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by repeated exposure to drugs that are misused have been 
identified. Treatments that have targeted these mechanisms 
have not, however, been effective for many SUDs (Forray & 
Sofuoglu, 2014; Nestler, 2022; Volkow et al., 2016). Novel 
and more efficient means to identify relevant brain mecha-
nisms that are altered by repeated drug exposure might lead 
to more effective treatment avenues.

Metabolomics is the large-scale analysis of small mol-
ecules (< 1500 Da) within cells, biofluids, tissues, or organ-
isms (Fiehn, 2002; Mamas et al., 2011; Patti et al., 2012; 
Shulaev, 2006; Zhou et al., 2012). There are two main 
approaches within metabolomic research: targeted and 
untargeted. Targeted metabolomics quantitatively mea-
sures a limited number of known metabolites and is car-
ried out using a list of target analytes and prepared external 

1  Introduction

There is an urgent need for new prevention and treatment 
strategies that can reduce the significant medical, financial, 
and emotional burden caused by substance use disorders 
(SUDs). It is now well accepted that SUDs are disorders of 
the brain, and some of the brain mechanisms that are altered 
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Abstract
Introduction  Metabolomics produces vast quantities of data but determining which metabolites are the most relevant to the 
disease or disorder of interest can be challenging.
Objectives  This study sought to demonstrate how behavioral models of psychiatric disorders can be combined with metabo-
lomics research to overcome this limitation.
Methods  We designed a preclinical, untargeted metabolomics procedure, that focuses on the determination of central metab-
olites relevant to substance use disorders that are (a) associated with changes in behavior produced by acute drug exposure 
and (b) impacted by repeated drug exposure. Untargeted metabolomics analysis was carried out on liquid chromatography-
mass spectrometry data obtained from 336 microdialysis samples. Samples were collected from the medial striatum of male 
Sprague-Dawley (N = 21) rats whilst behavioral data were simultaneously collected as part of a (±)-3,4-methylenedioxy-
methamphetamine (MDMA)-induced behavioral sensitization experiment. Analysis was conducted by orthogonal partial 
least squares, where the Y variable was the behavioral data, and the X variables were the relative concentrations of the 737 
detected features.
Results  MDMA and its derivatives, serotonin, and several dopamine/norepinephrine metabolites were the greatest predic-
tors of acute MDMA-produced behavior. Subsequent univariate analyses showed that repeated MDMA exposure produced 
significant changes in MDMA metabolism, which may contribute to the increased abuse liability of the drug as a function 
of repeated exposure.
Conclusion  These findings highlight how the inclusion of behavioral data can guide metabolomics data analysis and increase 
the relevance of the results to the phenotype of interest.
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standards. Since the metabolites of interest must be known a 
priori, targeted metabolomics is partially hypothesis-driven, 
which prevents the discovery of novel or unexpected metab-
olites that might be relevant. Untargeted metabolomics, in 
contrast, aims to semi-quantitively measure all metabolites 
detectable within the sample. Thus, untargeted metabolo-
mics is hypothesis-generating, and can be used as an effi-
cient, high-throughput means for the potential discovery of 
novel diagnostic, prognostic, or therapeutic biomarkers of 
disease.

There have been significant advances in metabolo-
mics research recently and both targeted and untargeted 
approaches have been used in a variety of applications 
including pharmacology, toxicology, food science and nutri-
tion, and bioengineering (Giera et al., 2022). However, the 
application of metabolomics for the study of psychiatric dis-
orders, particularly SUD, is still in its infancy. Several stud-
ies have been successful in identifying metabolomic changes 
associated with SUD in human blood/urine samples, or 
associated with drug exposure in laboratory animals, but the 
relevance of many of these metabolomic changes is limited 
(for reviews see Ghanbari and Sumner, 2018; Mussap et al., 
2020; Sethi & Brietzke, 2016; Wang et al., 2016; Zaitsu et 
al., 2016). For example, in human studies, the analysis of 
peripheral metabolites from blood/urine samples may not 
provide the best insight into the underlying neurobiological 
mechanisms of psychiatric disorders such as SUDs. Addi-
tionally, studies in human subjects are limited because of 
the ethical constraints of repeatedly administering drugs 
with misuse potential and the inability to adequately con-
trol for critical environmental and genetic variables. These 
limitations are not relevant to preclinical studies. Nonethe-
less, only a small number of preclinical studies have exam-
ined the effect of acute versus repeated drug exposure on 
the metabolome, and little to no information about drug-
produced changes in metabolite levels as a function of time 
have been obtained. Moreover, valuable behavioral data is 
rarely collected or utilized, which we suggest can be used 
to guide metabolomics data analysis in order to increase the 
relevance of the results to the disorder phenotype of interest 
and improve translation.

To this end, we have designed a preclinical, untargeted 
metabolomics procedure that focuses on the determination 
of central metabolites that are (a) associated with changes in 
behavior produced by acute drug exposure and (b) impacted 
by repeated drug exposure. A key component of this proce-
dure is the use of microdialysis as the sampling method (Che-
fer et al., 2009; van Mever et al., 2021; Westerink & Cremers, 
2007). Brain microdialysis involves the perfusion of artifi-
cial cerebrospinal fluid through a small probe equipped with 
a semi-permeable membrane that has been implanted into 
the brain region of interest. Neurotransmitters, metabolites, 

and other small molecules present in the extracellular space 
diffuse across this membrane and into the perfusate, which 
is subsequently analyzed for its constituents, typically by 
high performance liquid chromatography (HPLC) coupled 
with various detectors. As a sampling procedure for metabo-
lomics, microdialysis offers several important advantages. 
First and foremost, microdialysis permits neurochemical 
samples to be collected from awake, freely moving sub-
jects, which allows for the concurrent collection of valuable 
behavioral data. Second, microdialysis provides impor-
tant temporal information since samples can be collected 
every ~ 5–30  min. Lastly, microdialysis only samples the 
extracellular fluid from a relatively discrete brain region, 
and therefore, offers results that are much more relevant to 
neurotransmission and behavior compared to whole tissue 
analysis.

As a proof of concept, we employed this procedure to 
study the effects of repeated exposure to the popular rec-
reational drug of misuse, (±)-3,4-methylenedioxymeth-
amphetamine (MDMA) on the neuro-metabolome of 
rats. Repeated intermittent exposure to MDMA increased 
MDMA-produced locomotor hyperactivity and facilitated 
the acquisition of MDMA self-administration, indicat-
ing that repeated exposure had sensitized these behavioral 
responses (van de Wetering & Schenk, 2017). This was not 
due to changes in MDMA-induced extracellular concentra-
tions of serotonin (5-HT) or MDMA in the striatum, sug-
gesting that other neurochemical mechanisms may be more 
important for the development of sensitization to the effects 
of MDMA (van de Wetering et al., 2022). In the current 
study, we use this untargeted, behavioral metabolomics pro-
cedure to identify other potential neurochemical correlates 
of sensitized MDMA-produced behavior following repeated 
exposure in rats.

2  Methods

In this study, untargeted metabolomics analysis was carried 
out on liquid chromatography–mass spectrometry (LC-MS) 
data obtained from 336 microdialysis samples collected 
during a previously conducted behavioral sensitization 
experiment in rats (van de Wetering et al., 2022). The ani-
mal treatment and sample collection/analysis methods are 
summarized below.

2.1  Animals, treatments, and microdialysis

As previously reported (van de Wetering et al., 2022), 
adult, male Sprague-Dawley rats (n = 21) were stereotaxi-
cally implanted with intracerebral guide cannula (9.14. IC, 
Microbiotech, Sweden) in the medial striatum. One week 
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later, rats began an 8-day MDMA sensitization experi-
ment. On days 1–5, rats were placed into locomotor activ-
ity chambers (42 × 42 × 30 cm; Med Associates Inc., USA; 
model ENV-515) for 30  min prior to receiving an intra-
peritoneal (i.p.) injection of physiological saline (n = 11) 
or 10 mg/kg MDMA (n = 10) and remained in these cham-
bers for an additional 60 min thereafter. This pre-treatment 
regimen was used as it has previously been shown to reli-
ably induce behavioral sensitization as well as enhance the 
acquisition of MDMA self-administration (van de Weter-
ing & Schenk, 2017; Wetering & Schenk, 2020). On the 
8th day, microdialysis probes (MAB 9.14.3, Microbiotech, 
Sweden) were inserted into the guide cannula and rats were 
returned to the locomotor activity chambers. After a 3-hour 
stabilization period, microdialysis samples were collected 
at 30 min intervals for 8 h using a microinfusion pump (HD 
2000 infusion, Harvard Apparatus) with a flow rate of 0.5 
µL/min. During this time, all subjects received ascend-
ing doses of MDMA (0.0, 5.0, 10.0, mg/kg, i.p.) at 2-hour 
intervals. Locomotor activity was simultaneously recorded 
throughout and summed into 30 min intervals. These doses 

of MDMA produce moderate levels of locomotor activity 
following acute exposure and behavioral sensitization in 
response to these doses was apparent in MDMA pre-treated 
animals (van de Wetering & Schenk, 2017; Wetering & 
Schenk, 2020).

2.2  Sample preparation and LCMS analysis

As previously reported (van de Wetering et al., 2022), 
2.5 µL of internal standard (100 nM D2-5-HT), 7.5 µL of 
borate buffer (sodium tetraborate, 100 nM), and 7.5 µL of 
BzCl (diluted to 5% in acetonitrile) was added to each 15 
µL microdialysate sample, with mixing in between each 
addition, and then stored at -80 °C until analysis. Analysis 
was carried out using 30 µL of derivatized sample injected 
onto a Poroshell 120 SB-Aq 2.7 μm column (2.1 × 100 mm; 
Agilent Technologies) installed in an Agilent Technologies 
(Santa Clara, CA) 1260 HPLC connected to a 6530 quad-
rupole time-of-flight (Q-TOF) LC-MS equipped with a Jet-
Stream electrospray ionization (ESI) source, using settings 
as previously described (van de Wetering et al., 2022).

2.3  Data processing

LC-MS metabolomics data were processed using the open-
source software, MZmine (v2.51) (Li et al., 2018; Myers 
et al., 2017; Pluskal et al., 2010). Data processing param-
eters are shown in Table 1. Parameters were optimized to 
ensure accurate automated separation and integration of the 
internal standard (D2-5-HT) as well as some known analytes 
(5-HT, MDMA) that were quantified using targeted meth-
ods in our previous study (van de Wetering et al., 2022). 
Features that were not detected in at least 50% of samples 
were excluded from further analysis. The final feature list 
contained 737 features.

2.4  Statistical analysis

Principal components analysis (PCA) was used to provide 
an initial overview of the dataset. Because PCA is an unsu-
pervised method that aims to explain the maximum variance 
in the data, differences between two treatments groups (e.g., 
drug-treated vs. drug naïve) will only be revealed if the 
between-group variance exceeds the within-group variance, 
which is often not the case with untargeted metabolomics 
data (Álvarez-Sánchez et al., 2010; Álvarez-Sánchez et al., 
2010; Worley and Powers, 2013). Furthermore, our data set 
contains group × time-course metabolomics and behavioral 
data, which no single analysis is capable of fully describing.

Therefore, a two-step analytical procedure was carried 
out to determine which metabolites are of interest. First, 
in order to identify metabolites that were associated with 

Table 1  MZmine data processing parameters
Mass detection (centroid):

Noise level: 104

Chromatogram builder 
(ADAP):

Minimum group size in # scans: 3
Group intensity threshold: 104

Minimum highest intensity: 104

 m/z tolerance: 0.02 m/z
Deconvolution (local minimum 
search):

m/z center calculator: median
Chromatographic threshold: 35%
Search minimum in RT range: 
0.01 min
Minimum relative height: 5%
Minimum absolute height: 104

Minimum ratio of peak top/edge: 2
Peak duration range: 0.02–0.5 min

Isotope peak grouper:
m/z tolerance: 0.005 m/z
RT tolerance: 0.01 min absolute
Monotonic shape: yes
Maximum charge: 2
Representative isotope: lowest m/z

Alignment (join aligner):
m/z tolerance: 0.02 m/z
Weight for m/z: 3
RT tolerance: 0.25 min absolute
Weight for RT: 2

Gap-filling (same RT and m/z 
range):

m/z tolerance: 0.01 m/z
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al., 2015; Wheelock & Wheelock, 2013). Univariate testing 
was carried out using GraphPad Prism (v9.1.0, GraphPad 
Software, San Diego, California USA), with the level of sig-
nificance set as p < .05.

2.5  Metabolite annotation and LC-MS/MS

Select metabolites of interest were identified or annotated 
using external standards or targeted LC-MS/MS, respec-
tively. For LC-MS/MS, microdialysate samples were 
pooled and 10 µL was analyzed in duplicate using the same 
chromatography method as previously described (van de 
Wetering et al., 2022) and the following targeted Q-TOF 
ESI-MS/MS parameters: positive ion mode; gas tempera-
ture, 275 °C; gas flow, 8 L/m; nebulizer, 30 psi; capillary 
voltage, 2750  V; nozzle voltage, 0  V; fragmentor volt-
age, 130 V; acquisition rate, 2 spectra/s; mass range, m/z 
50–500; collision-induced dissociation energies, 10, 20, and 
40 eV. The resulting fragmentation patterns were compared 
to those recorded in the METLIN database (Smith et al., 
2005) and with two previous studies that have character-
ized the MS/MS fragmentation of several BzCl-derivatized 
metabolites in microdialysis samples (Song et al., 2012; 
Wong et al., 2016).

3  Results

An overview of the full data set (737 features detected 
across 336 samples) was provided by PCA (R2X = 0.91, 
Q2 = 0.85). Figure 1 A shows the resulting 3D scores plot, 
which plots each sample’s score on the first 3 components 
(T[1–3]). Here, samples that cluster together represent those 
with a similar metabolomic profile. Some minor outliers 
were present, as determined by the ellipse/sphere repre-
senting the 95% confidence interval for Hotelling’s T2 test. 

changes in behavior produced by acute drug exposure, an 
orthogonal partial least squares (OPLS) model was fit-
ted with the Y variable coded as the measured locomotor 
response and the relative concentrations of each detected 
feature/metabolite as X variables (Trygg & Wold, 2002; 
Wold et al., 1998). Variable importance on projection (VIP) 
scores were then used to determine which variables have 
the greatest impact on the model, with 1 being the threshold 
value (Galindo-Prieto et al., 2014, 2015). Second, in order 
to determine which metabolites were impacted by repeated 
drug exposure and differed as a function of MDMA pre-
treatment group, 2 (pre-treatment group: saline, MDMA) 
× 16 (time: 0–480  min) analysis of variance (ANOVA), 
with time as a repeated measure, were carried out on select 
metabolites of interest (as determined by step one), fol-
lowed by Šidák-corrected multiple comparisons.

All metabolomics data were normalized to the internal 
standard peak area. For multivariate analyses, data were 
log-transformed in order to achieve a normal distribution, 
and Pareto scaled so as to avoid highly abundant exogenous 
compounds such as MDMA from dominating the statisti-
cal models, as is recommended for MS metabolomics data 
(Livera et al., 2015; Sysi-Aho et al., 2007; van den Berg 
et al., 2006; Veselkov et al., 2011; Wheelock & Wheelock, 
2013). Multivariate analyses were carried out using Soft 
Independent Modelling of Class Analogies (SIMCA; v17, 
Umetrics, Umeå Sweden). Both PCA and OPLS models 
were autofitted by SIMCA, and the default K-fold cross-
validation procedure was performed. The overall fit of the 
model was determined by examining the cumulative R2X 
and R2Y, which represents the fraction of explained varia-
tion in X and Y, respectively. The predictive power of the 
model was assessed by examining Q2, which represents the 
fraction of variation explained by the cross-validated model. 
R2 and Q2 values that are relatively similar and above 0.5 
represent a good model (Szymańska et al., 2012; Triba et 

Fig. 1  Results of PCA on LC-MS 
metabolomics data collected from 
336 microdialysis samples. a) 
3D scores plot of the first three 
components with samples shaded 
according to acute MDMA dose 
(baseline [BL; green], 0.0 [blue], 
5.0 [yellow], 10.0 [red] mg/
kg). Ellipse/sphere represents 
Hotelling T2 (95%). b) Histo-
gram showing variable loadings 
for component 3 as a function 
of retention time. R2X values of 
each component are shown at the 
bottom of each graph
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the OPLS model using these criteria, after filtering for non-
unique metabolites (i.e., adducts, fragments) and a cluster of 
metabolites whose relative concentrations were impacted by 
ion suppression due to co-elution with the highly abundant 
MDMA. Of the metabolites/compounds that were detected 
in our samples, the strongest predictors of MDMA-induced 
locomotor activity were MDA, followed by MDMA, 
HMMA, 3-MT, 5-HT, and VMA. DOPAC was also a strong 
negative predictor of locomotor activity (VIP = 1.84) but 
had high orthogonal variation. Several unidentified/anno-
tated metabolites were also predictive of locomotor activity.

To determine which of these metabolites were impacted 
by repeated MDMA exposure, separate two-way ANOVAs 
(treatment × time) followed by Šidák-corrected multiple 
comparisons were used to assess changes in the relative 
concentration of these metabolites of interest as a func-
tion of MDMA pre-treatment group. Significant interaction 
effects were found for MDA, F(15, 285) = 1.87, p = .0256, 
and HMA, F(15, 285) = 4.08, p < .0001, and multiple com-
parisons indicated significantly higher MDMA-produced 
MDA and HMA concentrations were present in the MDMA 
pre-treated group at later time points (p < .05; Fig. 3).

3.1  Metabolite annotation

Ions detected at m/z 298.14, 385.15, and 394.12 were 
identified as the protonated molecular ions of benzoylated 
MDMA, 5-HT, and DOPAC + NH4, respectively, with the 
use of external standards. Targeted MS/MS was used to 
annotate other metabolites of interest in pooled microdi-
alysate samples (Fig.  4). The ion at m/z 384.13 produced 
a fragmentation pattern similar to MDMA and was anno-
tated as MDA, while m/z 404.19 was annotated as HMMA, 
having produced a unique fragment at m/z 269.12, which 
would be expected if it fragmented in the same location 
as both MDMA and MDA. The ion detected at m/z 376.15 
was annotated as benzoylated 3-MT; the primary product 

No grouping was apparent on components 1 or 2 based on 
any experimental manipulation indicating that the primary 
variation in the dataset was uninduced. Clear grouping of 
the data along component 3 was observed based on acute 
MDMA dose, however. Figure 1B shows a histogram plot-
ting the loading of each variable on component 3 (p[3]) 
as a function of LC-MS retention time. Several variables 
had a strong loading on component 3 and were driving 
the aforementioned grouping of samples based on acute 
MDMA dose. These included MDMA itself, 3,4-methyl-
enedioxyamphetamine (MDA), 3,4-dihydroxymethamphet-
amine (HHMA), 4-hydroxy-3-methoxymethamphetamine 
(HMMA), 4-hydroxy-3-methoxyamphetamine (HMA), 
5-HT, 3-methoxytyramine (3-MT), vanillylmandelic acid 
(VMA), and 3,4-dihydroxyphenylacetic acid (DOPAC). 
Note that the highly abundant exogenous compounds such 
as MDMA and MDA had multiple detected adducts and 
dimers (e.g., M + Na, 2M + H, 2M + Na etc.) as well as 
several fragments generated from in-source fragmentation 
(e.g., m/z 105 – benzoyl fragment).

In order to determine which metabolites were dose-
dependently associated with acute, MDMA-produced 
behavior over time, an OPLS model was fitted to the full 
data set with the Y variable coded as the locomotor activity 
(R2Y = 0.60, R2X = 0.57, Q2 = 0.46). Figure 2 A shows the 
resulting scores plot, where t[1] represents the predictive 
component and to[1] represents the first orthogonal compo-
nent. Clear grouping of samples according to acute MDMA 
dose was observed along the predictive component as well 
as large orthogonal variation. Figure 2B shows the loadings 
plot, where each variable is plotted as a function of its pre-
dictive (p[1]) and orthogonal (po[1]) loadings. The variables 
that were the most strongly predictive of locomotor activity 
while also having little orthogonal variation, as determined 
by having predictive VIP scores above 1 and orthogonal 
VIP scores below 1, are highlighted in red. Figure 3 shows 
a summary of the metabolites of interest as identified by 

Fig. 2  Results of the OPLS model 
assessing variables predictive 
of locomotor activity. a) Scores 
plot showing samples shaded 
according to acute MDMA dose 
(baseline [BL; green], 0.0 [blue], 
5.0 [yellow], 10.0 [red]). Ellipse 
represents Hotelling T2 (95%). 
b) Loadings plot with variables 
of interest highlighted in red as 
determined by predictive-VIP 
scores > 1 and orthogonal-VIP 
scores < 1. R2X values of each 
component are shown at the bot-
tom of each graph
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locomotor activity over time. MDMA and its derivatives, 
MDA, HMA, HHMA, and HMMA (Fig. 5), were among the 
highest predictors of MDMA-induced locomotor activity, as 
was expected. MDMA is a potent psychostimulant (Cole & 
Sumnall, 2003). It induces the release and prevents the reup-
take of the monoamine neurotransmitters, 5-HT, dopamine 
(DA), and norepinephrine (NE) (Green et al., 2003), all of 
which have well-established locomotor-activating effects 
(Ball et al., 2003; Baumann et al., 2008b; Berger et al., 
1992; Bubar et al., 2004; Callaway et al., 1990, 1992; Dan-
iela et al., 2004; Fantegrossi et al., 2004; Gold et al., 1989; 
Hekmatpanah & Peroutka, 1990; Kehne et al., 1996; Selken 
& Nichols, 2007). In line with this, our results indicated 
that 5-HT and several DA/NE-derived metabolites includ-
ing 3-MT, VMA, and DOPAC, were also important predic-
tors of MDMA-induced locomotor activity, though we were 
not able to directly detect DA or NE in our samples due to 
methodological parameters. The relative concentrations of 
these metabolites were all associated with dose-dependent 
increases in MDMA-induced locomotor activity, either 
positively or negatively, and changed as a function of acute 
MDMA administration in a manner consistent with previous 
quantitative studies (Baumann, Clark, & Rothman, 2008; 
Baumann, Clark, Franken, Baumann et al., 2008a, b; Brad-
bury et al., 2013; Colussi-Mas et al., 2010; Fernández-Galaz 

was the benzoyl fragment (m/z 105) while the most abun-
dant unique fragment was at m/z 151.07, which is consistent 
with previous reports (Wong et al., 2016) and the METLIN 
database. No conclusive MS/MS fragmentation data were 
obtained for other metabolites of interest, but m/z 494.19 
and 390.17 were suspected to be benzoylated HHMA and 
HMA, respectively, based on their mass and adduct pat-
tern. Lastly, m/z 320.09 was suspected to be benzoylated 
VMA + NH4 based on previous reports (Wong et al., 2016).

4  Discussion

In the current study, we designed a new method to improve 
the translatability of preclinical metabolomics research 
and help filter through potentially overwhelming and often 
noisy datasets. Using a combination of microdialysis and 
behavioral measures, we show a small number of behavior-
ally relevant changes in metabolites that are impacted by 
MDMA exposure.

In the first step of our analysis, we fitted an OPLS model 
with locomotor activity as the Y variable and the metabolo-
mics data as X variables. By doing so, we were effectively 
able to determine which metabolites were most associ-
ated with dose-dependent increases in MDMA-produced 

Fig. 3  Mean (± standard error of the mean) locomotor activity and 
relative concentration of select metabolites of interest as a function of 
time and MDMA pre-treatment group. MDMA 0.0, 5.0, and 10.0 mg/
kg i.p. was administered at 120, 240, and 360 min, respectively. aID 

based on external standards. bID based on MS/MS fragmentation data. 
cID based on mass and adduct pattern. *p < .05, **p < .01, ***p < .001, 
****p < .0001 compared to control; two-way ANOVA followed by 
Šidák-corrected multiple comparisons
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MDMA pre-treated rats compared to drug naïve controls. 
These results were mirrored, albeit non-significantly, by 
decreases in HHMA (a primary MDMA metabolite) and 
HMMA (a metabolite of HHMA). Together, these results 
might suggest an increase in MDMA N-demethylation rela-
tive to other metabolism pathways as a function of repeated 
MDMA exposure (Fig. 5) and could be due to changes in 
cytochrome P450 (CYP) enzymatic activity associated with 
each metabolic pathway (de la Torre et al., 2004; de la Torre 
& Farré, 2004).

While most metabolites of MDMA (including HMA) 
have been shown to have little direct effect on locomotor 
activity (Schindler et al., 2014; Yeh & Hsu, 1991), MDA is 
a particularly potent psychostimulant and has been shown 
to be even more effective at stimulating locomotor activity 
than equivalent doses of MDMA (20 mg/kg i.p.; Bexis and 
Docherty, 2006). MDA also has greater potency to increase 
synaptic overflow of DA compared to MDMA (Johnson 
et al., 1986; Nash & Nichols, 1991). DA is an important 
driver of locomotor activity, and it is well-established that 
the development of sensitized behavioral responses to 

et al., 1993; Gough et al., 2006; Kankaanpää et al., 1998; 
Kurling et al., 2008; Morales-Villagrán et al., 1999; Nash, 
1990; O’Shea et al., 2005).

Of the 700 + features detected in our samples, approxi-
mately 50 were associated with MDMA-produced behavior, 
and fewer than 20 of these were unique metabolites/com-
pounds. Given that our data set was already reduced to a 
manageable size, we proceeded to use univariate statistics 
in our second analytical step, which aimed to evaluate these 
~ 20 behaviorally relevant metabolites for differences as a 
function of MDMA pre-treatment group and identify those 
that were also impacted by repeated MDMA exposure1. 
Our results suggest potential changes in MDMA metabo-
lism. Although the concentration of MDMA itself did not 
change as a function of repeated MDMA exposure, the con-
centration of both MDA (a primary MDMA metabolite) and 
HMA (a metabolite of MDA) were significantly higher in 

1   With larger data sets, it would be recommended to first conduct 
supervised, class-based multivariate analyses (i.e., PLS-DA/OPLS-
DA) and filter the results for behaviourally relevant metabolites before 
proceeding to any univariate analyses.

Fig. 4  a) Q-TOF-ESI MS/MS spectra of benzoylated MDMA, MDA, HMMA, and 3-MT at 10, 20, and 40 eV collision energies. b) Proposed 
fragmentation of MDMA, MDA, HMMA, and 3-MT
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that focusses on the development of pharmacokinetics-
based treatments for SUDs (Gorelick, 2012; Lin et al., 2021; 
Zheng et al., 2022).

It should be noted that the metabolism of MDMA is 
complex, however. Although MDMA metabolism is quali-
tatively similar across different animal species, and involves 
the same primary metabolic pathways and homologous 
CYP isoenzymes (Fig. 5), these enzymes are not function-
ally identical, and can have different Vmax values resulting 
in different metabolic pathways being prevalent at differ-
ent doses in different species (Bogaards et al., 2008; de 
la Torre & Farré, 2004). MDMA can also inhibit its own 
metabolism, through the formation of complexes with CYP 
enzymes (de la Torre et al., 2000; Delaforge et al., 1999). 
This may further interact with genetic polymorphisms 
in CYP enzymes, which have been shown to impact the 
metabolism of MDMA into MDA in humans (de la Torre 
et al., 2012; Vizeli et al., 2017). Finally, to add to this com-
plexity, our findings suggest that the metabolism of MDMA 
can change as a function of repeated exposure. Therefore, 
future studies using targeted, hypothesis-driven approaches 
are needed to clarify the role of MDMA metabolism, MDA, 
and DA in the development of sensitization to the effects of 
MDMA and the impact of this on MDMA use disorders in 
humans.

4.1  Limitations

There are some limitations to the current study that should be 
discussed. Firstly, the derivatization and LC-MS parameters 

psychostimulants, including MDMA, are driven by sensi-
tized DAergic mechanisms (Ball et al., 2006, 2009; Brad-
bury et al., 2012; Kalivas et al., 1998; Morgan et al., 1997; 
van de Wetering & Schenk, 2017; Vanderschuren & Kali-
vas, 2000; Vezina, 2007). Although we were not able to 
detect DA itself in our samples, we did see trending effects 
of repeated MDMA exposure on both 3-MT and DOPAC 
(both primary DA metabolites), as well as VMA (an end-
stage catecholamine metabolite) that would be consistent 
with a sensitized DAergic response. Our findings, therefore, 
suggest that behavioral sensitization to MDMA may, in part, 
be driven by increased MDA concentrations as a function 
of repeated MDMA exposure and the more potent effect of 
MDA on DAergic mechanisms associated with psychostim-
ulant sensitization.

We have previously shown that rats that develop sensi-
tization to the locomotor activating effects of MDMA, also 
develop sensitization to the rewarding effects of MDMA, 
as indicated by significant increases in both the rate and 
proportion of rats that acquire MDMA self-administration 
(van de Wetering & Schenk, 2017). Sensitization to the 
effects of psychostimulants drugs has long been suggested 
as an important factor underlying SUDs (Robinson & Ber-
ridge, 1993; Vanderschuren & Pierce, 2010; Vezina, 2007). 
Thus, the current findings provide valuable insight on the 
mechanisms underlying the development of sensitization to 
the rewarding effects of MDMA and suggest that increased 
turnover of MDMA into MDA as a function of repeated 
exposure might increase the abuse liability of the drug. 
These findings contribute to the growing area of research 

Fig. 5  Primary metabolic path-
ways of MDMA and the CYP 
enzymes involved in both rats (R) 
and humans (H) (de la Torre & 
Farré, 2004)
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alongside metabolomics data. A commonly reported limita-
tion of -omics research, including metabolomics, is the poor 
translation of results to the disease or disorder phenotype 
(Humer et al., 2020; Sethi & Brietzke, 2016; Wang et al., 
2016). By utilizing behavioral models of psychiatric disor-
ders, and incorporating the behavioral data into the metabo-
lomics analyses, we show that it is possible to determine 
which metabolites are most associated with the behavior 
of interest. This novel approach will be applicable to the 
study of drug effects and other research areas in all subjects 
regardless of species, age, or sex, and can improve the rel-
evance and translatability metabolomics research.
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were optimized for the targeted quantification of 5-HT and 
MDMA for a previous, hypothesis-driven study (van de 
Wetering et al., 2022), and not for untargeted metabolomics. 
Metabolomics analysis of the samples was retrospective and 
as a result, the dataset was noisy and limited; several rel-
evant metabolites (e.g., DA) that should be detectable in 
BzCl derivatized microdialysate samples were not detected 
(Song et al., 2012; Wong et al., 2016), and there was a large 
amount of uninduced variation. Nevertheless, the study 
served as a proof of concept. The use of supervised OPLS 
helped to identify behaviorally relevant results amongst sig-
nificant noise. With some optimization of the derivatization 
and LC-MS procedures for untargeted metabolomics, detec-
tion of a wider range of metabolites could be achieved in 
order to cast a larger ‘metabolomic net’ and generate a larger 
dataset for analysis. Secondly, while microdialysis offers 
several advantages as a neurochemical sampling procedure, 
it is technically challenging due to the low sample volumes 
obtained and low concentrations of metabolites (for reviews 
see van Mever et al., 2021; Zestos & Kennedy, 2017). To 
overcome this, we adapted BzCl derivatization procedures 
from a previous targeted study in order to increase metabo-
lite stability and improve detection limits (Song et al., 2012; 
Wong et al., 2016). Of course, the issue with derivatization 
and untargeted metabolomics is metabolite identification. 
BzCl reacts with both primary and secondary amines, phe-
nols, and ribose-hydroxyl groups (Song et al., 2012; Wong 
et al., 2016). Because BzCl derivatization adds a varying 
number of benzoyl groups to metabolites, determination 
of the original mass becomes challenging, and the results 
cannot be simply compared to large databases. A potential 
means to address this issue is to use elementally labelled 
BzCl (i.e., bromo- or chloro-benzoyl chloride), which could 
isotopically elucidate the number of BzCl adducts of each 
metabolite in order to more readily calculate the original 
mass for comparison against metabolomics databases (Cas-
tro-Falcón et al., 2016; Schäfer et al., 2023).

5  Conclusions

There is an increasing interest in monitoring dynamic 
changes in the metabolome over time (Rusilowicz et al., 
2018; Smilde et al., 2010). Microdialysis provides the 
means to achieve this in vivo by sampling central metab-
olites with relatively high temporal resolution when com-
pared to other metabolomics sampling techniques. While a 
handful of studies have developed targeted metabolomics 
procedures using microdialysis (Bongaerts et al., 2018; 
Song et al., 2012; Wong et al., 2016), the current study is 
the first untargeted metabolomics study. This is also the first 
metabolomics study to collect and analyze behavioral data 
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