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Abstract
Background and aims  Two of the most lethal gastrointestinal (GI) cancers, gastric cancer (GC) and colon cancer (CC), are 
ranked in the top five cancers that cause deaths worldwide. Most GI cancer deaths can be reduced by earlier detection and 
more appropriate medical treatment. Unlike the current “gold standard” techniques, non-invasive and highly sensitive screen-
ing tests are required for GI cancer diagnosis. Here, we explored the potential of metabolomics for GI cancer detection and 
the classification of tissue-of-origin, and even the prognosis management.
Methods  Plasma samples from 37 gastric cancer (GC), 17 colon cancer (CC), and 27 non-cancer (NC) patients were prepared 
for metabolomics and lipidomics analysis by three MS-based platforms. Univariate, multivariate, and clustering analyses 
were used for selecting significant metabolic features. ROC curve analysis was based on a series of different binary clas-
sifications as well as the true-positive rate (sensitivity) and the false-positive rate (1-specificity).
Results  GI cancers exhibited obvious metabolic perturbation compared with benign diseases. The differentiated metabo-
lites of gastric cancer (GC) and colon cancer (CC) were targeted to same pathways but with different degrees of cellular 
metabolism reprogramming. The cancer-specific metabolites distinguished the malignant and benign, and classified the 
cancer types. We also applied this test to before- and after-surgery samples, wherein surgical resection significantly altered 
the blood-metabolic patterns. There were 15 metabolites significantly altered in GC and CC patients who underwent surgical 
treatment, and partly returned to normal conditions.
Conclusion  Blood-based metabolomics analysis is an efficient strategy for GI cancer screening, especially for malignant 
and benign diagnoses. The cancer-specific metabolic patterns process the potential for classifying tissue-of-origin in multi-
cancer screening. Besides, the circulating metabolites for prognosis management of GI cancer is a promising area of research.

Keywords  Metabolomics · Circulating metabolites · Gastric cancer · Colon cancer · Early detection · Biomarker · 
Surveillance
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CC	� Colon cancer
RC	� Rectal cancer
CRC​	� Colorectal cancer
NC	� Non-cancer
CT	� Computerized tomography
MRI	� Magnetic resonance imaging
TCA​	� The tricarboxylic acid
MTBE	� Methyl-tert-butylether
MS	� Mass spectrometry
GC–MS	� gas chromatography-mass spectrometry
LC–MS	� liquid chromatography-mass spectrometry
UPLC	� Ultra-performance liquid chromatography
ROC	� Receiver operating characteristic
AUC​	� Area under the ROC curve
TAG​	� Triglyceride
PE	� Phosphatidylethanolamine
PC	� Phosphatidylcholines
PG	� Phosphatidylglycerol
SM	� Sphingomyelin
Cer	� Ceramides

1  Introduction

Cancer of the gastrointestinal (GI) tract, including the 
esophagus, stomach, gallbladder, small intestine, colon, 
and rectum, is very common. Therein, colorectum cancer 
and gastric cancers are the two most aggressive types of 
GI cancer contributing to cancer cases and deaths across 
the world (Arnold et al., 2020). According to global can-
cer statistics in 2020, there were an estimated 1.9 million 
and 1.1 million new cases and 0.9 million and 0.8 million 
new deaths of colorectum and gastric cancer, respectively 
(Sung et al., 2021). These two cancers are among the top 
five worldwide in terms of morbidity and mortality in both 
males and females. Colorectal cancer occurs when malig-
nant cells form in colon and rectum tissues. Hence, colo-
rectal cancer can be further classified into colon cancer 
(CC) and rectal cancer (RC). CC is a more malignant and 
leading cause of cancer-related death than RC (Sung et al., 
2021). Gastric cancer (GC) forms in the tissues that line the 
stomach. Because the digestive tract is a continuous system, 
many GI cancers cause the same clinical symptoms, such as 
blood in the stool, vomiting, and unexplained weight loss 
(https://​hillm​an.​upmc.​com/​cancer-​care/​color​ectal-​gi/​sympt​
oms-​diagn​osis). As these clinical symptoms often do not 
appear until the advanced stage of GI cancer, some specific 
tests are required to facilitate diagnosis. Commonly, endos-
copy is used to determine tumor locations, and biopsy is 
used to clinically confirm the cancer types. However, these 
“gold standard” approaches are invasive, have low compli-
ance, and are usually appropriate for advanced stages, which 
normally means chemotherapy and/or surgery are needed. 

The occurrence of cancer can extend over a long period 
comprising numerous stages (Bert et al., 2013). To date, 
most cancers can be cured by surgery if performed at the 
early stage before tumor cells have metastasized to distant 
sites. Once the tumor has developed and is considered late 
stage, treatment is quite challenging, and prognosis is poor. 
Thus, earlier screening and diagnosis are vital for reducing 
tumor-related deaths. As reported by Miller et al., more than 
half of cancer patients survived well in the past ten years 
because of advances in early detection and treatment (Miller 
et al., 2019a). Equivalently, cancer prognosis is important 
for patient survival in estimating cancer development and 
improving clinical management. There are precise methods 
for monitoring cancer recurrence, spread, and stages after 
surgery, e.g., computerized tomography(CT) and magnetic 
resonance imaging (MRI), but these have several limitations, 
including sensitivity, availability, cost, and radiation risk 
(Martins et al., 2021; Saluja et al., 2018; Yip et al., 2015).

The development of effective techniques for cancer 
screening and surveillance is one of the foremost chal-
lenges encountered in modern cancer research. In recent 
years, methods for detecting cancer in a slightly- or non-
invasive way have been developed to improve screening 
and exams. For example, the blood tumor markers (e.g., 
carcinoembryonic antigen, carbohydrate antigen 19-9 
and cancer-related antigen 72-4) have been widely used 
in clinical diagnosis. However, they generally have low 
sensitivity and specificity (Jung et al., 2014). Another 
revolutionary approach, namely, “liquid biopsy”, exhib-
its significant potential for monitoring cancer evolution 
and treatment response in real time (Martins et al., 2021). 
The detection of circulating transcripts and tumor cells in 
blood could provide accurate diagnostic results; however, 
sensitivity is an issue because these markers are found in 
only small amounts at the early stage of cancers, often 
below the detection limit or making it difficult to measure 
any alterations (Adashek et al., 2021; Chetan et al., 2014; 
Cohen et al., 2017). Alternatively, “omics” technologies 
enable us to study the cancer-related alterations at not only 
a genetic level but also at proteomic and metabolomic lev-
els with high sensitivity. Among these techniques, metabo-
lomics is a promising approach for cancer biomarker dis-
covery, as the reprogramming of cellular metabolism is 
one of the hallmarks of cancer, and metabolomics as the 
endpoint of “omics” cascades could reflect perturbations 
in all biological activities with an amplified way (Hana-
han, 2022; Hasin et al., 2017; Ni et al., 2014). Numerous 
metabolomics studies have been conducted to screen the 
biomarkers of cancers, whereas there are common meta-
bolic features among different cancer types, such as the 
Warburg effect and the reprogramed citrate (TCA) cycle, 
which result in challenges regarding differential diagno-
sis. For example, GC and CC, both being digestive tract 

https://hillman.upmc.com/cancer-care/colorectal-gi/symptoms-diagnosis
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cancers, share certain characteristics, and thus inevitably 
exhibit some indistinguishable metabolic features, result-
ing in difficulties for differential diagnosis. For instance, 
it has been found that GC and CC share a common pattern 
in that they differ in cysteine and methionine metabolism, 
arginine and proline metabolism, the citrate cycle (TCA 
cycle), and glycolysis or gluconeogenesis (Ren et  al., 
2021; Yu et al., 2020). In addition, relevant research has 
demonstrated that tumor resection surgery events can dis-
tinctly change the metabolic characteristics in multiple 
cancer types. For example, curative surgery significantly 
changes the level of γ -linolenic acid in CRC and ala-
nine, arginine, and hypoxanthine in GC (Jung et al., 2014; 
Zhuang et al., 2022).

To explore the potential role of circulating metabolites 
in the diagnosis and surveillance of GI cancers, we investi-
gated the plasma metabolomics of GC, CC, and non-cancer 
patients enrolled in the Second Hospital of Tianjin Medical 
University (Tianjin, China). GC and CC samples can be ade-
quately distinguished from non-cancer samples on a global 
metabolomic level. Many metabolites differed between GC 
and CC samples, and this can be used to diagnose and dis-
tinguish cancerous and non-cancer individuals. In addition, 
metabolites that are distinctly different between GC and CC 
samples can be applied in cancer-type identification, e.g., PE 
40:8e, PE 40:3, PE 36:1p, PC 42:1, and (2α, 3α, 5ξ, 9ξ)-2,3-
dihydroxyurs-12-en-28-oic acid. We further investigated the 
metabolic differentiations between before and after surgery. 
The metabolites significantly altered by surgery can be used 
as surveillance biomarkers.

2 � Materials and methods

2.1 � Participants

The cohort is a subset population from our previous study. 
Participants were screened according to the inclusion and 
exclusion criteria as previously described (Shi et al., 2022). 
Subjects were excluded if one of the exclusion criteria was 
met or if they failed in the sample quality check. Informed 
consents were obtained from all patients, and ethical 
approval was received from the Ethics Committee of The 
Second Hospital of Tianjin Medical University (China). 
Participating patients had a diagnosis of gastric or colon 
cancer, and patients without cancer or with inguinal hernia 
served as controls. Demographic information was collected, 
such as age, chronic disease, and smoking history. Five and 
eight patients with gastric and colon cancer, respectively, 
underwent surgical resection during this study.

2.2 � Sample collection and preparation

Blood samples were collected from patients in a fasted state 
and processed as previously described (Shi et al., 2022). 
Briefly, 5 mL of peripheral blood was collected and centri-
fuged at 4 °C (3800 rpm, 10 min), and the supernatant was 
harvested for metabolite extraction. Samples (50 uL) were 
mixed with 700 uL MTBE buffer containing 0.45 μg/mL of 
gibberellic acid A3, 1 μg/mL of 13C sorbitol, and 0.45 μg/
mL of PC (17:0/14:1) as internal standards (Salem et al., 
2016). The addition of 350 uL methanol/water (v/v, 1:3) 
was used for phase separation. The lipophilic and hydro-
philic phases were separately collected for lipidomics and 
metabolomics analysis, respectively. Three types of qual-
ity control (QC) samples were prepared following the same 
procedure as above described, including a pooled 50% of 
randomly selected plasma samples (QCbio), a mixture of 
chemical standards (QCmix) (Shi et al., 2022), and only sol-
vents (QCblank).

2.3 � Analytical platforms and sample detection

Lipids were analyzed by LC–MS, and polar metabolites 
were detected using both GC–MS and LC–MS. Liquid 
chromatographic separation was carried out on a Waters 
ACQUITY (Milford, MA) ultra-performance liquid chro-
matography (UPLC) system interfaced with a Thermo 
Fisher Q-Exactive (Bremen, Germany) mass spectrometer 
with an electrospray ionization (ESI) source. Polar phase 
was resolved in 200 μL of water and lipophilic fraction was 
resuspended in 200 μL of acetonitrile/isopropanol (v/v, 7:3). 
3 μL of supernatant was transferred to a Waters ACQUITY 
FTN autosampler with the temperature set to 10 °C. Data 
were acquired both in positive and negative modes. An Agi-
lent 7890B gas chromatograph with an Rxi®-5SilMS GC 
column (30 m, 0.25 × 30 mm, 0.25 μm) coupled to a Pegasus 
BT time-of-flight (TOF) mass spectrometer (Leco Corp., St. 
Joseph, MI, USA) with an electron ionization (EI) source 
was used for derivatized metabolite detection. The carrier 
gas was high-purity helium at a flow rate of 1 mL/min. The 
initial temperature was set at 50 °C for 2 min and increased 
by 1 °C/ min until up to 330 °C. The interface and ion source 
temperatures were adjusted to 280 and 250 °C, respectively. 
The detector voltage was maintained at 1.2 kV with standard 
70 eV EI parameters. The analytical conditions and param-
eters for data acquisition were detailed in our previous meth-
odology study (Shi et al., 2022).

2.4 � Data extraction and compound identification

LC–MS chromatograms were processed using Metanotitia 
Inc. in-house developed software PAppLine™ and refined as 
described by Giavalisco et al. (Giavalisco et al., 2009, 2011). 
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The peaks were extracted from each chromatogram with a 
baseline correction to remove the noise, and then matched 
across samples and aligned the retention time (RT). The 
identified features were annotated using the Metanotitia Inc. 
library, UlibMS. Polar metabolites were identified by a six-
thousand sub-library. The lipids were annotated by a 1700 
lipophilic library. Chromatograms obtained from GC–MS 
analysis were submitted to ChromaTOF (version 5.40) and 
refined and annotated using TargetSearch (R version 4.0.3) 
based on the Fiehn reference libraries (Cuadros-Inostroza 
et al., 2009; Kind et al., 2009). Peak detection, retention 
time alignment and calculated as the RT shift throughout all 
batches for each FAME internal standard, and mass spectral 
comparison with FAME standards, and finally quantified by 
the peak intensity. More details are described in our previous 
methodological paper (Shi et al., 2022).

2.5 � Data processing and statistical analysis

All metabolic features from the GC–MS and LC–MS plat-
forms with an overall coverage below 50% were filtered and 
the rest further normalization using Python 3.7.6 Anaconda 
Edition (Anaconda Software Distribution, 2016). The miss-
ing values were divided into three groups, such as abun-
dance > 50%, abundance < 50% and a mean intensity > 1E5, 
and abundance < 50% and a mean intensity < 1E5. Each 
situation was imputed with median ± 5% random noise, 
limit of detection (LOD) ± 5% random noise, and 0, respec-
tively. RobustScaler from Scikit-learn package in Python 
was used to scale the data while reducing the impact of 
outliers comparing to other methods. The batch effect 
was corrected by a non-linear autoencoder implemented 
in Normalization Autoencoder (NormAE) package (Rong 
et al., 2020). Briefly, this deep learning method embed-
ded original high-dimensional data into low-dimensional 
space. Data reconstruction was performed subsequently to 
transform those representations in low-dimensional space 
back into high-dimensional data to remove the inter-batch 

effect. Furthermore, the intra-batch effect was identified 
and removed by the autoencoder which was optimized by 
adversarial regularization and discriminators. The anno-
tated metabolites were analyzed using both univariate and 
multivariate approaches as well as machine learning. The 
heatmaps of differentiated the value of metabolites between 
groups by colors and shades, while the dendrogram with 
weighted linkage method to use for calculating clusters 
reveals the relatedness of or dissimilarities between groups. 
The significantly changed metabolites of GC or CC sam-
ples compared with NC were calculated by t-test with cutoff 
parameters of |Log2(foldchange)|> 0.25 and (BH-adjusted) 
p value < 0.05. Pathway enrichment analysis was based on 
MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​ca/). Differ-
entiated metabolic were selected by a tree-based algorithm 
XGBoost with the help of the Python package scikit-learn 
(Stamate et al., 2019), and the significance was calculated 
by a t-test (VIP > 1, (BH-adjusted) p value < 0.05). Then, the 
network was visualized by VANTED (http://​vanted.​sourc​
eforge.​net/#​ui-​tabs-4). The ROC curves were based on a 
series of different binary classifications (demarcation value 
or determination threshold) as well as the true-positive rate 
(sensitivity) and the false-positive rate (1-specificity). The 
diagnostic performance was ranked, and the top five metabo-
lites of each pair were displayed.

3 � Results

3.1 � Cohort characteristics

In this study, 81 participants were recruited, which included 
37 gastric cancer (GC), 17 colon cancer (CC), and 27 non-
cancer (NC) patients (Table 1). Of these, five and eight 
cancer patients (GC and CC) underwent surgical treatment. 
Therefore, a total of 94 plasma samples were collected, i.e., 
45, 25, and 27 samples collected from the GC, CC and NC 
groups, respectively. In this case–control study, there were 

Table 1   Baseline characteristics 
of participants

Values are mean (SD) or %
Age of continuous variables were analyzed by one-way ANOVA, the Chi-square test was used for gender, 
history of diabetes mellitus, history of hypertension, and current smoker.

Non-cancer (NC) Gastric cancer (GC) Colon cancer (CC) p value

n (after surgery sample avail-
able)

27 37 (5) 17 (8)

Gender (%) Female 3 (11.1) 14 (37.8) 8 (47.1) 0.02
Male 24 (88.9) 23 (62.2) 9 (52.9)

Mean age (SD) 62.2 (17.0) 67.2 (9.9) 67.8 (14.7) 0.27
Diabetes Yes 1 (3.7%) 6 (16.2%) 2 (11.8%) 0.29
Hypertension Yes 8 (29.6) 17 (37.8%) 10 (58.8%) 0.15
Current smoking Yes 3 (11.1%) 16 (43.2%) 5 (29.4%) 0.02

https://www.metaboanalyst.ca/
http://vanted.sourceforge.net/#ui-tabs-4
http://vanted.sourceforge.net/#ui-tabs-4
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significant differences in female percentage and smoking 
between the cancer and non-cancer groups, which allowed 
us to determine the source of potential bias in metabolomics 
outcomes. However, there were no obvious differences 
between the GC and CC groups (Table 1), which allowed us 
to conduct a comparative analysis of the GC and CC groups.

3.2 � MS‑based metabolite identification

A total of 94 plasma samples were analyzed on three MS-based 
platforms according to the untargeted metabolomic method as 
previously described, and 2540, 2475 and 79 metabolic fea-
tures were obtained from each (Fig. 1; Shi et al., 2022). Sub-
sequently, 463, 511 and 79 features from the LC–MS polar, 
LC–MS lipid and GC–MS platforms, respectively, were anno-
tated, and the rest remain unknown (Fig. 1B).

3.3 � Metabolomic differentiation of gastric cancer 
and colon cancer

Clinical blood tests for cancer must have high specificity 
to avoid false positive results which may lead to unneces-
sary follow-up procedures and anxiety. In this study, cancer 
and non-cancer samples exhibited satisfactory classifica-
tion according to the metabolite clustering (Fig. 2A). Three 

cluster metabolites (in the black dashed boxes) obviously 
changed between the cancer and non-cancer groups. Cluster 
1 mainly contained lipid ceramides (Cer) and PE, which 
were upregulated in the cancer samples. On the contrary, 
cluster 2 and 3 metabolites displayed relatively high levels 
in non-cancer samples, and consisted of lysolipids, PE and 
diverse polar metabolites (Fig. 2A). These results indicate 
that GC and CC can be sufficiently distinguished from NC 
at the metabolic level.

Although the GC and CC groups were not well distin-
guished by classification, they had obvious cancer-specific 
metabolic patterns when separately compared with the NC 
group (Fig. S1). CC and NC samples shown clearer clas-
sification in comparison with GC and NC. Lysolipids and 
PE mainly contributed to the classification. Moreover, a 
larger body of metabolites was significantly different in 
CC samples (Fig. 2B). Compared with NC samples, 245 
and 133 metabolites were significantly altered in the CC 
and GC samples, respectively, wherein, 102 metabolites 
were commonly changed in both cancer groups (Fig. 2B). 
Pathway enrichment analysis of these common differenti-
ated metabolites showed they mainly belong to steroid hor-
mone biosynthesis, cysteine and methionine metabolism, 
arginine and proline metabolism, galactose metabolism, 
amino acids, and purine metabolism pathways (Fig. 2C; 

Fig. 1   MS-based metabolomics and performance. A Workflow of 
the MS-based metabolomics. More details are described in a previ-
ous study (Shi et  al., 2022). B Stacked chart of the metabolic fea-
tures from the LC–MS polar, LC–MS lipid, and GC–MS platforms. 

The features of LC–MS platforms were obtained using both positive 
and negative ionization modes. Orange: annotated metabolites; Blue: 
unknown features
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Fig. S2). Pathways that were found to be prevalent between 
the GC and CC groups with different levels of enrich-
ment, included ubiquinone and other terpenoid-quinone 
biosynthesis, phenylalanine, tyrosine, and tryptophan 
biosynthesis, histidine metabolism, starch and sucrose 
metabolism, fructose and mannose metabolism, and ino-
sitol phosphate metabolism in GC samples, whereas in 
the CC samples, the prevalent pathways were nicotinate 
and nicotinamide metabolism, glycine, serine, and threo-
nine metabolism, aminoacyl-tRNA biosynthesis, ascor-
bate and aldarate metabolism, glycerolipid metabolism, 
nitrogen metabolism, phenylalanine metabolism, tyrosine 
metabolism, and β-alanine metabolism. Metabolites that 
vary uniquely between GC and CC samples can be used 
for clinical purposes.

3.4 � Differential metabolites have a good diagnostic 
ability

To further screen the potential biomarkers for GI cancer 
diagnosis, we performed ROC analysis comparing the can-
cer and non-cancer groups. The top five diagnostic metabo-
lites of each pair are displayed in Fig. 3. Dexamethasone, 
TAG 53:0, TAG 57:5, (9Z)-5,8,11-trihydroxy-9-octadece-
noic acid, and PE 34:1 demonstrated good diagnostic abil-
ity in the groups of GC and NC (Fig. 3A). In the CC and 
NC groups, PE 34:2, hydrocortisone, hypoxanthine, PE 36:4 
and PE 34:3 exhibited excellent diagnostic ability, with an 
AUC that exceeded 0.95 (Fig. 3B). Between the two cancer 
groups GC and CC, a group of phospholipids, including PE 
40:8e, PE 40:3, PE 36:1p and PC 42:1, and (2α, 3α, 5ξ, 
9ξ)-2,3-dihydroxyurs-12-en-28-oic acid had good diagnostic 
results with a mean AUC value that exceeded 0.88 (Fig. 3C). 
This suggests that the discriminated metabolites between 
the cancer and control groups have the potential to be devel-
oped as biomarkers for GI cancer detection and cancer-type 
identification.

3.5 � Metabolic differences before and after surgery

The curative resection of gastrointestinal cancers remains 
a cornerstone in clinical management, but it is often 

challenging and has a poor prognosis. Moreover, current 
tools for assessing prognosis, determining treatment and 
surveillance, and for the early detection of recurrence lack 
sensitivity (Hsu et al., 2022; Saluja et al., 2018). To explore 
the potential of metabolic markers for post-surgical and per-
sonalized management, we characterized the plasma metab-
olomics of identical subjects before and after surgery. As 
estimated, the surgical resection of solid tumors dramatically 
affected the plasma metabolomic signatures of both GC and 
CC patients (Fig. 4). Metabolic patterns differed before- and 
after-surgery, particularly in GC subjects. The first principal 
component (PC1) separated the before- and after-surgery 
groups, explaining 41.82% and 28.44% of the variations in 
GC and CC cases, respectively. PC2 was mainly explained 
by the variability among the individuals (i.e., 13.14% of 
GC and 11.46% of CC) (Fig. 4A), wherein lipids largely 
contributed to the discrimination in the GC group, whereas 
lysolipids and polar metabolites contributed mostly to varia-
tions in the CC group (Fig. 4B). Furthermore, 15 metabolites 
were significantly altered in each case (Fig. 5), i.e., the levels 
of l-glutamyl-l-glutamine, hippuric acid, (S)-(–)-cotinine, 
l-leucyl-l-leucine, 3-(1H-indol-3-yl)-2-(trimethylammonio) 
propanoate, harzianopyridone, PG 36:2, SM d40:2, SM 
d42:2, Cer d42:2, and threonine were relatively high before 
GC surgery, and the levels of citric acid, beta-hydroxylauric 
acid, 3-hydroxytetradecanoic acid, O-acetyl-l-homoserine, 
1,7-dimethyluric acid, (R)-2-aminobutanoic acid, l-aspartyl-
l-valine, uridine, isoleucine, and leucine were relatively high 
before CC surgery; conversely, the levels of PE 38:4, thre-
onic acid, l-lysyl-l-glutamine, and temorine were relatively 
high after GC surgery, and the levels of l-histidyl-l-aspartic 
acid, bavachinin, zinnimidine, Cer d46:0, and octylamine 
were relatively high in post-surgery CC. The significant 
metabolites after surgery, especially which returned to near 
normal levels (no significant difference compared with NC 
sample), can be developed as surveillance biomarkers, such 
as (S)-(–)-cotinine, l-lysyl-l-glutamine, threonic acid and 
threonine in GC samples, and 10 candidates in CC subjects 
(Fig. 5).

4 � Discussion

Digestive malignant neoplasms are the most common cause 
of cancer death worldwide. One reason why radically curing 
gastrointestinal cancer is very difficult is that the discov-
ery often occurs when the cancer is at an advanced stage. 
Moreover, most of the clinical symptoms associated with GI 
cancers do not manifest cancer-type specificity until the late 
stages. Therefore, many researchers have attempted to find 
biomarkers for early and accurate detections of GI cancer 
by various approaches, such as transcriptomic, proteomics 
and metabolomics techniques. Here, we have attempted to 

Fig. 2   Metabolomic differentiation of gastric and colon cancer sam-
ples compared with non-cancer samples. A Heatmap of metabolites 
that differed between the cancer and non-cancer groups  (Source 
data_1). Cluster method: weighted. The obviously changed metabo-
lite clusters are highlighted in the three black dashed boxes. B Venn 
diagram of significantly changed metabolites of GC and CC samples 
compared with NC. |Log2(foldchange)|> 0.25, p value < 0.05 (Source 
data_2). C Pathway enrichment analysis of significantly changed 
metabolites in a comparison of the GC and CC groups with the NC 
group. Visualization was constructed using MetaboAnalyst 5.0 
(https://​www.​metab​oanal​yst.​ca/). GC: gastric cancer; CC: colon can-
cer; NC: non-cancer

◂

https://www.metaboanalyst.ca/
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identify metabolic features for GI cancer screening, tissue-
of-origin identification, which is an inevitable issue in multi-
cancer screening, and the potential for prognostic assess-
ment. In this work, the case–control study is based on the 
plasma metabolomics of two GI cancers, gastric cancer (GC) 
and colon cancer (CC), as well as non-cancer control. When 
taking a global view, GC and CC are seen to have distinct 
metabolic patterns compared with non-cancer. This indicates 
that plasma metabolomics is a promising tool for the detec-
tion of GI cancers. Furthermore, the differential metabolic 
alterations of GC or CC can allow these cancer types to be 
distinguished. We also determined the plasma metabolomics 
before and after surgery. The significantly changed metabo-
lites can serve as biomarkers for prognosis surveillance.

Considering the importance of changing metabolites in 
cancer progression, metabolomics is an emerging and prom-
ising technology for cancer research. The commonly uti-
lized analytical techniques for GI cancer studies including 
GC–MS, LC–MS and especially NMR (Gao et al., 2023; 
Nannini et al., 2020; Yu et al., 2020). As summarized by 
Giulia Nannini et al., there are nine most significant metab-
olites identified from GI cancer bio-fluids via NMR. For 
instance, 3-hydroxybutyric acid and tyrosine were widely 
identified in blood, and acetate, butyrate and leucine were 
commonly detected in fecal water of CRC patients (Nannini 
et al., 2020). Another review article of GI cancer metabo-
lomics was conducted by Zhenxing Ren et al. (Ren et al., 
2021). The most significantly enriched pathways in GC 
samples are aminoacyl-tRNA biosynthesis, arginine bio-
synthesis, BCAA biosynthesis, tryptophan metabolism, 
and alanine, aspartate and glutamate metabolism (visual-
ized by MetaboAnalyst 5.0 (https://​www.​metab​oanal​yst.​
ca/), −log(p) > 4.5). The most reported metabolites from 
CRC studies are glutamic acid, phenylalanine, alanine, lactic 
acid, cysteine, tyrosine, and tryptophan. They also compared 
the altered metabolic pathways for GI cancers. The shared 
pathways have different effects on different cancer types, 
for instance, phenylalanine, tyrosine, tryptophan biosynthe-
sis ranks as GC < CRC. These were also reproduced in our 
study (Fig. 2C; Fig. S2). We noticed an obvious difference in 
study design. Almost all studies reported previously used the 
healthy volunteers as control, while we selected non-cancer 
patients as control. This may explain the poor reproducibility 
of what we identified compared with previous studies. The 
significantly changed metabolites included a lot of lipids 
in this study, which were rarely seen in previously studies. 
Interestingly, Janice Miller et al. also performed a study on 
patient-only cohort of upper GI cancer and identified a clus-
ter of lysolipids which could discriminate the weight-loss 
patients (Miller et al., 2019b). Our cohort design is more in 
line with the real clinical scenario. For clinical diagnosis, 
the most challenging thing is discriminating the malignant 
and benign diseases. As reported by Feng Chen et al., the gut 

Fig. 3   ROC curve analysis of metabolites in the different groups. ROC curve 
analysis of differential metabolites between (A) groups GC and NC, (B) groups 
CC and NC, and (C) groups GC and CC. The analyzed metabolites included 
dexamethasone, TAG 53:0, TAG 57:5, (9Z)-5,8,11-trihydroxy-9-octadecenoic 
acid, and PE 34:1; PE 34:2, hydrocortisone, hypoxanthine, PE 36:4, and PE 
34:3; and PE 40:8e, PE 40:3, PE 36:1p, PC 42:1, and (2α, 3α, 5ξ, 9ξ)-2,3-
dihydroxyurs-12-en-28-oic acid. GC: gastric cancer; CC: colon cancer; NC: 
non-cancer. The ROC curves were based on a series of different binary clas-
sifications (demarcation value or determination threshold) as well as the true-
positive rate (sensitivity) and the false-positive rate (1-specificity)

https://www.metaboanalyst.ca/
https://www.metaboanalyst.ca/
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microbiome-associated metabolites in blood could classify 
the colorectal abnormal patients and healthy control but did 
not work for distinguishing patients with CRC and colorec-
tal adenoma, which was because of the metabolic changes 
already happened at the adenoma stage (Chen et al., 2022). 
Another situation is that tumors usually occur in conjunction 
with other benign diseases, for example, lung cancer with 
comorbid pneumonia. These comorbidities are difficult to be 
accurately diagnosed clinically.

It is difficult to ensure the reproducibility of untargeted 
clinical metabolomics, as results can be easily influenced 
by individual and experimental factors, such as the cohort 
size, demographics, sample type and handling, analytical 
methods, and even data analysis, leading to a high level of 
inconsistency (Ren et al., 2021; Roth & Powers, 2022; Yu 
et al., 2020). These external factors can be addressed through 
consistent experimental design and normalized practices to 
achieve reliable and reproducible biomarker discovery. The 
inherent characteristics of a disease, however, enable us to 

Fig. 4   Metabolic differences before and after surgery in gastric and 
colon cancers from identical subjects. A PCA of metabolic profiles. 
Identical subjects are indicated using red connecting lines with the 

time interval (days). B Heatmap of the top 50 metabolites  (Source 
data_3). Blue: before surgery; Orange: after surgery. GC: gastric can-
cer; CC: colon cancer; BS: before surgery; AS: after surgery
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Fig. 5   Differentiated metabolites before and after surgery. Box 
plots of significantly changed metabolites after the surgery of 
GC (A) and CC (B) patients and compared with NC control. 
|Log2(foldchange)|> 0.25, p value < 0.05. (*) indicates the significant 

difference between post-surgery and NC control, p value < 0.05. y 
axis: scaled intensity. Blue: before surgery (BS); Orange: after sur-
gery (AS); GC: gastric cancer; CC: colon cancer; NC: non-cancer 
patient control. Source data are provided as Source data_4
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decipher specific metabolic fingerprints, although repro-
gramed metabolism is a common cancer hallmark, such as in 
the Warburg-effect, which results in extremely low glucose 
and high lactate and glycolytic intermediate concentrations 
in tumor tissues (Hanahan & Weinberg, 2011; Hirayama 
et al., 2009). Indeed, the actual tumor microenvironments 
differ in organs or even in tissues, resulting in cellular het-
erogeneity at genetic and post-translation levels (Altschuler 
& Wu, 2010). In addition, even the gut microbiota composi-
tion is associated with the metabolic phenotype of GI cancer 
(Cani & Jordan, 2018; Lee et al., 2021; Ren et al., 2021). 
Consequently, cancer- and organ-specific metabolites can 
be considered potential biomarkers for the differential diag-
nosis of different types of cancer. In this study, although the 
metabolic patterns of GC and CC could not be adequately 
distinguished through classification (Fig. 2A), these two 
cancers lead to different degrees of influence on cellular 
metabolism (Fig. S1-2). This was also found by Atsuki 
Ikeda and co-workers. They compared the level of serum 
metabolites among three GI cancers (esophageal cancer, 
gastric cancer and colorectal cancer), and a total of 58 com-
pounds were altered commonly in these three cancers when 
compared to healthy control but some of them exhibited 
cancer-specificity (Ikeda et al., 2012). For instance, lactic 
acid, glycolic acid, l-glutamic acid, and l-glutamine were 
significantly elevated in esophageal cancer and colorectal 
cancer; 3-hydroxypropionic acid and 3-hydroxyisobutyric 
acid were significantly increased in gastric and colorectal 
cancer; changes of malonic acid and l-serine were specific 
for esophageal cancer; 3-hydroxypropionic acid and pyru-
vic acid were contributed for separating gastric cancer; and 
l-alanine, glucuronoic lactone and l-glutamine character-
ized colorectal cancer. This was also deeply discussed in 
another review. Their hypothesis is that, on molecular level, 
genomic re-programming in each cancer type influences its 
metabolome (Ren et al., 2021). In other words, tumors aris-
ing in different tissue types may all have specific metabolite 
profiles to distinguish from one another. This difference may 
also be resulted from tumor microenvironment and micro-
biota. The well-reported bacterial metabolites (i.e., lactate, 
butyrate, acetaldehyde, and bile acids) play unignorable 
roles in different GI cancer (Bultman & Jobin, 2014; Nasr 
et al., 2020; Zeng et al., 2019; Zhao et al., 2020). There 
details indicated that metabolomics is useful for discovering 
the metabolic biomarkers of GI cancer, however, there is 
also full of challenges in distinguishing the GI cancer types. 
Recently, a metabolomics-based multicancer diagnosis study 
showed that the GC and CRC samples cannot be classified 
well on metabolic feature level (Zhang et al., 2022). This 
may also be due to their untargeted metabolomics with poor 
compound annotation. Based on the ROC analysis, the top 

five diagnostic metabolites of GC and CC were found to con-
sist of three lipids and two other metabolites, but they were 
totally different in identify. In the comparison of GC and CC 
groups, there were also four lipids that contributed to classi-
fication, and the diagnostic results were satisfactory (Fig. 3). 
This suggests that metabolomics certainty has the potential 
to identify the type of GI cancer, or in other words, the organ 
of the primary tumor, which is not possible with genomic-
based liquid biopsies (Cohen et al., 2018). Moreover, the 
more challenging thing is reproducing the cancer-specific 
biomarkers from previous studies with different platforms 
and self-developed compound libraries.

Tremendous efforts are being devoted to the discovery of 
diagnostic biomarkers for cancer, while prognostic studies 
are rarely conducted because of the limited samples and 
follow-up information (Wang et al., 2020). As metabolomics 
is a more direct reflection of an organism’s pathological and 
physiological states, it facilitates seeking the differential 
metabolites before and after surgery, which further assists 
us understand the surgical treatment mechanisms, promote 
the clinical management, and assess the outcome and risk 
of recurrence (Gao et al., 2023). The most representative 
study of metabolomics in clinical surgery is bariatric 
surgery, including Roux-en-Y gastric bypass (RYGB), sleeve 
gastrectomy (SG), etc. (Buchwald et al., 2004). For example, 
RYGB altered the metabolism of fatty acid, glucose, and 
amino acid, and SG caused the elevations of putrescine and 
several polyamines acetylated metabolites in serum (Lopes 
et  al., 2015; Ocaña-Wilhelmi et  al., 2020). Here a few 
studies that focused on the metabolic changes by surgery in 
gastric and colorectal cancer. The most influenced metabolic 
pathways were amino acid and lipid metabolism, and 
ascorbate and aldarate metabolism after surgical resection 
in GC and CRC patients (Jung et al., 2014; Lee et al., 2020; 
Vignoli et al., 2021; Zhuang et al., 2022). In this study, we 
detected the plasma metabolites after surgical treatment and 
performed a comparison with those before surgery from 
the identical subject. In the GC group, surgical resection 
dramatically altered the plasma metabolome, leading to 
a cluster of metabolites were significantly changed in the 
plasma (Fig. 5). Therein, (S)-(–)-cotinine and threonine 
reduced and l-lysyl-l-glutamine and threonic acid increased 
to normal level. In a urinary metabolomics study, alanine, 
arginine, and hypoxanthine were significantly changed after 
GC surgery and arginine returned to normal level after seven 
days (Jung et al., 2014). Although some longer intervals were 
observed in the CC group (i.e., 37, 40, and 42-day intervals), 
this did not contribute significantly to the differentiation of 
the metabolome before and after surgery. This may be a 
result of the metabolome being cancer-specific, the surgical 
operations or the patient-specific conditions. As Vignoli 
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et al., stated, differentiated metabolites have statistically 
correlations with clinical variables (i.e., tumor size, 
tumor stage, tumor localization, and even patient gender) 
(Vignoli et  al., 2021). There were also 10 metabolites 
that significantly changed by surgery and close to normal 
condition, namely, citric acid, beta-hydroxylauric acid, 
3-hydroxytetradecanoic acid, l-histidyl-l-aspartic acid, 
1,7-dimethyluric acid, (R)-2-aminobutanoic acid, l-aspartyl-
l-valine, bavachinin, zinnimidine, and Cer d46:0 (Fig. 5B). 
The citric acid cycle plays a central role in the cellular 
energy metabolism and biosynthesis of macromolecules in 
mitochondrion. In tumor cells, the citric acid cycle switched 
the source input from glycolysis to additional energy sources 
(Pavlova & Thompson, 2016). Based on a population-level 
cohort study in UK, the genetic variants of the citric acid 
cycle was significantly associated with CRC, especially 
between the SUCLG2 gene rs35494829 and colon cancer 
(Cho et al., 2020). This indicates that the energy metabolism 
of tumor cells, especially the altered metabolic profile of 
the citric acid cycle processes the potential for colorectal 
cancer biomarker discovery (Cheng et  al., 2012; Tan 
et al., 2013). As speculated, citric acid was significantly 
elevated in CRC samples (Amir Hashim et al., 2021; Tan 
et al., 2013; Uchiyama et al., 2017; Zamani et al., 2014). 
Besides, Buszewska-Forajta et al., found that citric acid was 
changed in prostate patient and have significant correlations 
with tumor progression (Buszewska-Forajta et al., 2022). In 
our study, the citric acid concentration was decreased after 
surgical resection, which is logical with the previous finding. 
There were two fatty acids with middle and long chains 
separately (beta-hydroxylauric acid, 3-hydroxytetradecanoic 
acid), which may indicate the fatty acid metabolic disorders 
in CRC patients (Brown et al., 2016; Chickos et al., 2002). 
In addition, we identified two exogenous metabolites, which 
may be originated from food, and several amino acids. 
Furthermore, the metabolites that were changed by surgery 
and still significantly different from NC controls (marker 
with * in Fig. 5) should be monitored for a longer period, 
as the postsurgical sampling time has a critical impact on 
metabolomics analysis. In conclusion, these significantly 
changed metabolites could be further validated for post-
surgery monitoring.

The obvious limitations of this study are the small 
population of patients enrolled in each group, and the 
differences in the female percentage and smoking status 
between the groups, which might increase the bias of the 
findings. Therefore, the putative biomarkers for GC and 
CC detection and identification need to be reproduced in 
a larger cohort study on normalized baseline and further 
validated with independent cohorts. This study explored 
the possibility of metabolomics for GI cancer screening 
and tumor organ classification. Additional GI cancer types 
(i.e., belongs to GI tract and accessory organs of digestion, 

esophagus, stomach, small intestine, colon and rectum, 
liver, gallbladder, and pancreas) will be incorporated in 
the future to develop a complete diagnostic model for GI 
cancers with high sensitivity and specificity. In addition, the 
impact of chronic diseases and gut microbiota on metabolic 
perturbations and cancer-specific biomarker screening 
remains to be further elucidated. The metabolites that 
significantly changed because of surgical resection should 
also be validated in a study with a large sample size, and a 
longitudinal design is required with sufficient sampling time 
points and follow-up information to access the prognostic 
ability of the metabolite biomarkers.

5 � Conclusion

This case–control study was designed to explore the poten-
tial role of metabolomics for GI cancer detection and tissue-
of-origin identification. Comparative metabolomics showed 
that the plasma metabolites differed between the cancer and 
non-cancer groups, which could strengthen the clinical diag-
nostic outcomes through complementation or even substitu-
tion. Blood-based untargeted metabolomics has the potential 
to be developed as a tool for the detection and localization of 
GI cancers and for post-surgical surveillance in an efficient 
and patient-friendly way.
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