 2). All roasted beans were roasted 
under uniform conditions at the ICCRI following the SCAA 
cup protocol. The roasting conditions were as follows: cof-
fee beans were roasted in a Probat-Werke von Gimborn 
Maschinenfabrik GmbH model BRZ 2 (Probat, Rhein, Ger-
many) at 205 °C for 10 min until the coffee bean developed 
brown color measured according to Agtron “Gourmet” 63.0 
and then were air-cooled for 5 min. The ten kinds of roasted 
and green beans were stored at − 30 °C until metabolite 
profiling.

2.3 � Sensory analysis

The sensory analysis was conducted at the ICCRI for all the 
samples. The sensory analysis was performed within 24 h 
after the roasting process according to the standard protocol 
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published by the SCAA for certified panelists (Q-Grader). 
Ten parameters were rated from 0 to 10, with 0 indicating 
the least and ten indicating the strongest taste. The total 
cup score was obtained by accumulating the scores for all 
parameters and determining the coffee grade (Specialty Cof-
fee Association of America, 2015).

2.4 � Metabolite extraction for green and roasted 
coffee beans

Extraction was performed following the protocol described 
previously with some modifications. Coffee beans (green 
and roasted) were taken in a 50 mL tube (Yasui Kikai Co.) 
with a metal cone (Yasui Kikai Co.) and quenched using 
liquid nitrogen. The coffee beans were ground at 2000 rpm 
for 30 s using a multi-bead shocker (Yasui Kikai Co.), and 
the step was repeated three times to produce a fine coffee 
powder. Powdered coffee beans (15 mg) were transferred 
into a 2 mL tube, and three replicates were prepared (n = 3) 
for each sample. A blank was prepared, and all the steps 
were followed together with other samples. Hydrophilic 
low-molecular-weight compounds in powdered coffee 
beans were extracted using 1 mL of single-phase solvent 
mixture of methanol, ultrapure water, and chloroform at a 
ratio of 2.5/1/1 (v/v/v) containing ribitol (12 µg/mL) as an 
internal standard. The samples were incubated at 37 °C and 
1200 rpm for 30 min and centrifuged at 4 °C and 16,000×g 
for 3 min. The supernatant (900 mL) was transferred into a 
1.5 mL tube, and 400 mL of ultrapure water was added to 
the tube. The mixture was then vortexed and centrifuged at 
4 °C and 16,000×g for 3 min. The aqueous phase (200 µL) 
was transferred into a new 1.5 mL tube with a pierced cap. 
The solvent was evaporated using vacuum centrifugation 
for 50 min, followed by overnight lyophilization (Amalia 
et al., 2021).

2.5 � Coffee brew sample preparation

Coffee brew samples were prepared from ten kinds of roasted 
Arabica coffee beans, coded as A/008, A/034, A/009, A/001, 
A/018, A/026, A/067, A/025, A/063, and A/039 (Table S1—
Sample set 1). Coffee brew preparation, including weighing, 
grinding, and brewing, was performed in technical replicates 
(n = 3). Each sample weighed approximately 4 g and was 
ground using a BISTRO electric coffee grinder (BODUM; 
Trigen, Switzerland). Approximately 3.5 g of coffee pow-
der was taken in a ceramic cup, and 75 µL ribitol solution 
(12 mg/mL) was added as an internal standard. Hot water 
(temperature 93 °C) was added to the cup. The coffee brew 
was allowed to sit for 3 min and 30 s. Then, 10 mL of coffee 
brew was transferred to a 15 mL centrifuge tube. A blank 
was prepared using only hot water and an internal standard 
(ribitol 12 mg/mL).

The coffee brew (1.5 mL) was transferred to a 2 mL tube 
and centrifuged at 16,000×g for 10 min at 4 °C. The super-
natant and blank (20 µL) were transferred to a 1.5 mL tube 
with a pierced cap. For quality control (QC) purposes, 20 
µL of supernatant from the samples was collected in one 
pool by transferring it into a 2 mL tube. The sample extracts 
collected in the QC pool were homogenized, and 20 µL of 
the extract was transferred into a new 1.5 mL centrifuge 
tube with a pierced cap. The QC and blank samples were 
lyophilized overnight.

2.6 � Metabolite derivatization

The derivatization process consists of two steps, oximation 
and trimethylsilylation. The lyophilized green and roasted 
bean extracts and coffee brew were subjected to oximation 
by adding 100 µL methoxyamine hydrochloride (20 mg/mL 
in pyridine) and then vortexed and incubated at 1200 rpm 
and 30 °C for 90 min, respectively. Subsequently, 50 µL 
MSTFA was added, and the mixture was vortexed and incu-
bated at 1200 rpm and 37 °C for 30 min, respectively. The 
sample mixture (100 µL) was transferred into a vial before 
the GC/MS analysis (Amalia et al., 2021).

2.7 � GC/MS analysis

The GC/MS analysis protocol has been described previously, 
with some modifications. The samples were subjected to 
GC/MS analysis immediately after the derivatization. GC/
MS analysis was performed using GCMSQP2010 Ultra (Shi-
madzu, Kyoto, Japan) for green and roasted bean extracts 
and GCMS-TQ8030 (Shimadzu, Kyoto, Japan) for the coffee 
brew. The instruments were equipped with a 30 m × 0.25 mm 
i.d. fused silica capillary column coated with 0.25 µm Inert-
Cap 5MS/NP (GL Science, Inc., Tokyo, Japan) and an AOC-
20i/s (Shimadzu, Kyoto, Japan) as an autosampler. System 
control and data acquisition were conducted using GCMS 
solution software (Shimadzu, Kyoto, Japan). The mass 
spectrometer was tuned and calibrated before the analysis. 
A standard alkane mixture (C10–C40) was injected at the 
beginning of the retention index calculation. The derivat-
ized green and roasted bean extract samples (1 µL) were 
injected in split mode (12:1(v/v)) at an injection temperature 
of 230 °C. The derivatized coffee brew samples (1 µL) were 
injected in split mode (25:1(v/v)) at an injection temperature 
of 270 °C. All samples were injected randomly with QC 
injections (1 μL) every four or five injections. Helium was 
used as the carrier gas at a flow rate of 1.12 mL/min and 
linear velocity of 39 cm/s. The column temperature was held 
at 80 °C for 2 min, increased by 15 °C/min to 330 °C, and 
finally kept at 330 °C for 6 min. The transfer line tempera-
ture was 250 °C. The ion source temperatures were 200 °C 
and 280 °C for GCMSQP2010 Ultra and GCMS-TQ8030, 
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respectively. The ions were generated via electron ionization 
(EI) at 70 eV. EI mass spectra were recorded at 6.67 scans 
per second for GCMSQP2010 Ultra and 20 scans per sec-
ond for GCMS-TQ8030 over the mass range of m/z 85–500 
(Amalia et al., 2021).

2.8 � Data processing

In this study, the data processing procedure was carried out 
with several modifications. The chromatogram data were 
converted to the netCDF format using the GCMS Solution 
software package (Shimadzu, Kyoto, Japan). The netCDF 
files were then converted into the ABF format using the 
Reifycs Abf Converter (https://​www.​reify​cs.​com/​AbfCo​
nvert​er/). The ABF file format was then used for peak 
detection, deconvolution analysis, identification, and align-
ment using MS-DIAL version 4.18 (Lai et al., 2018; Tsug-
awa et al., 2015, 2019), a freely available software (http://​
prime.​psc.​riken.​jp/​Metab​olomi​cs_​Softw​are/​MS-​DIAL/). 
The peak detection parameters were set with a minimum 
height of 1000 amplitude and a linear weight moving aver-
age smoothing method. The smoothing level was set to 
five scans, and the average peak width was 20 scans. The 
σ-window value was set to 0.5, and the EI spectra cut-off 
was set to 200 amplitudes for the deconvolution analysis. 
The retention index of the alkane mixture (C10–C40) and 
the GL-Science DB Library (InertCap 5MS-NP, Kovats RI, 
494 records; http://​prime.​psc.​riken.​jp/​Metab​olomi​cs_​Softw​
are/​MS-​DIAL/​GCMS%​20DB_​Inert​Cap%​205MS-​NP_​GLsci​
ence.​msp) were used for peak identification. The parameters 
for peak identification and alignment were set as follows: 
retention index (RI) tolerance of 10, retention time (RT) 
tolerance of 0.5 min, m/z tolerance of 0.5 Da, EI similarity 
cut-off of 70%, and identification score of 70%. Metabolite 
annotation was conducted by comparing the mass spectra 
and RI with those of the GL-Science DB library. After peak 
detection and annotation, the heights of the detected peaks 
were normalized to those of the internal standard peaks. The 
data matrix consisted of the raw and normalized heights of 
the peaks. After creating the data matrix, metabolite filtering 
was conducted to exclude peaks that were not of biological 
origin by referring to the blank. Moreover, peaks with a rela-
tive standard deviation of more than 30% in QC and a raw 
height of less than 10,000 (green and roasted coffee beans) 
and 5000 (coffee brew) were removed. A final data matrix 
with filtered and assigned peaks was constructed and used 
for further analysis (Amalia et al., 2021).

2.9 � Multivariate analysis

The relative intensity data of the annotated compounds were 
used as explanatory variables, and the final cup score data 
were used as response variables. OPLS regression analysis 

was performed using commercially available SIMCA-
P+ version 13.0.3 (Umetrics, Umeå, Sweden). The data 
matrix was subjected to principal component analysis (PCA) 
and OPLS with auto-scale and without transformation to 
equally analyze all the obtained metabolites (van den Berg 
et al., 2006). The constructed OPLS model also evaluated 
using cross-validation ANOVA (CV-ANOVA) analysis 
(Eriksson et al., 2008).

2.10 � Quantitation of marker candidate

The quality marker candidate was quantified in the sample 
using the calibration curve of the galactinol standard pre-
pared at various concentrations. The concentrations of the 
standards were 0.02, 0.08, 0.2, 0.8, 1.6, 2.4, 3.2 and 4 µg/mL 
in ultrapure water. The sample extracts were prepared from 
green coffee beans. The standard solution and the sample 
extracts were lyophilized overnight. After derivatization, 
the standard and extract of the samples were analyzed using 
GC/MS with the same parameters as described previously, 
except that the ion monitoring mode was set at m/z 204. 
After data processing, the standard calibration curve was 
plotted, and sample quantitation and Student t-test were per-
formed using Microsoft Excel.

3 � Results and discussion

3.1 � Metabolic profiling of Arabica specialty coffee

GC/MS-based metabolic profiling was performed on aque-
ous extracts of green and roasted coffee beans and brewed 
coffee of ten kinds of specialty Arabica coffee, and found 
124 peaks detected in green coffee beans, 279 in roasted cof-
fee beans, and 134 in brewed coffee. In green coffee beans, 
there were 68 annotated metabolites, whereas, in roasted 
coffee beans, there were 72 annotated metabolites. In brewed 
coffee, there were 63 annotated metabolites, whereas the 
rest were unknown. The annotated metabolites in the three 
different sample types were classified as amino acids, sug-
ars, sugar alcohols, organic acids, and other compounds 
(Tables S2, S3, S4). Roasted coffee bean extract has the 
highest number of metabolites, as various reactions occur 
during roasting processes, such as pyrolysis, the Maillard 
reaction, and carbohydrate caramelization (Clifford et al., 
2018). These reactions can transform naturally occurring 
compounds in green coffee beans into various compounds 
that contribute to the overall aroma of coffee (Buffo, 2018; 
Clifford et al., 2018). Nevertheless, GC/MS-based metabo-
lite profiling offers more comprehensive coverage compared 
to similar biochemical composition studies, which described 
more targeted metabolites such as caffeine, sucrose, N-meth-
ylnicotinic acid, and chlorogenic acid (Farah et al., 2006; 

https://www.reifycs.com/AbfConverter/
https://www.reifycs.com/AbfConverter/
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/GCMS%20DB_InertCap%205MS-NP_GLscience.msp
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/GCMS%20DB_InertCap%205MS-NP_GLscience.msp
http://prime.psc.riken.jp/Metabolomics_Software/MS-DIAL/GCMS%20DB_InertCap%205MS-NP_GLscience.msp
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Perrone et al., 2008). Therefore, numerous metabolites could 
be used as explanatory variables in multivariate analysis to 
investigate the coffee quality in different samples to cor-
roborate previous studies. The relative intensity data of the 
detected metabolites were used for multivariate analysis. 
PCA was performed to examine the data structure before 
the final cup score model construction by OPLS regression 
analysis. The data showed good reproducibility since the 
sample replicates from the same class and the quality control 
replicates were clustered together (Figs. S1, S2, S3). The 
PCA score plot of green beans (Fig. S1) showed four dif-
ferent clusters. The samples coded as A/008, A/001, A/018, 
A/009, and A/026 clustered together, while A/034 and A/063 
clustered at center of axis. The same result also showed that 
the sample coded as A/067 and A/39 clustered together, and 
A/025 was separated from the rest of the samples. In the 
PCA score plot of roasted beans (Fig. S2), A/008 and A/034 
were clustered together at the left axis of PC1, while A/026 
and A/025 at the right axis of PC1. The sample coded as 
A/001, A/018, A/009, A/067, and A/039 at the middle of the 
axis of the roasted beans’ PCA score plot. The PCA score 
plot of brewed coffee (Fig. S3) showed two different clusters 
where A/025 were separated from the rest of samples in 
which clustered together. Although each sample stage has 
different clustering dynamics, the PCA result of green cof-
fee beans, roasted coffee beans, and brewed coffee showed 
similar pattern where A/008 which has the highest cup score 
was separated and located at opposite axis to A/025 which 
has relatively lower cup score. Further, the data were used 
for OPLS regression analysis to construct a model between 
metabolite profile and cupping score.

3.2 � Selection of quality marker candidates 
for Arabica specialty coffee

OPLS regression analysis was performed to create a final 
cup score model with the final score of the cupping test as 
a response variable and the metabolites detected in green 
coffee beans, roasted coffee beans, and brewed coffee as 
explanatory variables (Figs. 1, 2, 3). The OPLS multivari-
ate method was used to provide better interpretability than 
partial least squares (PLS) analysis by removing variation 
from X that is not correlated to Y (Trygg & Wold, 2002). 
Moreover, the OPLS method has been applied in food 
metabolomics research to investigate important metabolites 
correlated with Japanese sake, soy sauce, and civet coffee. 
Based on these studies, the OPLS method could find the 
metabolites that could predict the quality of sake, soy sauce, 
and marker to differentiate civet coffee from regular coffee 
(Jumhawan et al., 2016; Mimura et al., 2014; Yamamoto 
et al., 2014). Hence, the same OPLS method was used to 
explore the metabolites that could predict the coffee quality 
as well. Figures 1A, 2A, and 3A showed the OPLS regres-
sion results for green, roasted, and brewed coffee, respec-
tively. All the OPLS models had R2 and Q2 values greater 
than 0.9, indicating that the model had a good correlation 
between the final score and the explanatory metabolites of 
each stage of the coffee sample (green beans, roasted beans, 
and brewed) (Alexander et al., 2015; Eriksson et al., 2006; 
Varmuza & Filzmoser, 2009; Worley & Powers, 2013). Fur-
thermore, the OPLS-R model evaluation using CV-ANOVA, 
showed that the constructed model also significant as shown 
in low p-value (Table S5) (Eriksson et al., 2008).

Fig. 1   OPLS regression model 
using green coffee beans of 10 
specialty coffee with a score 
range of 80.25–86.75. A The 
OPLS model shows good linear-
ity and robustness based on the 
R2, Q2, and RMSEE values. B 
The important metabolites with 
a VIP value of more than 1.5. 
Twelve important metabolites 
showing positive (blue) and 
negative correlation (gray). 
Eight metabolites positively 
correlated with cup score, 
including unknown_45, galac-
tinol, unknown_18, glutamic 
acid, caffeine, unknown_2, 
trehalose, and unknown_16. 
Four metabolites with negative 
correlation are unknown_34, 
shikimic acid, unknown_15, and 
alanine
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The metabolites correlated with the cup score model in 
each coffee sample were sorted based on their VIP values 
(Tables S6, S7, S8). VIP is a parameter that shows the 
cumulative measure of the influence of individual metabo-
lites on a model (Galindo-Prieto et al., 2014). Metabolites 
with VIP values greater than 1 are considered important 
for the model (Ikram et al., 2020; Mabuchi et al., 2019). In 
this study, metabolites with VIP values of more than 1.5 
in different stages of coffee samples (green beans, roasted 
beans, and brewed) were selected as potential markers 
for coffee quality. Twelve metabolites in the green coffee 
beans were correlated with cup scores, consisting of anno-
tated and unknown metabolites with positive or negative 

correlations (Fig. 1B). Galactinol, glutamic acid, caffeine, 
trehalose, and unknown compound number 2, 16, 18, and 
45 were the metabolites that exhibited a positive correla-
tion with the cup score. Meanwhile, shikimic acid, ala-
nine, and unknown compounds 15 and 34 were negatively 
correlated with the cup score. Thirty-one metabolites in 
roasted beans correlated with the cup score, and more than 
half of the list were unknown metabolites (Fig. 2B). The 
unknown metabolites, coded as unknown number 191, 
101, 55, 54, 128, 124, 99, 125, 135, 20, 203, 88, 82, 67, 
81, 175, and 46, have positive correlation with coffee cup 
scores in roasted bean samples. Various sugar compounds 
such as fructose, glucose, galactose, tagatose, mannose, 

Fig. 2   OPLS regression model 
using roasted coffee beans of 
10 specialty coffee with a score 
range of 80.25–86.75. A The 
OPLS model shows good linear-
ity and robustness based on the 
R2, Q2, and RMSEE values. B 
The important metabolites with 
a VIP value of more than 1.5. 
Thirty-one important metabo-
lites showed positive (blue) and 
negative correlations (gray). 
Most sugar compounds corre-
late positively with cup scores, 
while fumaric acid correlates 
negatively

Fig. 3   OPLS regression model 
using brewed coffee of 10 spe-
cialty coffee with a score range 
of 80.25–86.75. A The OPLS 
model shows good linearity 
and robustness based on the 
R2, Q2, and RMSEE values. B 
The important metabolites with 
a VIP value of more than 1.5. 
Sixteen important metabolites 
showed positive (blue) and 
negative correlations (gray). 
Most sugar compounds corre-
late positively with cup scores. 
Fumaric acid and unknown_53 
correlates negatively with the 
cup score
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allose, turanose, galactose + glucose, psicose + tagatose, 
and allose + mannose were found to be positively corre-
lated with coffee cup scores. The sugar alcohol galactinol 
and another compound, dihydroxyacetone, were also found 
to be positively correlated. Fumaric acid was the only 
compound with a negative correlation with the cup score 
in roasted coffee beans. Sixteen metabolites were highly 
correlated with cup scores in brewed coffee (Fig. 3B). 
Similar to roasted beans, several sugar compounds, such 
as fructose, glucose, galactose, tagatose, mannose, allose, 
sorbose, galactose + glucose, and allose + mannose, along 
with galactinol, were positively correlated with cup scores. 
Unknown metabolites coded as unknown number 50, 38, 
30, and 66 also have positive correlation with cup scores. 
Fumaric acid was also found to be negatively correlated 
with the unknown compound number 53. Based on this 
result, numerous compounds from various classes, such as 
amino acids, organic acids, sugar alcohols, and sugar com-
pounds, correlate with coffee quality. Coffee-related com-
pounds, such as caffeine, trigonelline (N-methylnicotinic 
acid), sucrose, and chlorogenic acid, were also detected. 
However, only caffeine is present in one of the three OPLS 
models (green coffee beans). Therefore, the metabolites 
found in this study may complement previous coffee qual-
ity studies that targeted coffee-related compounds (Farah 
et al., 2006; Perrone et al., 2008).

Caffeine is a heat-stable alkaloid responsible for 10% of 
the bitter taste of coffee beverages (Buffo, 2018). In this 
study, caffeine was positively correlated with coffee quality 
in the green coffee bean model. Caffeine is often used to 
evaluate coffee quality, and several studies have investigated 
the correlation between caffeine content and cup quality 
(Belay et al., 2008; Farah et al., 2006; Franca et al., 2005). 
Previous studies have found a positive correlation between 
caffeine and high-quality green coffee beans, which is con-
sistent with the results of this study. In addition, a previous 
study found that caffeine, to a lesser extent than trigonelline 
and 3,4-dicaffeoilquinic acid, had a positive correlation with 
coffee cup quality in green beans (Farah et al., 2006).

Glutamic acid and alanine are amino acids that correlated 
with coffee quality in green coffee beans. Glutamic acid and 
alanine are the main amino acids in green coffee beans and 
possibly influence coffee quality because amino acids are 
flavor precursors for flavor development during roasting 
(Buffo, 2018; Hu et al., 2001). During the roasting process, 
amino acids degrade and form volatile compounds, which 
determine the coffee color and antioxidant activity (Buffo, 
2018; Poisson et al., 2009; Yu et al., 2013). Numerous stud-
ies have been conducted on how glutamic acid and alanine 
contribute to the formation of volatile compounds, such as 
pyrazines, in the Maillard reaction (Poisson et al., 2009; Yu 
et al., 2013). However, it remains unclear why opposite trend 
was observed between glutamic acid and alanine for coffee 

quality. Therefore, further studies are necessary to explain 
the role of amino acids in the quality of green coffee beans.

Organic acids, namely shikimic acid in green coffee beans 
and fumaric acid in roasted coffee beans and brewed cof-
fee, were negatively correlated with coffee quality in this 
study. This is the first correlation report between shikimic 
acid content and coffee quality. Fumaric acid is an aliphatic 
acid naturally present in coffee beans and can be formed 
by the degradation of malic acid during the roasting pro-
cess (Farah & De Lima, 2019; Jham et al., 2002). To the 
best of our knowledge, no previous reports have described 
the correlation between fumaric and coffee quality. Organic 
acids in coffee beans play various roles in coffee acidity 
and flavor. Organic acids could also be desirable or undesir-
able depending on their predominance in coffee (Farah & 
De Lima, 2019). Several organic acids have been character-
ized in terms of flavor and acidity intensity (Farah & De 
Lima, 2019; Jham et al., 2002). However, fumaric acid and 
shikimic acid have not yet been characterized, and further 
investigations related to these acids are required.

Carbohydrates are a major component of green coffee 
beans and make up 50–60% of their dry weight (Arya & 
Rao, 2007; Buffo, 2018; Farah, 2012). Carbohydrates are 
also precursors for the Maillard reaction and contribute to 
the organoleptic appeal of roasted coffee and coffee bever-
ages, such as color, aroma, acidity, and viscosity (Arya & 
Rao, 2007; Buffo, 2018; Farah, 2012; Redgewell & Fischer, 
2006). Moreover, carbohydrates influence the sweetness of 
coffee beverages (Sunarharum et al., 2014). Hence, carbo-
hydrates and sugar derivatives are important constituents 
that correlate with coffee quality. In this study, trehalose 
and galactinol levels were positively correlated with coffee 
quality in green coffee beans. Trehalose and galactinol previ-
ously detected in coffee showed a relation with geographical 
origin or postharvest process (Amalia et al., 2021; da Silva 
Taveira et al., 2014; Miao et al., 2022; Putri et al., 2019). 
However, no study has discussed the relationship between 
these metabolites and coffee quality. In roasted beans and 
brewed coffee, various monosaccharides, disaccharides, 
and galactinol positively correlate with the coffee quality. 
Sugar compounds provide coffee beverages with sweet taste 
perceptions (Seninde & Chambers, 2020). The sugar com-
pounds found in roasted beans might have resulted from the 
degradation of carbohydrates in green coffee beans through 
pyrolysis and caramelization during the roasting process 
(Buffo, 2018; Cordoba et al., 2019). Since sugar compounds 
are soluble in water, they could be detected further in brewed 
coffee and influence the taste of coffee beverages (Cordoba 
et al., 2019; Flament, 2001).

Among all the selected metabolites in the models of dif-
ferent stages of coffee samples, galactinol consistently cor-
related positively with the final coffee cup score. Thus, fur-
ther analysis was conducted to investigate the correlation of 
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galactinol relative intensity with seven different taste attrib-
utes at different stages of coffee samples using the Pearson 
correlation coefficient (Table 1). The results showed galacti-
nol had a significant correlation (p-value = 0.05) with several 
taste attributes in the cupping test of all stages of coffee sam-
ples. In green coffee beans, galactinol was highly correlated 
with flavor, aftertaste, acidity, and overall attributes. Galac-
tinol was also highly correlated with fragrance/aroma, fla-
vor, aftertaste, acidity, and overall attributes in both roasted 
beans and brewed samples. The finding was also supported 
by an OPLS regression analysis of these attributes using 
different stages of coffee samples, in which galactinol had a 
VIP value of more than 1.5 (data not shown). Furthermore, 
the galactinol quantification was performed by constructing 
the calibration curve of galactinol standard (Fig. S4). The 
intensity of galactinol detected was 3653–805,643 unit in 
the range of 0.02–4 μg of galactinol. The calibration curve 
showed good correlation with R2 = 0.99 and produced the 
formula that correlates intensity and the amount of galac-
tinol. Then the formula is used to calculate the galactinol 
amount in the sample divided by the volume of green cof-
fee beans extract before spin dry (200 μL). Based on the 

calibration curve formula, the galactinol content in the green 
coffee bean samples with the highest and lowest scores 
could be obtained, 7.02 μg/mL and 0.31 μg/mL respectively 
(Fig. 4). The results showed that the highest score samples 
had 22 times higher galactinol content than the lowest score 
samples.

3.3 � Applicability of galactinol for quality 
determination of specialty Arabica green bean

Galactinol was detected in coffee at different stages, with 
a consistent correlation with the coffee cup score based 
on previous OPLS results. Hence, galactinol’s robustness 
and applicability as a coffee quality marker were further 
investigated. Moreover, determining coffee quality based 
on the metabolome profile of green coffee beans could be 
an efficient screening method. Therefore, OPLS regression 
analysis was conducted using the metabolite profiles of 35 
different kinds of green beans as the validation sample set 
(Table S1). The final score model for green beans showed 
high correlation and prediction performance (R2 = 0.96, 
Q2 = 0.865) (Fig. 5A). The model also shown as significant 

Table 1   Pearson correlation 
analysis of galactinol content 
and the coffee taste attributes 
in different stages of coffee 
samples

*p-value < 0.05

Sample Fragrance/aroma Flavor Aftertaste Acidity Body Balance Overall Final score

Green bean 0.582 0.914* 0.955* 0.77* 0.395 − 0.219 0.704* 0.754*
Roasted bean 0.806* 0.916* 0.882* 0.868* 0.523 − 0.247 0.796* 0.831*
Brewed coffee 0.766* 0.972* 0.947* 0.909* 0.415 − 0.422 0.839* 0.718*

Fig. 4   Quantification of galac-
tinol concentration. The quanti-
fication of galactinol concentra-
tion in the green coffee bean 
sample with a high cup score 
and the sample with a lower cup 
score. The concentration differ-
ence is statistically significant 
according to the Student t-test 
method with a p-value < 0.01
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by CV-ANOVA analysis (Table S5). The result showed that 
galactinol consistently had a VIP value greater than 1.5 
along with other 18 metabolites. Moreover, galactinol was 
positively correlated with the final cup test score, which is 
consistent with the previous model (Fig. 5B). The result 
indicates that galactinol could be used as a quality marker 
for rapid screening of green coffee beans and complement-
ing cupping tests by skilled panelists.

The study found that galactinol accumulated in green 
coffee beans, roasted coffee beans, and brewed coffee and 
was correlated with coffee’s final cup score based on OPLS 
regression analysis. Hence, galactinol could be suitable as 
an Arabica specialty coffee quality marker. Since galactinol 
can be detected early, i.e. in green coffee beans, it has the 
potential to be used as a parameter for early screening of cof-
fee quality before the cupping test. A validation study using 
a larger sample set of green coffee beans demonstrated the 
robustness of galactinol for this purpose. Although galacti-
nol showed a good correlation with coffee quality in terms of 
the final score, no previous literature describes galactinol’s 
role in coffee taste in general. This study could be used as a 
foundation for further studies on galactinol in coffee science 
in the future.

4 � Conclusion

A GC/MS-based metabolomics approach was used to 
determine the potential quality marker candidate for 
specialty Arabica coffee in three different coffee stages: 
green coffee beans, roasted coffee beans, and brewed cof-
fee. In this study, the OPLS regression analysis suggested 

galactinol as a quality marker candidate for Arabica coffee 
at different coffee production stages (green bean, roasted 
bean, and brewed coffee). The differences in galactinol 
concentrations between higher and lower cup scores within 
the specialty coffee Arabica grade could be detected at an 
early stage, i.e. in green coffee beans. Hence, there is a 
possibility that galactinol could be used as a quality maker 
to provide an early screening method for skilled panelists 
that could complement the cupping test.
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