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Abstract
Introduction This study has investigated the temporal disruptive effects of tributyltin (TBT) on lipid homeostasis in Daphnia 
magna. To achieve this, the study used Liquid Chromatography–Mass Spectrometry (LC–MS) analysis to analyze biological 
samples of Daphnia magna treated with TBT over time. The resulting data sets were multivariate and three-way, and were 
modeled using bilinear and trilinear non-negative factor decomposition chemometric methods. These methods allowed for 
the identification of specific patterns in the data and provided insight into the effects of TBT on lipid homeostasis in Daphnia 
magna.
Objectives Investigation of how are the changes in the lipid concentrations of Daphnia magna pools when they were exposed 
with TBT and over time using non-targeted LC–MS and advanced chemometric analysis.
Methods The simultaneous analysis of LC–MS data sets of Daphnia magna samples under different experimental condi-
tions (TBT dose and time) were analyzed using the ROIMCR method, which allows the resolution of the elution and mass 
spectra profiles of a large number of endogenous lipids. Changes obtained in the peak areas of the elution profiles of these 
lipids caused by the dose of TBT treatment and the time after its exposure are analyzed by principal component analysis, 
multivariate curve resolution-alternative least square, two-way ANOVA and ANOVA-simultaneous component analysis.
Results 87 lipids were identified. Some of these lipids are proposed as Daphnia magna lipidomic biomarkers of the effects 
produced by the two considered factors (time and dose) and by their interaction. A reproducible multiplicative effect between 
these two factors is confirmed and the optimal approach to model this dataset resulted to be the application of the trilinear 
factor decomposition model.
Conclusion The proposed non-targeted LC–MS lipidomics approach resulted to be a powerful tool to investigate the effects 
of the two factors on the Daphnia magna lipidome using chemometric methods based on bilinear and trilinear factor decom-
position models, according to the type of interaction between the design factors.

Keywords Non-targeted lipidomics · ROIMCR · Three-way data analysis · Trilinear and bilinear modelling

1 Introduction

Every year, new chemicals and toxic compounds (biocides, 
pesticides, metal alloys, drugs, etc.) are introduced to the 
market and subsequently into the environment. Among the 
known toxic compounds, organotin compounds (OTCs) are 
environmental contaminants known to be persistent, toxic, 
and bio-accumulative. They belong to organometallic com-
pounds used for agricultural, industrial, and biomedicinal 
applications (Karlaganis et al., 2001; Lyssimachou et al., 
2009; Wong et al., 2012). Tributyltin (TBT), one of the most 
harmful OTCs, is widely recognized to have a biological 
effect on the hormone system (Graceli et al., 2013), act-
ing as an endocrine-disrupting chemicals (EDC). Endocrine 
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disruption, frequently linked to widespread metabolic 
changes, spans from aquatic to terrestrial organisms and is 
extensively studied for its profound biological and ecological 
effects (Pagliarani et al., 2013).

The toxicity of a compound is a complex phenomenon 
that is influenced by a multitude of factors, including its 
concentration, duration of exposure, bioavailability, and 
the sensitivity of the biota. Other physical factors such as 
temperature and salinity can also play a role in determin-
ing the toxicity of a compound, and the presence of other 
compounds in the environment can lead to interactions that 
further complicate the assessment of toxicity. To accurately 
assess toxicity, it is important to consider all of these fac-
tors, and this often requires conducting multiple experi-
ments with different treatment and control groups (Jansen 
et al., 2005). This results in multivariate and multiset data 
sets that are characterized by various sources of variation 
(Smilde et al., 2005). Effective data analysis techniques are 
needed to understand the underlying systems and relation-
ships between the variables.

In multivariate omics studies, altering two factors using 
an appropriate experimental design can produce three-way 
data sets, which have three data modes, ways or directions 
representing the values of different measured variables under 
two or more factors at different levels. Analyzing this type 
of data requires careful consideration of the relationships 
between the structure of the data and the model used for 
their analysis, as well as of the effects of the experimen-
tal design factors. Different types of interactions between 
factors can occur, such as additive, multiplicative, syner-
gistic, antagonistic, (Bansal et al., 2013; Blair & Taylor, 
1997; Coors & De Meester, 2008; Taylor, 1989), and ran-
domly and it is important to identify the type of interaction 
between the investigated factors in order to analyze omics 
data effectively.

Lipidomics is a branch of metabolomics that focuses on 
the comprehensive study of lipid species and their associ-
ated networks and metabolomic pathways of a biological 
system. Targeted and non-targeted analytical procedures are 
the two main types of lipidomic studies (Lam & Shui, 2013; 
Sethi & Brietzke, 2017). The targeted strategy concentrates 
on examining a particular list of lipids, usually associated 
with a known metabolic pathway of interest, to confirm an a 
priori hypothesis. In contrast, non-targeted lipidomics aims 
to globally analyze all measurable lipids present in a sample 
without any prior assumptions about affected pathways or 
lipid species. (Cajka & Fiehn, 2014; Fenaille et al., 2017; 
Navarro-Reig et al., 2018; Navas-Iglesias et al., 2009; Wolf 
& Quinn, 2008; Xu et al., 2020; Aldana et al., 2020; Lippa 
et al., 2022). Effective lipidomics analysis can provide valu-
able insights into the metabolic pathways involved in lipid 
metabolism, and help in the identification of potential bio-
markers for disease diagnosis and therapy.

Chemometrics provides useful tools for studying chemi-
cal systems, and a new methodology has been proposed that 
combines the region of interest (ROI) concept (Bedia et al., 
2016; Gorrochategui et al., 2015, 2019; Tautenhahn et al., 
2008) with the Multivariate Curve Resolution Alternative 
Least Square (MCR-ALS) method (De Juan et al., 2014; 
Jaumot et al., 2015; Tauler, 1995) for filtering, compressing, 
and resolving large data sets collected in LC–MS analysis of 
metabolomics data (Gómez-Canela et al., 2018; Gorrochat-
egui et al., 2019; Pérez-Cova et al., 2021). The ROI method 
allows for significant reduction and filtering of raw MS data 
without decreasing mass accuracy, and can easily compress 
large amounts of data. This methodology has been success-
fully applied in several studies on the effects of chemical 
contaminants on aquatic organisms and their metabolic path-
ways (Gorrochategui et al., 2019; Perez-Lopez et al., 2021).

The process of selecting Regions of Interest (ROI) in 
LC–MS raw data has been previously described in exist-
ing literature referenced in the paper (Tautenhahn et al., 
2008; Gorrochategui et al., 2016, 2019; Dalmau et al., 2018, 
Perez-Cova et al. 2021, Perez-Lopez et al., 2021). The ROI 
methodology aims to identify and select important HRMS 
(High-Resolution Mass Spectrometry) signals from each 
sample’s analysis, forming corresponding MSROI data 
matrices. The ROI method involves scanning mass spectra 
to identify regions where: (a) the ion signal exceeds a speci-
fied threshold above instrumental noise; (b) the masses align 
within a predetermined mass accuracy tolerance; and (c) 
the masses occur consistently over a time range that aligns 
with the expected width of a chromatographic peak. This 
selected time range is determined based on the instrument 
setup (e.g., gas or liquid chromatography) and the specific 
chromatographic column being used. Implementing the 
ROI methodology significantly reduces the amount of com-
puter storage and resources required while maintaining the 
mass accuracy of the original HRMS measurements. This 
approach defines the signals that should be considered in 
subsequent data analysis and resolution. The number of 
ROIs should encompass all significant features relevant to 
the sample’s composition.

In the present study, the ROIMCR modeling of ROI 
LC–MS data is used for the analysis, resolution, relative 
quantitation, and identification of lipids of Daphnia magna 
samples under the exposure of tributyltin TBT over time. 
Relationships between the effects of two design factors 
(TBT exposure and time), their interaction, the three-way 
data structure and the more adequate model to be used are 
investigated. The freshwater crustacean ecotoxicological 
model D. magna was chosen for this study since it is among 
the most widely used organisms in aquatic environmental 
risk assessment of chemicals (Baird & Barata, 1998). D. 
magna is also known to accumulate high concentrations of 
lipids from its food during a reproductive or intermolt cycle 
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to be allocated to the formation of the new carapace or eggs 
(Jordão et al., 2015). This means than these organisms are 
a good model to study contaminant effects on lipid homeo-
stasis (Jordaõ et al., 2016).

This paper builds on two previous works (Jafari et al., 
2020; Malik et al., 2016) that studied the effects of TBT 
exposure and time on the lipidomics of Daphnia magna. The 
first study used a targeted analysis approach with MCR-ALS, 
while the second study simulated scenarios to investigate 
the structure of lipidomics data under different effects of 
the two factors. This paper applies the conclusions of the 
second study to a new non-targeted analysis approach using 
the ROIMCR method, aiming to discover what were the 
lipids associated with changes in TBT levels and time and 
to determine if the structure of the data follows a trilinear 
model, indicating a synergistically multiplicative interaction 
between the factors.

2  Materials and methods

2.1  Experimental design and data acquisition

The study of the effects of TBT treatment on the dynam-
ics of lipids across an entire adolescent inter-molt cycle of 
Daphnia magna (Clone F) was performed at two TBT doses: 
0.1 µg/L (L), and 1.0 µg/L (H). These concentrations were 
selected from previous work to cause low and high effects on 
the accumulation of lipids (Jordaõ et al., 2016; Jordão et al., 
2015). Experiments were performed at high food levels in 
adolescent females (5 ×  105 cells/mL of Chlorella Vulgaris) 
and contained five samplings that cover the whole intermolt/
egg provisioning period: 0 h (just after the third molt), 8 h, 
16 h, 24 h, and 48 h (just after the fourth molt and release the 
first brood of eggs into the brood pouch). Three replicates 
of 5 individuals from each sampling were taken and pro-
cessed for total lipid analysis. For the 48 h period debrooded 
females were used. Two different independent but consecu-
tive experiments were conducted because a large number 
of synchronized animals were required. Each replicate 
consisted of a pool of 5 animals that were homogenized in 
500 ml phosphate buffered saline (PBS) pH 7.4 with 2,6-di-
tert-butyl-4-methylphenol (BHT) 0.01%, as an antioxidant. 
The liquid chromatography-mass spectrometer consisted 
of a Waters Aquity UPLC system connected to a Waters 
LCT Premier Orthogonal Accelerated Time of Flight Mass 
Spectrometer (Waters, Millford, MA), operated in positive 
and negative electrospray ionization mode. Full scan spec-
tra from 50 to 1500 Da were obtained. Mass accuracy and 
reproducibility were maintained by using an independent 
reference spray via Lock-Spray. More details on the experi-
ments and analysis can be found elsewhere (Jordão et al., 
2015; Gorrochategui et al., 2014).

2.2  ROIMCR data analysis

This study employed a comprehensive untargeted lipidomics 
analysis approach to investigate the large number of lipid 
signals present in the samples. The study did not rely on 
prior knowledge of lipid species present in the samples. 
However, the large volume of data generated by the LC–MS 
analysis made it difficult to process, necessitating a prelimi-
nary data compression step. The raw data were compressed 
while preserving their relevant mass accuracy information 
to construct more computationally manageable data tables 
(data matrices). The study utilized the ROIMCR method, 
(Dalmau et al., 2018), which is based on the combination of 
the Regions of Interest (ROI) concept (Bedia et al., 2016; 
Gorrochategui et al., 2015, 2019) and the Multivariate Curve 
Resolution Alternating Least Squares, MCR-ALS, method 
(De Juan et al., 2014; Jaumot et al., 2015; Tauler, 1995). 
The LC elution and mass spectral profiles of the sample 
constituents (lipids) present in the different examined sam-
ples were obtained as a result of the use of this combination 
approach. ROIMCR is a powerful procedure that has been 
already described in detail elsewhere (Gorrochategui et al., 
2016), and it is summarized in Supporting Information Figs. 
S1 and S2 and in the text explaining these Figures. ROIMCR 
can be applied to the analysis of individual chromatographic 
runs performed on a single sample or to the simultaneous 
analysis of several related chromatographic runs on mul-
tiple samples, including control and TBT treated samples 
over time. In this second case, the multiple individual data 
matrices  Xi generated by the ROI method are vertically con-
catenated in a column-wise augmented data matrix  Xaug, 
whose rows are the spectral scans at the retention times of 
the different chromatographic runs and whose columns are 
all chromatograms at the different m/z ROI values finally 
taken into account. For the MCR-ALS simultaneous analysis 
of the various datasets in this augmented data matrix, neither 
time alignments nor time shift corrections are required (Gor-
rochategui et al., 2016, 2019).  Xaug is decomposed with the 
MCR-ALS method (De Juan et al., 2014; Jaumot et al., 2015; 
Tauler, 1995) according to a bilinear factor decomposition 
model under non-negativity constraints as described in Eq. 1 
for I = 1,..n chromatographic runs simultaneously analyzed.

 

In this Equation, the bilinear model gives two factor 
matrices,  Caug and  ST In  Caug column-wise augmented matrix 

(1)Xi = CiS
T + Ei
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are the elution profiles of the different components (sample 
lipid constituents) resolved by MCR-ALS in the different 
samples, from which the relative concentrations of these 
components can be obtained using either their peak areas 
or their peak heights. In the  ST matrix are the mass spec-
tra of the resolved components (common to all samples). 
The resolved components in the mass spectra, can be used 
for their identification and chemical characterization. This 
process is commonly known as lipid annotation. The identi-
fication and characterization of these resolved components 
can be performed using public databases such as the Human 
Metabolome Database (HMBD) (Wishart et al., 2012) as 
well as the previous laboratory databases developed by our 
research team.

The study utilized a balanced experimental design to 
examine the effects of varying levels of TBT dose and time 
after exposure on the growth of animals. The TBT dose 
was administered at three levels (C = Control, L = Low, and 
H = High), while the time after exposure was measured at 
five levels. Each combination of factor levels was sampled 
three times to obtain concentration measurements. The fac-
tor “time” had five levels since biological samples were col-
lected at 0 h, 8 h, 16 h, 24 h, and 48 h. The factor “dose” had 
three levels: TBT dose = 0 µg/L (C); TBT dose = 0.1 µg/L 
(L); and TBT dose = 1 µg/L (H). Thus, the total number of 
LC–MS chromatographic runs or samples analyzed was 45 
(3 × 5 × 3).

The final data matrix included the selected ROI m/z val-
ues for all 45 samples analyzed by LC–MS. The study evalu-
ated the effects of TBT exposures over time by examining 
the peak areas or peak heights of the elution profiles resolved 
by MCR-ALS for all samples (control and exposed samples) 
arranged in a new data table (Fig. S1C). The MCR-ALS 
resolved spectra of the different components were normal-
ized to equal maximum intensity, therefore the concentra-
tion profiles of the same component in the different samples 
change according to their relative concentrations. The peak 
areas or peak intensities give these relative changes of con-
centrations of one component (lipid) in the different ana-
lyzed samples over treatments and time points.

After the application of the ROIMCR method, the effects 
of TBT exposure were statistically assessed based on the 
changes in the peak areas of the resolved elution profiles 
of the lipidic constituents using different visual and sta-
tistical approaches such as Principal Component Analysis 
(PCA) (Wold et al., 1987), ANOVA (St & Wold, 1989), and 
ANOVA simultaneous component analysis (ASCA) (Smilde 
et al., 2005). In addition, a secondary application of the 
MCR-ALS method was performed to model the changes in 
the lipidic peak areas of the TBT-treated Daphnia samples 
over time checking whether these changes can be described 
by a trilinear factor decomposition model as described in 
previous work (Malik et al., 2016).

2.3  Visual and statistical analysis of the effects 
produced by TBT dose and exposure time 
on the peak areas of the elution profiles 
resolved by the ROIMCR

The dataset containing the peak areas of all lipid elution pro-
files was arranged in three data matrices based on the three 
TBT doses. Each column of peak area matrices represents 
the concentration changes of each lipid at five different time 
points. A simple way to graphically represent the effect of 
the design factors (time and TBT dose) and their interaction 
on each measured variable (lipid concentration) separately 
is to plot the lines indicating the trends in the changing val-
ues of the variable over time at the different levels of TBT 
dose (Jafari et al., 2020). This provides an oversimplified, 
approximative, and qualitative way to measure the effects 
of the two factors for every lipid data. To evaluate statis-
tically the effects of the two factors, time and TBT dose, 
and their interaction, a two-way ANOVA method was used, 
which allowed statistical evaluation of the interaction effects 
between the two factors. The two-way ANOVA analysis 
examined the effects and interaction of the two factors on 
each variable, and these effects were statistically evaluated 
using an F-test. The experimental uncertainty and possible 
interaction between factors were assessed by using three rep-
licates for each condition.

PCA was used to analyze the overall trend of peak areas 
of resolved lipid components for different samples, but 
since it does not take into account the experimental design, 
its interpretability is limited in cases where datasets are 
acquired using statistical experimental design.

ANOVA and ASCA models may offer a better view of 
the overall effects of experimental factors and their interac-
tion on data variation in such cases. ASCA is a statistical 
analysis technique that combines the benefits of ANOVA 
and SCA to separate sources of variance and model the indi-
vidual separate factor effect matrices. In this study, ASCA 
was used to evaluate the significance of TBT exposure and 
time by applying a permutation test, where the null hypoth-
esis assumes that the considered factor has no effect. The 
experimental design used in this work allowed for balanced 
peak area data matrices to be analyzed, which included the 
same number of sample replicates for each condition. A 
more detailed description of the ASCA procedure and per-
mutation tests can be found in previous works (Smilde et al., 
2005) and Vis (Vis et al., 2007).

2.4  MCR‑ALS bilinear and trilinear modelling 
of the peak area lipidomics data

The previously described ROIMCR procedure was used to 
obtain resolved lipids, and their chromatographic peak areas 
were organized in a data matrix (as mentioned earlier). This 
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matrix can be subjected to further analysis using the MCR-
ALS method. In this particular case, the MCR-ALS bilinear 
model applied to these concentrations data matrix can be 
written as:

 where now the  Ak is the data matrix with the peak areas 
(relative concentrations) of the N resolved lipids analyzed 
over Daphnia samples taken at 5 different times with 3 repli-
cates, under one of the three different doses of TBT, control 
(C), low (L), and high (H) (k = 1, 2 and 3 for Control,  AC, 
low TBT dose,  AL, and high TBT dose  AH) with the same 
number of rows and columns were (see Supporting Fig. S3).

As shown above, since these three data matrices (C, L, 
H) have the same dimensions they can be arranged in a data 
cube, A, or in the column-wise augmented data matrix, 

The resulting three factor matrices  TC,TL, and  TH are 
related to the time profiles of the different components in the 
three data matrices C, L, and H, and factor matrix  BT gives 
the lipid composition profiles of the different components 
obtained by MCR-ALS.  EC,ELand  EH give the residual vari-
ation not explained by the bilinear model (Eq. 3).

This MCR-ALS bilinear model can be extended to the 
trilinear model using the application of the trilinearity con-
straint during the ALS optimization. In matrix form, for 
every separate data slice (data matrix) the trilinear model 
equation implies that 

Equation 4 describing the trilinear model, agrees with 
the notation used in MCR bilinear modeling. In the trilinear 
model, every data matrix at every one of the three treat-
ments (C, L, or H),  Ak, is modeled by the same time profiles, 
T, and the same lipid composition profiles of the different 
components,  BT. The three data matrices only differ in the 
relative amounts of components given in the three different 
 Dk diagonal matrices, k = 1, 2, 3, (C, L, H). The graphi-
cal presentation of the MCR-ALS application according to 
Eqs. 2, 3 and 5 is shown in Supporting Fig. S3.

A previous study (Jafari et al., 2020) showed that the 
bilinear model (Eqs. 2 and 3) is the best approach to model 
experimental data when only one experimental factor affects 
data variability or when two factors have a significant addi-
tive effect without interaction. Additional constraints can be 
applied in the case of application of the bilinear model to 
reduce the possible rotation ambiguities, but this is out of 

(2)Ak = TkB
T + Ek k = 1 (C), 2 (L) and 3 (H)
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the scope of this work (Abdollahi & Tauler, 2011; Jaumot 
& Tauler, 2010). However, the trilinear model (Eq. 4) is 
more appropriate when a well-defined interaction between 
two factors produces reproducible multiplicative effects. The 
trilinear model can directly decompose the three-way dataset 
into three separate factor matrices, describing variations in 
TBT dose, time, and lipid composition, without ambiguities. 
In this work, the best modeling approach for data analysis, 
either bilinear or trilinear, is investigated after identifying 
the type of interaction between the design factors in the peak 
area.

Assessment of the quality of the MCR-ALS models, 
either bilinear or trilinear, can be performed by calculating 
the model fitting as model explained data variance  (R2) or 
as percentage of lack of fit (lof).

 

 where  xij refers to the experimental value in the data matrix 
and x̂ij is the corresponding calculated value using the MCR-
ALS model (either bilinear or trilinear).

3  Results and discussion

3.1  Chemometric analysis of LC–MS lipidomics data 
using the ROIMCR method

The processing of untargeted LC–MS lipidomic experi-
mental data has been improved by using ROI compression, 
which reduced computer memory requirements by more 
than 100-fold without any loss of spectral accuracy. The 
column-wise augmented data matrix was obtained from the 
45 individual data matrices corresponding to the analysis of 
each sample. MCR-ALS was used to extract the elution and 
spectra profiles of the different individual lipid constituents 
in the 45 samples analyzed. MCR-ALS initially estimates 
the number of components that explain the variance of the 
data matrix, typically using the singular value decomposi-
tion (SVD) method. This estimation should encompass the 
lipids present in the sample, as well as other possible con-
tributions from background, solvent, and other instrument 
artifacts. The final selection of the number of components 
is a compromise that considers the explained data variance 
on one side and the incorporation of all possible significant 
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chemical sources of data variance on the other side. There-
fore, adding additional components will not provide the 
resolution of extra components with reasonable shapes of 
their elution and spectral profiles.

Ultimately, 87 of the components resolved by MCR-ALS 
could be assigned to lipid constituents, characterized, and 
identified, still explaining 96.05% of the experimental data 
variance. The initial estimates of the  ST matrix are derived 
from the more distinct rows (MS spectra) of the data matrix 
(see Winding & Guilment, 1991). The elution profiles of 
these components in the different samples and of their mass 
spectra were properly resolved using the MCR-ALS method 
under only non-negativity constraints and spectra normali-
zation. The untargeted analysis used in this work provided 
an additional number of lipids (19 lipids) showing statisti-
cally significant changes in their concentration due to TBT 
exposure and time, as given in Supporting Table 1S. The 

advanced chemometrics data analysis methods like MCR-
ALS are necessary to gain a deeper understanding of the 
experimental lipidomics data obtained in this work because 
the LC–MS chromatograms exhibited complex profiles with 
multiple coeluted compounds, making it difficult to detect 
and identify directly what lipids changed their concentration 
over time and at the different TBT doses.

Using the elution profiles of the same component in the 
different samples, it was then possible to analyze the vari-
ation in peak areas between them. As an example, Fig. 1 
displays the MCR-ALS resolution of the pure elution and 
spectral profiles of a reduced group of three coeluted lipids 
in the 45 samples analyzed  (Xaug matrix). The zoomed view 
of the elution profiles of one of the control samples shows 
three different lipids. The pure mass spectra of these three 
lipids are also shown in the lower part of Fig. 1. These 

Fig. 1  A  MCR-ALS resolution of the elution profiles of three com-
ponents (lipids) in 45 samples. In the zoomed view, the MCR-ALS 
resolved elution profiles for these three lipids is shown in more detail 

for a control sample. B MCR-ALS resolution of the mass spectra of 
these three lipids, which were identified as TAG 50:5 (Blue), TAG 
52:8 (red), TAG 52:5 (green)
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spectra were identified as the lipids TAG 50:5, TAG 52:8, 
TAG 52:5 as given in Supporting Table 1.

In Fig. 2, the peak areas of the four lipids (TAG 48:4, 
TAG 48:1, PC 34:2 and PC 32:2) (see Supporting Table 1) 
in the forty-five samples simultaneously analyzed are given. 
In the four cases an increase of concentrations (peak areas) 
of these lipids is first observed over time, with a sudden 
decrease at the last times. In every one of the four lipid plots, 
there are three peak areas groups which correspond to con-
trol, low and high TBT level treated samples. It is still dif-
ficult to see from this first representation of the results for 
these four lipids if there is a significative effect due to TBT 
dose. The significance of the two factors, time and TBT dose 
level, and of their interaction are better investigated in the 
following data analysis results.

3.1.1  Univariate graphical visualization of the effects 
of the factors and their interaction

A visual exploratory analysis of the effects of design factors 
(time and TBT dose) and their possible interactions on indi-
vidual response variables (lipid concentration) was initially 
carried out using so-called interaction plots. All variables 
(87 lipid concentrations) were analyzed individually using 
this method and examined for the effect of the two factors 
and their possible interaction. Due to experimental noise in 
real data, it was not easy to interpret these interaction plots. 

The effects of design factors, time and TBT dose, on indi-
vidual response variables, specifically lipid concentration, 
were explored through interaction plots. However, due to 
experimental noise, it is challenging to interpret the plots, 
and it is difficult to extract clear conclusions about the type 
of effect due to the dose treatment. An example of the visu-
alization is provided in Fig. S5, showing the changes in peak 
areas of four lipids, as well as their concentration over time 
and at three TBT doses in control, low, and high samples. 
While some lipids seem to have a dependency on the dose 
level, the lines are not parallel, making it difficult to draw 
any definitive conclusions.

3.1.2  PCA

The application of PCA to the data matrix of the autoscaled 
ROIMCR resolved elution profiles peak areas allowed the 
exploration of the main data patterns. Four PCs explain over 
80% of the variance, with the first two already explaining 
73.53%. In the PCA scores plot, samples exposed to TBT 
for 24 h have higher positive scores, while those exposed 
for 48 h have negative scores. The loading plots show that 
unsaturated TAGs and PC have high positive loadings, with 
moderate loadings on unsaturated DAGs and PE in PC1. 
PC2 shows higher positive scores in a few 48 h samples 
with a high TBT dose. The lipid composition of the samples 
changed at 24 h, with a further deviation at 48 h with a high 

Fig. 2  Peak areas of the MCR-ALS resolved elution profiles of four lipids in the 45 samples simultaneously analyzed (control, TBT low dose, 
and TBT high dose). A TAG 48:4, B TAG 48:1, C PC 34:2 and D PC 32:2



 J. M. Jafari et al.

1 3

70 Page 8 of 13

TBT dose, as levels of unsaturated TGs and PC increased 
and then decreased after allocation to molt and eggs.

3.1.3  Two‑way ANOVA evaluation of the significance 
of the factors and their interaction

Table 1 summarizes the results of the ANOVA evaluation 
of the effects of time and TBT dose on individual lipid 
responses. The influence of the two factors and their interac-
tion varied for each lipid. The concentration of the TAG 48:4 
changed only under the influence of the time factor, whereas 
the levels of the PC 34:2 and PC 32:2 were affected by both 
factors and their interaction. Time significantly affected the 
concentration of 78 out of 87 lipids, while 30 lipids had their 
levels altered by the TBT dose factor, and 14 were affected 
by the interaction between the two factors. The amount of 
data variance of each variable explained by the factors can 
be deduced from the sum of squares and F ratios in ANOVA 
Table 1, and the significance of these contributions can be 
evaluated statistically. Time and TBT dose factors were sig-
nificant, and an interaction between the two was also sig-
nificant (P < 0.01), but the types of TBT dose effects cannot 
be determined.

3.1.4  Multivariate analysis of evaluation of the significance 
of the factors and their interaction using 
variance‑simultaneous component analysis (ASCA)

In addition to the previous univariate analysis of the effects 
of the design factors and their interaction on each lipid 
concentration separately using the two-way ANOVA, the 
same effects were evaluated simultaneously for all lipids 

concentrations by the ASCA method, as a multivariate 
extension of ANOVA.

Table 2 presents the results of applying ASCA to the 
87 variables (lipid peak areas) with statistically significant 
effects for the dose, time, and time × dose interaction sub-
models. The time factor had the most significant influence on 
lipid profiles, covering about 62% of the total variation. The 
contribution of the dose factor was 7%, and the interaction 
factor was 21%. The residual variance was 9%, representing 
the variance among replicates. The interaction sub-model 
was statistically significant, suggesting that the time evolu-
tion of lipid concentrations was dependent on the applied 
TBT dose. The permutation test validated the ASCA model, 
providing statistically significant effects for all sub-models 
with p-values ranging from 0.0001 to 0.0038.

Figure 3A–C presents the scores and loadings plots for 
the time factor ASCA sub model, which showed that the first 
component (C1) explained 87% of the variance, indicating 
gradual changes in the lipid concentrations over time, with 
a sudden drop in levels at 48 h (after molting and producing 
the first clutch of eggs). This pattern can be related to the 
storage of lipids acquired from food during the intermolt 
period (8–24 h). In C2, sample scores increased after 0 h, 
reaching their highest levels at 48 h, with positive loadings 
for abundant phospholipids PC 34:1–5, PC 36:2–6, most 
PEs, and C16SM.

The effect of TBT was studied at three levels, including 
control non-treated TBT samples group, and low-level and 
high-level TBT dose treated samples. The maximum num-
ber of components in the ASCA model that could be fitted 
was two. The ASCA model computed on the ‘dose’ effect 
matrix already explained about 81% of the variance using 
one first component (C1) only, and the second compo-
nent captured the remaining variance (29%). The ASCA 
scores plot for the ‘dose‘ effect is presented in Fig. 4A. 
Along the C1 axis, the samples were grouped according 
to their three levels of TBT dose; with the samples treated 
with high TBT concentration ’H‘ appearing with positive 
scores and the control samples ‘C’ (no TBT added) and 
low TBT concentration ‘L’ appearing mostly with negative 
scores. The loadings plot for C1 (Fig. 4B) shows that the 
TBT dose increased the levels of polyunsaturated members 
of the most abundant TAGs (TAG 50:1, TAG 51:7, TAG 
52:2, TAG 54:2–5), and DAGs (DAG 36:2–4), and PC 

Table 1  Two-way ANOVA results

Bold numbers: Significance
a The sum of squares due to each source
b F-statistic, which is the ratio of the mean squares
c The p-value, which is the probability that the F-statistic can take a 
value larger than the computed test-statistic value

Effects TAG 48:4 TAG 48:1 PC 34:2 PC 32:2

Dose  SSa 2.066 27.630 8.251 39.88
Time SS 72.09 38.180 56.21 90.41
Inter. SS 8.923 40.256 23.48 27.72
Error SS 35.41 35.413 12.02 29.03
Dose  Fb 0.88 2.86 5.87 15.33
Time F 15.27 7.15 19.9 17.38
Interact F 0.95 0.36 4.02 2.66
Pc Dose > F 0.4271 < 0.01 < 0.01 < 0.01
P Time > F < 0.01 < 0.01 < 0.01 < 0.01
P Inter. > F 0.4952 0.9333 < 0.01 < 0.01

Table 2  ASCA results

Bold numbers: Significance

Effect Prob > F

Dose 6.83 0.0001
Time 62.25 0.0034
Inter. 21.69 0.0038
Error 9.23
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(PC 32:0, PC 32:2), and of the majority of PE (PE 34:2, 
PE 36:4). These results confirm previous findings (Jordão 
et al., 2015) that indicate that TBT impaired the allocation 
of specific lipids to eggs, which remained in de-brooded 
females Fig. 5.

The ASCA scores profiles of the interaction sub model 
show how the time and TBT dose factors interact in Daphnia 
magna samples (Figure 5). The scores profile of the first 
component, explaining over 57% of data variance, indicates 
a more significant effect of high TBT dose on lipid profiles 
at 48 h compared to control and low TBT dose treatments. 
High TBT doses decreased lipid accumulation at the begin-
ning of the instar period and produced higher levels of lipids 
at 48 h, which is different from the pattern observed for 

control and low TBT dose treatments. The results obtained 
by ASCA are similar to those of a previous targeted analy-
sis study, and the MCR-ALS method can complement the 
findings.

3.1.5  Bilinear and trilinear MCR‑ALS modelling 
of the datasets

The complexity of the three-way dataset built from the peak 
areas of the MCR-ALS resolved elution profile at the dif-
ferent experimental conditions was first evaluated using 
SVD analysis of the column- and row-wise augmented data 
matrices (see Supporting Fig. S6). Four larger similar size 
singular values were obtained in both cases, describing 

Fig. 3  Time effects on lipids by ASCA model in the analysis of the Table of the peak areas of the MCR-ALS resolved elution profiles. A ASCA 
scores plot and B ASCA loadings for the first component (C1), and C ASCA loadings for the second component (C2)

Fig. 4  Dose effects on lipids by ASCA model in the analysis of the Table of the peak areas of the MCR-ALS resolved elution profiles. A ASCA 
scores plot, and B ASCA loadings plot for the first component (C1)
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approximately the same amount of data variance. According 
to the results obtained in previous work (Jafari et al., 2020), 
column- and row-wise augmentation datasets give the same 
number of major components when the factor interaction 
effects are multiplicative. Therefore, this will be in agree-
ment with a trilinear model data structure and with the pres-
ence of multiplicative effects between the two design factors, 
TBT dose and time after exposure.

The trilinear model constraint in MCR-ALS (Tauler, 
2021; Tauler et al., 2020) was applied to the data set, and 
it did not result in poorer fitting results than the bilinear 
model. The initial estimates for the  ST matrix were derived 
from the more distinctive rows of the MS data matrix (Wind-
ing & Guilment, 1991). During the MCR-ALS analysis, two 
constraints were applied, spectra and elution profiles non-
negativity, and spectral normalization (equal height). The 
trilinear model constraint eliminated the rotation ambiguity 
involved in the bilinear factor decomposition of the same 
data set. Using a four-component MCR-ALS bilinear model, 
the amount of explained data variance was 95.05%, whereas 
with the same number of components using the trilinear 
model constraint, the explained variance was 93.95%. The 
profiles resolved by either bilinear or trilinear models were 
rather similar, and the analyzed experimental data behaved 
in a rather good trilinear way. The MCR-ALS profiles of 
the four components in the three data modes are shown in 
Fig. 6 and have been ordered according to their explained 
variances.

The MCR-ALS analysis of the lipid profiles identified 
four components that explain 23–43% of the variance in the 
data. Component 1 showed a decrease in the lipid effects of 
TBT at low and high doses, while component 2 showed an 
increasing effect of TBT at high dose levels. Component 3 
showed a steady increase in sample loadings over time, with 
a drop after 48 h, and the effects of the lower TBT dose were 
more significant. Component 4 showed a significant increase 
in the concentrations of unsaturated TAGs and DAGs, with 

the highest levels at 24–48 h, induced by the highest TBT 
dose treatment (Grün & Blumberg, 2006), consistent with 
the obesogenic effect of TBT. The degree of unsaturation 
increased with the length of the carbon chain in TAGs and 
DAGs, similar to the lipid profile reported for Daphnia 
magna food (Fuertes et al., 2018).

In summary the C1 profile is loaded mostly by polyun-
saturated TAGs and phosphocholine (PC), the C2 profile 
is mostly loaded by phosphocholine (PC), phosphatidyle-
thanolamine (PE) and C3 by those DAGs that decreased 
dramatically over 48 h, which were then accumulating to 
a greater extent when exposed to low levels of TBT. The 
direct precursors of TAGs are DAGs were formed from 
phosphatidic acid produced either by the glycerophosphate 
pathway, by the monoacylglycerol pathway, or by the deg-
radation of phospholipids or catabolism of TAGs (Arrese & 
Soulages, 2010). In the C3 profiles, most lipid classes had 
moderate loadings. It can be concluded that TBT disrupts 
the synthesis of TAGs from DAGs in Daphnia exposed to 
TBT which showed increased levels of lipid droplets during 
the entire molt cycle (Jordão et al., 2015). Finally, C4 pro-
files separated Daphnia exposed to TBT at 24 and 48 h from 
those not exposed. and they had higher loadings for saturated 
or unsaturated TAGs and DAGs. This means that Daphnia 
exposed to TBT accumulated less unsaturated TAGs and 
DAGs. These results agreed with the results obtained in pre-
vious works (Malik et al., 2016).

4  Conclusions

In this study, we employed a non-targeted lipidomics 
ROIMCR approach to identify a substantial number (87) 
of lipids in Daphnia magna that serve as reliable indica-
tors of the effects resulting from exposure to TBT dose, as 
well as the time after of exposure. Multivariate data analy-
sis techniques, including ASCA and MCR-ALS, proved to 

Fig. 5  Interaction ‘dose × time’ effects on lipids by ASCA model in the analysis of the Table of the peak areas of the MCR-ALS resolved elution 
profiles. A ASCA scores, and B ASCA Loadings for the first component (C1)
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be particularly valuable in extracting meaningful biological 
information from the datasets analyzed, allowing us to dis-
cern changes in the concentrations of various lipid profiles 
in Daphnia magna following the dose of exposure to TBT, 
as well as the duration of exposure.

A comparison of the results obtained from this non-tar-
geted study analysis with those of a previous targeted analy-
sis of the same samples revealed that, in this non-targeted 
study, a greater number of lipids were resolved, and sta-
tistically significant changes in their concentrations due to 
TBT exposure and time were detected. The use of current 
lipidomics databases enabled the identification of 87 lipids, 
19 of which were newly identified in this work. However, 
18 lipids still remain unidentified. Notably, TAG 46:6, TAG 
46:5, TAG 46:4, TAG 46:3, TAG 47:5, TAG 47:4, TAG 
47:2, TAG 47:1, TAG49:7, TAG 49:5, TAG 49:4, TAG 49:3, 
TAG 49:2, TAG 51:7, TAG 51:5, TAG 51:4, TAG 51:2, TAG 
53:7, and PC 32:3 are among the newly identified lipids.

The findings of this study validate the conclusions drawn 
in our previous work, which utilized various synthetic data 
sets and examined different types of factor interactions 
(Jafari et al., 2020). Our analysis of real experimental lipi-
domics data indicates that the interaction between the two 
factors considered in this study (TBT dose and time after 
exposure) was multiplicative in nature. Moreover, the most 
suitable model for analyzing this type of three-way lipidom-
ics data was found to be the trilinear model, which produced 

accurate and reliable results. Therefore, these results confirm 
that the trilinear factor decomposition model is appropri-
ate for cases involving reproducible multiplicative effects 
between design factors, and that the use of MCR-ALS with 
non-negativity and trilinearity constraints is essential for 
optimal recovery of omics profiles.
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