Skip to main content
Log in

Untargeted metabolomics and lipidomics identified four subtypes of small cell lung cancer

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Small cell lung cancer (SCLC) is a heterogeneous malignancy with dismal prognosis. However, few studies have conducted on the metabolic heterogeneity in SCLC.

Objective

We therefore identify SCLC classifications using untargeted metabolomics and lipidomics. We also compared their survival and the immunotherapy responses.

Methods

Liquid Chromatography–Mass Spectrometry/Mass Spectrometry (LC–MS/MS) analysis was performed in 191 SCLC serum samples. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to identify metabolic pathways. The Kaplan–Meier and log-rank test were used to analyze the survival curves. The univariate and multivariate Cox proportional hazards regression models were used to evaluate prognostic factors for OS in patients with SCLC.

Results

Distinct subtypes of SCLC were identified by consensus clustering algorithm using partioning around medoids (pam) based on untargeted metabolomics and lipidomics. Four distinct subtypes of SCLC were identified, with distinct metabolic pathways. Subgroup 2 had the longest survival whereas Subgroup 1 had the shortest. Subtype 2 benefited most from immunotherapy in OS, as in contrast to Subtype 3 with shortest survival.

Conclusion

Our study revealed the metabolic heterogeneity in SCLC and identified four subtypes with distinct metabolic features. It indicates promising therapeutic and prognostic value that may guide treatment for SCLC. The subtype-specific clinical trials may be designed and would be instructive for drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

Methods and materials are available in supplementary file.

References

  • Carney, D. N., Marangos, P. J., Ihde, D. C., Bunn, P. A., Jr, Cohen, M. H., Minna, J. D., & Gazdar, A. F. (1982). Serum neuron specific enolase: a marker for disease extent and response to therapy for small-cell lung cancer. Lancet, i, 583–585.

    Article  Google Scholar 

  • Chalishazar, M. D., Wait, S. J., Huang, F., Ireland, A. S., Mukhopadhyay, A., Lee, Y., Schuman, S. S., Guthrie, M. R., Berrett, K. C., Vahrenkamp, J. M., Hu, Z., Kudla, M., Modzelewska, K., Wang, G., Ingolia, N. T., Gertz, J., Lum, D. H., Cosulich, S. C., Bomalaski, J. S., et al, Oliver, T. G. (2019). MYC-driven small-cell lung cancer is metabolically distinct and vulnerable to arginine depletion. Clinical Cancer Research, 25(16), 5107–5121.

    Article  CAS  Google Scholar 

  • Cramer, D. W., Harlow, B. L., Willett, W. C., Welch, W. R., Bell, D. A., Scully, R. E., Ng, W. G., & Knapp, R. C. (1989). Galactose consumption and metabolism in relation to the risk of ovarian cancer. Lancet, 2(8654), 66–71.

    Article  CAS  Google Scholar 

  • Cristea, S., Coles, G. L., Hornburg, D., Gershkovitz, M., Arand, J., Cao, S., Sen, T., Williamson, S. C., Kim, J. W., Drainas, A. P., He, A., Cam, L. L., Byers, L. A., Snyder, M. P., Contrepois, K., & Sage, J. (2020).The MEK5-ERK5 kinase axis controls lipid metabolism in small-cell lung cancer. Cancer Research, 80(6), 1293–1303.

    Article  CAS  Google Scholar 

  • Currie, E., Schulze, A., Zechner, R., Walther, T. C., & Farese, R. V., Jr (2013).Cellular fatty acid metabolism and cancer. Cell Metabolism, 18(2), 153–161.

    Article  CAS  Google Scholar 

  • Domenichini, A., Adamska, A., & Falasca, M. (2019). ABC transporters as cancer drivers: Potential functions in cancer development. Biochimica Et Biophysica Acta—General Subjects, 1863(1), 52–60.

    Article  CAS  Google Scholar 

  • Gaude, E., & Frezza, C. (2016). Tissue-specific and convergent metabolic transformation of cancer correlates with metastatic potential and patient survival. Nature Communications, 7, 13041.

    Article  CAS  Google Scholar 

  • Gay, C. M., Stewart, C. A., Park, E. M., Diao, L., Groves, S. M., Heeke, S., Nabet, B. Y., Fujimoto, J., Solis, L. M., Lu, W., Xi, Y., Cardnell, R. J., Wang, Q., Fabbri, G., Cargill, K. R., Vokes, N. I., Ramkumar, K., Zhang, B., Della Corte, C. M., et al, Byers, L. A. (2021). Patterns of transcription factor programs and immune pathway activation define four major subtypes of SCLC with distinct therapeutic vulnerabilities. Cancer Cell, 39(3), 346-360.e7.

    Article  CAS  Google Scholar 

  • George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretić, L., Kong, G., Leenders, F., Lu, X., Fernández-Cuesta, L., Bosco, G., Müller, C., Dahmen, I., Jahchan, N. S., Park, K. S., Yang, D., Karnezis, A. N., Vaka, D., Torres, A., Wang, M. S., et al, Thomas, R. K. (2015). Comprehensive genomic profiles of small cell lung cancer. Nature, 524(7563), 47–53.

    Article  CAS  Google Scholar 

  • He, X., Lin, H., Yuan, L., & Li, B. (2017). Combination therapy with L-arginine and α-PD-L1 antibody boosts immune response against osteosarcoma in immunocompetent mice. Cancer Biology & Therapy, 18(2), 94–100.

    Article  CAS  Google Scholar 

  • Helfrich, B. A., Kim, J., Gao, D., Chan, D. C., Zhang, Z., Tan, A. C., & Bunn, P. A., Jr (2016). Barasertib (AZD1152), a small molecule aurora B inhibitor, inhibits the growth of SCLC cell lines in vitro and in vivo. Molecular Cancer Therapeutics, 15(10), 2314–2322.

    Article  CAS  Google Scholar 

  • Herrinton, L. J., Weiss, N. S., Beresford, S. A., Stanford, J. L., Wolfla, D. M., Feng, Z., & Scott, C. R. (1995). Lactose and galactose intake and metabolism in relation to the risk of epithelial ovarian cancer. American Journal of Epidemiology, 141(5), 407–416.

    Article  CAS  Google Scholar 

  • Huang, Z., Xu, D., Zhang, F., Ying, Y., & Song, L. (2016). Pro-gastrin-releasing peptide and neuron-specific enolase: Useful predictors of response to chemotherapy and survival in patients with small cell lung cancer. Clinical and Translational Oncology, 18(10), 1019–1025.

    Article  CAS  Google Scholar 

  • Hubaux, R., Thu, K. L., Coe, B. P., MacAulay, C., Lam, S., & Lam, W. L. (2013). EZH2 promotes E2F-driven SCLC tumorigenesis through modulation of apoptosis and cell-cycle regulation. Journal of Thoracic Oncology, 8(8), 1102–1106.

    Article  CAS  Google Scholar 

  • Jiang, L., Huang, J., Higgs, B. W., Hu, Z., Xiao, Z., Yao, X., Conley, S., Zhong, H., Liu, Z., Brohawn, P., Shen, D., Wu, S., Ge, X., Jiang, Y., Zhao, Y., Lou, Y., Morehouse, C., Zhu, W., Sebastian, Y., et al, Yao, Y. (2016). Genomic landscape survey identifies srsf1 as a key oncodriver in small cell lung cancer. PLoS Genetics, 12(4), e1005895.

    Article  Google Scholar 

  • Koundouros, N., & Poulogiannis, G. (2020). Reprogramming of fatty acid metabolism in cancer. British Journal of Cancer, 122(1), 4–22.

    Article  CAS  Google Scholar 

  • Li, X., Wenes, M., Romero, P., Huang, S. C., Fendt, S. M., & Ho, P. C. (2019). Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 16(7), 425–441.

    Article  CAS  Google Scholar 

  • Molina, R., Auge, J. M., Filella, X., Viñolas, N., Alicarte, J., Domingo, J. M., & Ballesta, A. M. (2005). Pro-gastrin-releasing peptide (proGRP) in patients with benign and malignant diseases: Comparison with CEA, SCC, CYFRA 21–1 and NSE in patients with lung cancer. Anticancer Research, 25(3A), 1773–1778.

    CAS  Google Scholar 

  • Pavlova, N. N., & Thompson, C. B. (2016). The emerging hallmarks of cancer metabolism. Cell Metabolism, 23(1), 27–47.

    Article  CAS  Google Scholar 

  • Robey, R. W., Pluchino, K. M., Hall, M. D., Fojo, A. T., Bates, S. E., & Gottesman, M. M. (2018). Revisiting the role of ABC transporters in multidrug-resistant cancer. Nature Reviews Cancer, 18(7), 452–464.

    Article  CAS  Google Scholar 

  • Röhrig, F., & Schulze, A. (2016). The multifaceted roles of fatty acid synthesis in cancer. Nature Reviews Cancer, 16(11), 732–749.

    Article  Google Scholar 

  • Rudin, C. M., et al. (2021). Small-cell lung cancer. Nature Reviews Disease Primers, 7(1), 3.

    Article  Google Scholar 

  • Sabari, J. K., Lok, B. H., Laird, J. H., Poirier, J. T., & Rudin, C. M. (2017). Unravelling the biology of SCLC: Implications for therapy. Nature Reviews Clinical Oncology, 14(9), 549–561.

    CAS  Google Scholar 

  • Sivanand, S., & Vander, H. (2020). Emerging roles for branched-chain amino acid metabolism in cancer. Cancer Cell, 37(2), 147–156.

    Article  CAS  Google Scholar 

  • Stine, Z. E., et al. (2022). Targeting cancer metabolism in the era of precision oncology. Nature Reviews Drug Discovery, 21(2), 141–162.

    Article  CAS  Google Scholar 

  • Tang, M., Etokidem, E., & Lai, K. (2016). The Leloir pathway of galactose metabolism—A novel therapeutic target for hepatocellular carcinoma. Anticancer Research, 36(12), 6265–6271.

    Article  CAS  Google Scholar 

  • VanJP Fennell, D. A., & De Ruysscher, D. K. M. (2011). Small-cell lung cancer. Lancet, 378(9804), 1741–1755.

    Article  Google Scholar 

  • Vettore, L., Westbrook, R. L., & Tennant, D. A. (2020). New aspects of amino acid metabolism in cancer. British Journal of Cancer, 122(2), 150–156.

    Article  CAS  Google Scholar 

  • Vriens, K., Christen, S., Parik, S., Broekaert, D., Yoshinaga, K., Talebi, A., Dehairs, J., Escalona-Noguero, C., Schmieder, R., Cornfield, T., Charlton, C., Romero-Pérez, L., Rossi, M., Rinaldi, G., Orth, M. F., Boon, R., Kerstens, A., Kwan, S. Y., Faubert, B., et al, Fendt, S. M. (2019).(2019). Evidence for an alternative fatty acid desaturation pathway increasing cancer plasticity. Nature, 566(7744), 403–406.

    Article  Google Scholar 

  • Xing, Z., Russon, M. P., Utturkar, S. M., & Tran, E. J. (2020). The RNA helicase DDX5 supports mitochondrial function in small cell lung cancer. Journal of Biological Chemistry, 295(27), 8988–8998.

    Article  CAS  Google Scholar 

  • Yoshida, G. J. (2015). Metabolic reprogramming: The emerging concept and associated therapeutic strategies. Journal of Experimental & Clinical Cancer Research, 34, 111.

    Article  Google Scholar 

Download references

Funding

This study was supported jointly by Special Funds for Taishan Scholars Project (Grant No. tsqn201812149), Academic promotion program of Shandong First Medical University (2019RC004).

Author information

Authors and Affiliations

Authors

Contributions

CZ wrote the main manuscript and prepared Fig. 1. XS performed data analysis, prepared supplementary materials and revised the manuscript. HW conceived the idea and revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Haiyong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

The authors provide consent for publication and assure this manuscript is not under consideration elsewhere.

Ethical approval

This study was approved by the Ethics Committee of Shandong Cancer Hospital and Institute. All included patients in this study offered written informed consent.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Shang, X. & Wang, H. Untargeted metabolomics and lipidomics identified four subtypes of small cell lung cancer. Metabolomics 19, 3 (2023). https://doi.org/10.1007/s11306-022-01964-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-022-01964-x

Keywords

Navigation