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Abstract
Background Untargeted metabolomics approaches based on mass spectrometry obtain comprehensive profiles of complex 
biological samples. However, on average only 10% of the molecules can be annotated. This low annotation rate hampers bio-
chemical interpretation and effective comparison of metabolomics studies. Furthermore, de novo structural characterization of 
mass spectral data remains a complicated and time-intensive process. Recently, the field of computational metabolomics has 
gained traction and novel methods have started to enable large-scale and reliable metabolite annotation. Molecular network-
ing and machine learning-based in-silico annotation tools have been shown to greatly assist metabolite characterization in 
diverse fields such as clinical metabolomics and natural product discovery.
Aim of review We highlight recent advances in computational metabolite annotation workflows with a special focus on 
their evaluation and comparison with other tools. Whilst the progress is substantial and promising, we also argue that 
inconsistencies in benchmarking different tools hamper users from selecting the most appropriate and promising method 
for their research. We summarize benchmarking strategies of the different tools and outline several recommendations for 
benchmarking and comparing novel tools.
Key scientific concepts of review This review focuses on recent advances in mass spectral library-based and machine learn-
ing-supported metabolite annotation workflows. We discuss large-scale library matching and analogue search, the current 
bloom of mass spectral similarity scores, and how molecular networking has changed the field. In addition, the potentials 
and challenges of machine learning-supported metabolite annotation workflows are highlighted. Overall, recent develop-
ments in computational metabolomics have started to fundamentally change metabolomics workflows, and we expect that 
as a community we will be able to overcome current method performance ambiguities and annotation bottlenecks.

Keywords Untargeted metabolomics · Mass spectrometry · Mass fragmentation spectra · Metabolite annotation and 
identification · Machine learning · Benchmarking
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1  Background & motivation

Metabolites are key functional parts of biology with roles 
in metabolism, nutrition, intra- and inter-organism species 
communication, and signalling pathways. In general, they 
are important contributors to an organism’s growth and 
health (Fiehn, 2002). A growing number of metabolites 
has been discovered in recent years; hence, we increasingly 
appreciate the large chemical space that nature can produce 
and use (e.g., Wishart et al. (2022)). Reusing this large, cur-
rently mostly unexplored chemical space for our needs is 
promising, such as for the development of therapeutics or the 
finding of biomarkers for early detection of disease or vari-
ous risks. To measure and understand this chemical space, 
untargeted metabolomics approaches have gained traction 
over the last two decades, fuelled by technical advances in 
analytical equipment as well as computational advances 
that support in-silico structural annotation of the gener-
ated information-dense metabolomics profiles (e.g., Misra 
(2021)). In this respect, the ideal experimental analysis of 
a sample in any untargeted metabolomics approach would 
report the structural identities (i.e., the chemical name and 
structure) of all metabolites and their absolute abundances. 
Unfortunately, today, this is still far from reality and will 
likely not be achieved any time soon. In the real world, tech-
niques available for metabolite annotation are nuclear mag-
netic resonance (NMR) spectroscopy and mass spectrometry 
(MS) coupled to either gas chromatography (GC) or liquid 
chromatography (LC). Currently, LC-high-resolution MS 
(LC-HRMS) is the favoured analytical technique for untar-
geted analytical measurements with the aim of identifying 
and characterising many of the samples’ constituents. LC-
HRMS is versatile, can easily be customised to research-
ers’ needs, and is extraordinarily sensitive. However, apart 
from the measurements themselves, the raw data analysis 
for unravelling the metabolites’ identities is cumbersome 
and error-prone (Alseekh et al., 2021), especially when no 
authentic reference standards are available for identity con-
firmation (Metabolomics Standards Initiative [MSI] Metabo-
lite Identification [MI] level 1 identification (Members of 
the Metabolomics Standards Initiative et al., 2007; Sumner 
et al., 2007)).

Limited levels of metabolite annotation and low avail-
ability of chemical reference standards are widely recog-
nized as a severe bottleneck for the biological interpreta-
tion of many research activities (Beniddir et al., 2021; da 
Silva et al., 2015; Dunn et al., 2012; Peisl et al., 2018; Stein, 
2012; Tsugawa, 2018). This shortcoming could partly be 
addressed with great financial and manual labour efforts 
(i.e., production of many authentic reference standards), but 
restrictions due to high costs and/or limitations in available 
quantities make large improvements in this area unlikely. 

A less expensive and more versatile solution comes with 
in-silico approaches, which harness computing workflows 
from advanced machine learning and statistical approaches 
to predict the relevance and structural properties of chemi-
cal entities measured by the mass spectrometer with suf-
ficient accuracy. Here, mass fragmentation spectra (MS/
MS spectra) acquired through data dependent acquisition 
(DDA) or data independent acquisition (DIA) alternatives 
have demonstrated their merits in adding structural informa-
tion to metabolomics profiles, as we will also demonstrate 
throughout this review. As such, computational metabo-
lomics tools that capitalize on MS and MS/MS information 
are a pragmatic solution since it is unlikely that we will ever 
cover the true chemical diversity in nature exhaustively with 
available reference standards given the vastness of estimated 
natural chemical space (Polishchuk et al., 2013; Shrivastava 
et al., 2021).

In-silico annotation methods are typically employed in 
combination with structure and spectral databases, from 
which the tools learn to recognize chemical structures from 
LC-HRMS/MS data or even predict chemical properties for 
MS/MS data acquired from novel molecules (Blaženović 
et al., 2017, 2018). The comparisons and predictions typi-
cally result in scores for the observed query MS/MS spectra 
and the respective database entries that can then be ranked 
accordingly. However, it is important to stress that without 
further experimental validation or available complemen-
tary structural information, the use of in-silico annotation 
approaches only leads to MSI MI level 2 or 3 annotations, 
but no definite identification of the molecular structures, 
even in cases with perfect scores. Nevertheless, these anno-
tations are of utmost importance and serve as an excellent 
starting point for subsequent validation with newly acquired 
standards, organic synthesis approaches, or for prioritization 
strategies.

In principle, in-silico methods are suited to appreciate 
the true chemical diversity in natural extracts. However, in-
silico annotation strategies suffer from low accuracies (i.e., 
a high number of false-positives) and often do not report the 
correct annotation as the top hit but rather within the first 
5 or 10 hits. Most analytical (bio)chemists are not used to 
such low accuracies, and they are often tempted to simply 
use the best-scoring hit. However, this should be avoided 
as errors during this annotation will propagate to the bio-
logical interpretation. Thus, akin to monitoring and ensuring 
an adequate LC-HRMS performance during the analytical 
measurements, the predictions and performance of the in-sil-
ico methods should also be tested, and it should be verified 
whether they are correct or not. Ideally, the different avail-
able in-silico methods are compared and the best performing 
one for the analytical setup and research question at hand is 
subsequently used.
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Metabolome mining approaches based on large-scale 
mass spectral comparisons and machine learning are becom-
ing increasingly popular (Beniddir et al., 2021). Notewor-
thy and widely-adopted methods are molecular networking 
(Aron et al., 2020; Nothias et al., 2020; Wang et al., 2016) 
and, in general, methods that group molecules of likely high 
chemical similarity based on their MS/MS spectra, i.e., 
mass spectral networking. Here, identified (or annotated) 
molecules allow the propagation and use of this chemical 
identity to improve the annotation of other unidentified or 
unannotated members of this metabolite group or molecu-
lar family, also coined Network Annotation Propagation (da 
Silva et al., 2018).

The constant development of novel tools drives continu-
ous increases in prediction power and thus reliability of 
these in-silico methods. In general, to benchmark such tools, 
analytical data of known molecules is processed and ana-
lysed, and the obtained results are compared to the known 
identity of the molecules under investigation. Then, figures 
of merit such as accuracy or false discovery rates are cal-
culated. Unfortunately, the test datasets used are not stand-
ardized, which often makes it difficult to compare different 
tools. Consequently, the community would greatly benefit 
from standards and reused datasets among the different tools 
to allow for better comparison. Especially end-users of the 
tools such as analytical chemists and biologists would ben-
efit as this would greatly increase their confidence in the 
tools and their results.

In this critical review, we first focus on mass spectral sim-
ilarity metrics that compute similarity scores between MS/
MS spectra in the context of mass spectral library matching, 
large-scale mass spectral comparisons, and mass spectral 
networking. Second, we review current tools making use of 
machine learning / deep learning in metabolite annotation 
and discuss the challenges in fair benchmarking (validating) 
and comparison of different in-silico metabolite annotation 
tools. Finally, we provide recommendations on how to dis-
cover the strengths and weaknesses of the tools. In addition, 
we highlight the methods we deem to be at the forefront of 
the current state of the art in metabolite annotation and stress 
their limitations as well as promising avenues for further 
research.  

2  Applications of mass spectral matching

MS/MS spectra obtained by LC–MS/MS analysis can be 
used to generate key insights from the wealth of data gener-
ated by high throughput metabolomics. Here, we will dis-
cuss two key uses they find in computational tools, namely 
i) mass spectral library matching for metabolite annotation 
including both direct matching and analogue search, and 

ii) in the organisation and exploration of the many MS/MS 
spectra generated in metabolomics profiles at once.

Considering the first task, this can be subdivided into 
the identification of molecules using authentic reference 
standards (MSI MI level 1) and the general annotation with 
spectral databases (MSI MI level 2) (Blaženović et al., 2018; 
da Silva et al., 2018). To achieve metabolite identification, 
LC-HRMS/MS data of authentic standards and experimental 
samples are acquired with the same analytical settings thus 
leading to almost identical MS/MS spectra, retention times, 
MS1 adduct and isotope information. Hence, simple scoring 
methods and stringent cut-off values often suffice for match-
ing and thus trusted identification. While level 1 identifica-
tion is clearly the ideal aim, the unavailability of reference 
standards, as well as strong reference library bias towards 
[M + H] + or [M-H]- ions rather than a more complete 
adduct coverage, commonly causes  ~95% of measured spec-
tra lacking respective molecule identifications (Blaženović 
et al., 2018; da Silva et al., 2015). To overcome this draw-
back, more flexible spectral matching approaches are used 
to match experimental MS/MS spectra to a broader set of 
reference MS/MS spectra from different analytical setups 
available in various reference databases. Here, mass spectral 
differences need to be tolerated to a much greater extent to 
query for plausible candidates. As commonly used scoring 
methods report a continuous value on the spectral similar-
ity, they often fail to separate correct and incorrect matches 
leading to high numbers of incorrect annotations (Li et al., 
2021; Scheubert et al., 2017). Thus, during mass spectral 
library matching, novel and improved scoring methods need 
to account for differences in mass spectral fragmentation 
patterns to allow correct matching spectra of identical mol-
ecules acquired on different machines, all while avoiding 
matching different molecules exhibiting similar mass frag-
mentation patterns (Fig. 1).

The second task of spectral matching is aimed toward 
the annotation of structurally related molecules as well as 
the organisation of vast amounts of mass spectral data into 
groups of molecules with high structural similarity. In the 
absence of a corresponding reference standard, structurally 
related molecules can serve as seeds for manual structural 
investigation. Moreover, even without in-depth manual 
structural analysis, it can be useful for biological and chemi-
cal interpretation to have an overview of structurally similar 
molecules (e.g., metabolites of the same chemical class or 
metabolic pathway). With respect to scoring, unlike clas-
sical database matching itself, this organisation requires 
structurally similar molecules to be recognized (Bero et al., 
2017; Huber et al., 2021b). Consequently, such approaches 
require more sophisticated mass spectral matching meth-
ods, and ideally, the calculated score of two MS/MS spectra 
obtained from different molecules should reflect and corre-
late with the molecules’ structural similarity in a continuous 
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fashion rather than confirming them to be identical or not. 
In such comparisons, even small structural differences (e.g., 
single or double-bonds, presence/absence of phosphoryla-
tion), can lead to quite dissimilar MS/MS spectra with m/z 
shifts for certain fragments as well as new fragments, in 
combination with altered relative intensity values. Respec-
tive scores ideally should be able to take such modifications 
and the resulting differences in the MS/MS spectra explicitly 
or implicitly into consideration. Furthermore, with respect to 
the organisation of mass spectral data, it has been observed 
that traditional scores (e.g., the classical cosine score) show 
suboptimal performance (Schollée et al., 2017). As a result, 
the community has started to develop more sophisticated 
approaches that automatically account for structural differ-
ences observed in the respective MS/MS spectra. In this sec-
tion, we will discuss commonly used mass spectral similarity 
scores used for mass spectral annotation and organisation, 

and the impact of novel and recently proposed mass spectral 
similarity metrics.

2.1  Library matching

Currently, metabolomics applications use diverse scoring 
approaches, ranging from measures based on spectra them-
selves to methods utilising machine learning predictions and 
mass spectral embeddings (a learned vector representation 
of mass spectra). The most used score is the cosine score 
(Fig. 1 a1). It converts two MS/MS spectra to two equally 
sized vectors through mass peak binning and establishes 
their dot-product. Numerous flavours of this score exist, dif-
fering primarily in which information of the fragmentation 
patterns are used for matching or are taken into considera-
tion and how these are weighted (Fig. 1 a2). The different 
cosine scores have established themselves as standards in 

Fig. 1  Overview of different spectral comparison (a–c) and spectral 
organisation methods (d) for two MS/MS spectra A and B. a1) Using 
mass spectral binning (i.e., to account for small m/z value differ-
ences), mass fragmentation spectra are transformed into vectors that 
are subsequently compared using mathematical formulas. a2) Modifi-
cations of the binning schema can account for other differences than 
m/z values (e.g., account for neutral losses, use only fragments pre-
sent in both spectra, etc.). a3) Besides the actual mass fragment sig-
nals, neutral losses within or between spectra alone can serve as input 
for the spectral comparisons. a4) The Entropy score is a recently 
developed and high-performing metric for spectral comparisons. b1) 
Spectral comparison can be based on automatically computer-learned 

representations (i.e., alternatives to fragment spectral binning). 
b2) Comparison of MS/MS spectra can be achieved automatically 
with machine/deep learning methods and thus correlate better with 
structural similarity (NN: Neural Networks, SVM: Support Vector 
Machines). c Fragment spectra can be “aligned” similar to sequence 
alignment, which will report sub-spectra with overlapping fragments 
(i.e., certain structure parts of the two molecules, SIMILE: Signifi-
cant Interrelation of MS/MS Ions via Laplacian Embedding). d Many 
MS/MS spectra can be organised into groups (molecular networking 
or mass spectral networking) or embedded in a lower subspace (a 
proxy for structural similarity)
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the metabolomics field. However, depending on the task and 
size of the dataset, their performance may not be optimal 
when compared to other scoring approaches (Huber et al., 
2021a; Li et al., 2021), nor is it easy to set default thresh-
olds optimally for all experiments (Scheubert et al., 2017). 
Hence, research into improving and developing better mass 
spectral matching scores and assessing their optimal use is 
still ongoing.

A recent contribution to the study of mass spectral simi-
larity scores was published by Li and colleagues (Li et al., 
2021) with the development of the Entropy score. This novel 
score measures the difference between two spectra as the 
difference in entropy between the individual spectra and a 
combined spectrum composed of the peaks of both spec-
tra (Fig. 1 a4). The authors compared their method to 42 
alternative similarity scoring approaches and demonstrated 
that their entropy score achieves the best performance in 
an evaluation of 25,555,973 pairwise spectral comparisons 
based on a large set of 434,287 MS/MS spectra representing 
25,138 molecules from the NIST20 database. The authors 
varied score thresholds and measured corresponding false 
discovery rates. A particularly interesting aspect of their 
evaluation was the use of in-silico spectral noise to assess 
the spectral match robustness of their method. They showed 
that their method is much less affected by experimental 
noise than the cosine score, which may suffer significantly 
in mass spectral library matching performance through the 
presence of even a single noise signal. While they showed 
that their method, alongside 26 alternative similarity scoring 
approaches, performed better than the cosine score, they did 
not include more recent machine learning-based similarity 
scores in their benchmarking study. If two MS/MS spectra of 
structurally similar or identical molecules (i.e., experimental 
and library MS/MS spectrum) are nearly identical, formula-
based scoring methods that rely on mass fragmental overlap 
and heuristics such as the Entropy score can be expected to 
perform well (Li et al., 2021; Scheubert et al., 2017). How-
ever, structurally identical molecules can sometimes yield 
notably distinct MS/MS spectra if obtained with different 
instruments, different collision energies, or different analyti-
cal conditions. To address this issue, alternative approaches 
that can account for such differences have started to emerge.

For instance, Spec2Vec, an unsupervised machine learn-
ing model used to learn co-occurrence patterns of frag-
ments and losses in spectral data, was successfully used for 
mass spectral library matching (Huber et al., 2021a). The 
approach first learns how to represent a MS/MS spectrum 
by an abstract feature vector, which is commonly referred 
to as embedding, or, in our specific case, a "mass spectral 
embedding". Typically, the goal of such approaches is to 
create an abstract feature space where similar elements 
(i.e., here MS/MS spectra) are close to each other. With 
Spec2Vec, for instance, the cosine score between two 

Spec2Vec-derived embeddings gives the spectral similarity 
score. The Spec2Vec’s mass spectral similarity score was 
evaluated with respect to its mass spectral library match-
ing performance on a set of 95,320 MS/MS spectra from 
the GNPS libraries that comprised of at least 10 mass frag-
ments after basic noise filtering. The authors showed that 
Spec2Vec’s scoring consistently outperformed cosine-based 
scores in accuracy over the full range of evaluated precursor 
tolerances in both retrieval rates and true/false positive rates. 
Another example of making use of a trained mass spectral 
embedding has been presented with MS2DeepScore (Huber 
et al., 2021b). This method aims to improve the scoring of 
structurally similar molecules based only on their obtained 
MS/MS spectra. It utilises a Siamese neural network that 
is trained on a large training set consisting of more than 
100,000 MS/MS spectra of 15,000 molecules and has been 
evaluated on an independent dataset with 3600 spectra from 
500 molecules. This Siamese network was trained with 
respect to the Tanimoto structural similarity of the training 
molecules using only their MS/MS spectra as input. While 
the model was not evaluated explicitly for mass spectral 
library matching purposes, the improved prediction accuracy 
of structural similarity scores achieved by this model (i.e., 
as compared to the modified cosine score) is a promising 
indicator for its mass spectral library matching potential.

Both machine learning-based and direct score-based 
approaches have their merits. Direct scores are easy to 
compute, conceptually simple to understand, and generally 
do not need any training data. However, they can be lim-
ited to simple heuristics and may fail to link spectra from 
molecules with more heavily differing fragmentation spec-
tra between experimental platforms. Here, recent machine 
learning applications, like Spec2Vec and MS2Deepscore, 
provide promising alternatives to account for more complex 
fragmentation patterns to complement direct formula-based 
scores that rely on the mass fragmental overlap alone. In-
silico fragmentation tools and their corresponding similarity 
functions provide another promising avenue for improving 
annotation rates through structural library matching. Given 
their technical nature, however, they are discussed in more 
detail in the machine learning for metabolite annotation sec-
tion of this review.

2.2  Analogue search

In addition to mass spectral matching for annotation and 
identification, querying and testing for chemical similarity 
of fragmented molecules is of great help during untargeted 
metabolomics experiments. There is a continuous develop-
ment of new methods that allow for partial structural and 
spectral matching, also known as analogue search. Two 
rough strategies can be distinguished, i) those based directly 
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on MS/MS spectra, and ii) those using machine learning for 
embedding-based scores or predictions.

In the former category, Hybrid Similarity Search (HSS), 
is a spectral pre-processing approach that augments MS/
MS spectra to contain both the measured mass fragments 
and a single inferred neutral loss (Jang et al., 2019; Moor-
thy et al., 2017). Hybrid query spectra can then be matched 
with hybrid library spectra using conventional scoring 
approaches. The authors indicate that, for their method to 
work well, the query molecule needs to have a cognate mol-
ecule in the reference library with just a single structural 
difference that does not significantly affect fragmentation 
patterns (i.e., in general, having the same mass fragments 
with or without the structural difference). Despite this limi-
tation, HSS finds structural similar molecules within the 
same chemical class in 85% of the queries (demonstrated 
by 4153 queries from 11 chemical classes in total with the 
NIST17 library). A generalisation of mass spectral match-
ing for multiple neutral losses is available in the form of the 
Core Structure-based Search (CSS) algorithm (Xing et al., 
2020). CSS calculates all possible neutral losses in the query 
and reference spectra and matches these for CSS score cal-
culation. The authors show that their method outperforms 
MS-Finder and CSI:FingerID in the CASMI 2017 challenge 
and that the novel CSS method correlated better with a score 
for chemical similarity in comparison to other commonly 
used mass spectral similarity scores. Recently, Aisporna and 
co-authors introduced a large mass spectral library based on 
neutral losses alone and show how it connects structurally 
similar molecules using METLIN (Aisporna et al., 2022). In 
that work, however, no large-scale benchmarking was per-
formed to show how it differs from cosine-based and modi-
fied cosine-based mass spectral comparisons.

Another alternative approach for structural matching 
based only on spectra is the SIMILE algorithm developed by 
Treen and colleagues (Treen et al., 2021). The method mim-
ics DNA/protein sequence alignment to improve structural 
similarity measures for metabolomics research (Fig. 1c). 
First, a specific fragment ion substitution matrix is gener-
ated using all intra- and inter-MS/MS spectra differences of 
both to be compared spectra. Then, using dynamic program-
ming, SIMILE finds the optimal path to match different frag-
ment paths. The authors state that SIMILE finds ~ 90% novel 
structurally similar pairs compared to the modified cosine 
score (on the NIST2020 library filtered for [M-H] and CE 
between 5 and 40 eV).

The previously discussed Spec2Vec and MS2Deep-
score methods are promising approaches to use for ana-
logue searches for two main reasons. The first reason is 
that Spec2Vec and especially MS2Deepscore still predict 
similarity well for molecules that are not identical yet very 
similar due to the presence of several chemical modifica-
tions, while this is often not the case for methods directly 

based on MS/MS spectral similarity methods like the modi-
fied cosine score. The latter typically excel in recognizing 
very similar MS/MS spectra or MS/MS spectra derived 
from two molecules with one distinct chemical modifi-
cation. The second reason is that the fast computation of 
Spec2Vec and MS2Deepscore makes them very suitable 
for analogue searches: i.e., when doing library matching a 
strict preselection on precursor m/z difference reduces the 
number of spectral comparisons that has to be made. How-
ever, in analogue search, such a strict filtering is not possible 
resulting in more spectral pair comparisons. The high speed 
and scalability of machine learning methods like Spec2Vec 
and MS2Deepscore enable mass spectral comparisons with-
out any preselection on precursor m/z. Early performance 
results on using machine learning embeddings for match-
ing structurally similar molecules are very promising. For 
instance, the machine learning-based analogue search-
ing tool MS2Query, which builds on the advancements of 
MS2Deepscore and Spec2Vec, showed improved analogue 
search performance compared to using the modified cosine 
score (de Jonge et al., 2022). With more MS/MS spectral 
data becoming available, it can be expected that the methods 
improve and become even more reliable in a broad set of use 
cases. Currently, more work is needed to extend training 
data sets and to diversify and stratify test datasets to give 
users a clearer picture of the method’s reliability for their 
respective use cases. We anticipate that additional research 
efforts will be carried out to improve on partial matching 
using substructures inferred from machine learning tools 
such as MESSAR (Liu et al., 2020) or MS2LDA (van der 
Hooft et al., 2016), but also based on combinations of struc-
ture predictions and chemical compound class overlaps in 
the top-K predictions from tools such as SIRIUS (Dührkop 
et al., 2019). Ultimately, we anticipate that machine learn-
ing-based scores will be readily available for mass spectral 
library matching and analogue search and enrich classical 
and practical untargeted metabolomics annotations.

2.3  MS/MS spectral organisation approaches

As an old adage goes: The whole is more than the sum of 
its parts. The same is true for MS/MS spectra in untargeted 
metabolomics. While it is difficult and cumbersome to indi-
vidually annotate MS/MS spectra of detected metabolites in 
an untargeted metabolomics experiment, organising them 
into groups can substantially facilitate and enhance their 
annotation. To this end, measured MS/MS spectra obtained 
from a single experiment are investigated by comparing their 
MS/MS spectra, where spectral similarities serve as a proxy 
for structural similarity. Those with high similarity are put 
close to another or into the same groups, while loosely simi-
lar spectra or unrelated ones are placed further apart or are 
not linked to each other (Aron et al., 2020; Watrous et al., 
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2012). Subsequently, overview illustrations using either 
undirected graphs or mass spectral networks, dimensional-
ity reduction, or dendrograms are generated. Thereby, the 
observed yet unstructured chemical space is organised into 
more manageable “groups”, often referred to as clusters 
or molecular/spectral families. These groupings can then 
be used to facilitate manual or automatic propagation of 
identifications or (partial) annotations of spectra, thereby 
providing valuable additional information for biological 
and chemical interpretation of the unknown molecules (da 
Silva et al., 2018). The three main approaches to group mass 
fragmentation spectra used in the field are i) graph/network-
based representations of mass spectral similarities, ii) lower 
dimensional embeddings of the spectra or intermediate 
learned structures, and iii) clustering-based approaches.

In the first category, currently, the most popular approach 
is molecular networking available on the GNPS platform 
(Aron et al., 2020; Nothias et al., 2020). It comes in two fla-
vours, namely i) mass spectral-based networking, now also 
referred to as “classical molecular networking” (Wang et al., 
2016) and ii) feature-based networking (Nothias et al., 2020). 
Whilst the first approach uses MS/MS spectra and organises 
them regardless of the chromatographic information (i.e., 
chromatographic peaks), the second approach takes a chro-
matographic peak-centric approach by combining a quanti-
tative peak list with qualitative MS/MS data. Here, isomers 
that may remain hidden in the first approach may be distin-
guished using chromatographic information such as reten-
tion time or ion mobility information. The resulting groups 
or molecular families are illustrated as undirected graphs, 
where nodes represent consensus MS/MS spectra or single 
molecules, and edges represent a high spectral similarity. 
Graphs can be visualised either on the webpage of GNPS or 
in Cytoscape (Kohl et al., 2011). The main scoring method 
to compare MS/MS spectra on GNPS is the modified cosine 
score, which typically allows for one neutral loss (i.e., corre-
sponding to the precursor ion difference of the mass spectral 
pair) to be considered when testing the spectral similarity. 
Recently added, the user can also compute the molecular 
networks using Spec2Vec similarity scores. The authors of 
Spec2Vec demonstrated that with Spec2Vec more densely 
populated molecular networks can be generated. Addition-
ally to molecular networking, the GNPS platform also hosts 
large spectral libraries for annotation and many different, 
related workflows (e.g., MASST (Wang et al., 2020), NAP 
(da Silva et al., 2018), NPClassyfire (Djoumbou Feunang 
et al., 2016), Qemistree (Tripathi et al., 2021), ReDu (Jar-
musch et al., 2020), and MS2LDA (van der Hooft et al., 
2016)), many of which can be conveniently started directly 
from generated molecular networks. Another possibility to 
generate mass spectral networks is available via the matchms 
package (Huber et al., 2020). It provides high-level access 
to spectral matching and scoring functionality for mass 

spectral data including the two ML approaches Spec2Vec 
and MS2DeepScore. Pairwise comparisons of all MS/MS 
spectra can be calculated and exported to Cytoscape for 
illustration as molecular networks. As this approach requires 
the user to implement the respective data processing routine 
in the python programming language rather than specify it 
via a graphical user interface, it allows easily customising 
it to each dataset as well as comparing different parameter 
settings and spectral similarity methods in a semi-automated 
fashion. Finally, the popular data pre-processing tool MS-
DIAL also provides a means to generate feature-based 
molecular networks directly from raw data. It allows the 
straightforward exporting of its own annotated peak tables 
to Cytoscape for molecular network visualisation (Tsugawa 
et al., 2015).

Traditional molecular networks have spectra or features as 
their nodes, and edges largely based on rule-based similarity 
scores, though Spec2Vec scores are also finding use. When 
considering the novel machine learning-based mass spectral 
similarity scores, we envision that the edges could take on 
additional chemical information. Furthermore, edges based 
on predicted chemical classification or substructure overlap 
could also be integrated to steer the mass spectral network 
topology. Tools designed for partial spectral annotation such 
as MESSAR or MS2LDA seem especially promising in this 
respect. Early work in this direction was already done in 
MolNetEnhancer, where molecular network nodes are aug-
mented using information from multiple tools, including 
MS2LDA substructure discovery, GNPS library matching, 
and in-silico structure annotation from various other tools 
(Ernst et al., 2019). In principle, similar information could 
be used to annotate edges to show which MS/MS spectra are 
considered adjacent for exploratory purposes.

Molecular networking is a highly popular, versatile, and 
insightful spectral organisation approach. However, the 
graphs can be highly dependent on the parameters used, 
and molecular families appearing as disconnected groups 
obfuscate the interfamily similarity. Indeed, a problem of 
molecular networks is that they do not retain a global view 
of the spectral similarity landscape. Alternative grouping 
approaches based on dimension reduction and machine 
learning embedding present complementary information 
unavailable in molecular networks. Thus, an alternative to 
molecular networking is to use binned MS/MS spectra or a 
machine learning embedding of spectra (e.g., derived via 
Spec2Vec or MS2DeepScore), and subsequently represent 
this space in two- or three-dimensional projections (e.g., 
PCA, t-SNE, UMAP). Depending on the dimensionality 
reduction method used, the distance between two spectra 
will be informative of their similarity, information that is 
not present in molecular networks. For example, the falcon 
tool (Bittremieux et al., 2021) and MS2DeepScore (Huber 
et al., 2021b) have been used to generate such illustrations 
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from large numbers of MS/MS spectra. An interesting tool 
combining Molecular Networking with a low-dimensional 
embedding is MetGem (Olivon et al., 2018). The tool allows 
calculating both molecular networks and low dimensional 
embedding plots on MS/MS spectra directly, where the latter 
techniques preserve spectral similarities and thus provide a 
global view of the chemical space, while the former allows 
the very popular local similarity landscape exploration. In 
order to facilitate the switching between representations, 
MetGem offers a rich user interface that allows jumping 
from a node in one representation to the same node in the 
other representation. In addition, it also allows mapping 
meta-information directly into the molecular networks and 
subspace illustrations.

Moving beyond molecular networking and dimension 
reduction approaches, Qemistree provides an alternative 
means of grouping spectral data based on hierarchical clus-
tering (Tripathi et al., 2021). Here, hierarchical clustering 
utilises predicted structural fingerprints obtained via SIRIUS 
(Dührkop et al., 2019), CSI:FingerID (Dührkop et al., 2015), 
and ZODIAC (Ludwig et al., 2020), with the latter approach 
showing improved MS/MS spectral-based elemental for-
mula assignment performance for larger-in-size molecules 
(i.e., > 500 Da). CSI:FingerID uses molecular fingerprints 
obtained from the MS/MS spectra and is currently the best-
performing tool for in-silico metabolite annotation. Moreo-
ver, as chemical fingerprints also remove the intermediate 
layer of MS/MS spectra or embeddings and thus work closer 
to the actual structure of the predicted molecules, it can be 
expected that the fingerprints correlate strongly with the 
chemical structure. Thus, the fingerprint-based Qemistree 
similarity scoring approach can be reasonably expected to 
improve the structural similarity assessment over commonly 
used cosine scores.

Molecular networking and other tools aimed at organising 
spectral data are immensely useful to untargeted metabo-
lomics. This is also reflected by the number of papers 
mentioning the term ‘molecular networking’ in the previ-
ous years (2010: 26 papers; 2015: 192 papers, 2021: 1480 
papers; search in May 2022 on https:// schol ar. google. com). 
Current research efforts focus on improving the concept 
of molecular networking on several ends (e.g., annotation 
propagation) with spectral matching being one of them for 
both partial and complete, as well as on machine learning 
embedding approaches that promise to improve the grouping 
of chemically related molecules. Combined approaches that 
provide a link between the local spectral connections pro-
vided by mass spectral networking with the global similar-
ity structure views of lower dimensional embeddings seem 
especially fruitful future research avenues, as they promise 
to greatly increase the ease of untargeted metabolomics 
data analysis and at the same time facilitate an inroad to 

data-guided parameter setting for key networking thresholds 
that define possible connections between MS/MS spectra.

3  Machine learning for metabolite 
annotation

In many fields, machine learning (ML), and in particular 
deep learning (DL), have radically changed how large data-
sets are handled. Although DL is technically a subfield of 
ML, it is generally referred to separately from “classical” 
ML. Applying ML and DL techniques in research is often 
considered a paradigm shift since it replaces heuristic (e.g., 
rule-based) data analyses with data-driven algorithms. These 
data-driven algorithms learn to achieve a specific task from 
available data (i.e., input features) by using an automatic 
optimization process which is called training. ML and DL 
comprise a large set of algorithms and approaches, many 
of which have become fairly standard for data analysis and 
are widely applied in metabolomics (Liebal et al., 2020). 
A key element in applying ML is the careful and usually 
manual selection and pre-processing of the features avail-
able for model training. In contrast, DL approaches are 
generally described as being more “expressive”, meaning 
that DL techniques can learn more complex relationships 
from the data and handle higher dimensional data. They do 
so by learning how to construct higher-order features input 
data to perform a certain regression or classification task 
optimally. As a consequence, DL techniques are employed 
in many areas of computer vision as well as in natural lan-
guage processing (NLP) (Baraniuk et al., 2020). In the field 
of metabolomics, those approaches are still in a much earlier 
phase and have not yet been widely adapted (Liu et al., 2021; 
Pomyen et al., 2020; Sen et al., 2020).

In the last few years, however, a growing number of stud-
ies demonstrated the potential of such techniques to outper-
form conventional approaches in both annotation precision 
and the degree of automatization of metabolomic analyses. 
In principle, DL promises to mimic scientists’ decision-
making more natively, making it possible to apply DL 
techniques for de novo structure elucidation and metabolite 
annotation, without relying on manually handcrafted fea-
tures, which arguably lowers the human-derived bias of the 
model. Unfortunately, the respective model’s performance 
is limited by the richness and diversity of the data it has 
been trained on. Presumably, humankind has only mapped 
a small proportion of the vast metabolic space that exists 
on earth, making ML and DL models inherently limited to 
the chemical space that is already known as well as making 
its generalisation to other, currently unknown metabolites 
challenging. As a result, there is a survivor bias at play when 
identifying potentially novel molecules, as novel molecules 
that are chemically similar to known molecules are more 

https://scholar.google.com
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easily identifiable. Therefore, validating ML and DL models 
and inspecting their generalizability to unknown chemical 
spaces is a challenging but important field of research. Addi-
tionally, DL models’ decision-making is generally consid-
ered to be a black box. This makes getting insight into model 
decision-making cumbersome and, in some instances, even 
impossible.

When we look at fields like computer vision or natural 
language processing (NLP) we can start to draw analogies 
and project what ML and DL can likely achieve soon regard-
ing metabolite annotation. Over the past few years, the avail-
able ML and DL toolsets have matured and now provide a 
rich repertoire of techniques suited for different tasks and 
data types. Several of the most impressive performance gains 
in computer vision and NLP were merely a combination 
of incremental improvements in computational approaches 
with largely improved datasets in terms of quantity and qual-
ity (Baraniuk et al., 2020). One example is the recent rise 
of transformer architectures in NLP (e.g., BERT and other 
BERT-like architectures), which was accomplished by huge 
datasets and larger model architectures (Wolf et al., 2019). 
Although DL approaches used in NLP are being successfully 
applied to mass spectral datasets, interest in applying differ-
ent model architectures like graph neural networks seems 
to be lower despite their natural suitability for learning on 
molecular networks. Nevertheless, the most dominant limi-
tation in applying DL in metabolite annotation now and in 
the near future is unlikely to be the available techniques but 
rather the amount and quality of available training data.

3.1  Limited reference MS/MS data and strategies 
to cope with it

Publicly or commercially available reference mass spectral 
datasets include the MassBank (Horai et al., 2010), Mass-
Bank of North America (MoNA) (https:// mona. fiehn lab. 
ucdav is. edu/), METLIN (Smith et al., 2005), NIST Mass 
Spectral Library (Phinney et  al., 2013), Wiley GC–MS 
library, Golm Database (Hummel et al., 2007), Fiehn metab-
olomics database (Kind et al., 2009), mzCloud (https:// www. 
mzclo ud. org/), Human Metabolome Database (HMDB) 
(Wishart et al., 2022), and GNPS (Aron et al., 2020). The 
molecules these datasets describe overlap to varying degrees 
and some of these datasets include each other fully (e.g., 
GNPS includes HMBD) (Vinaixa et al., 2016). These data-
sets typically comprise a few 10-thousands of molecules, 
which are relatively small numbers considering the chemi-
cally possible molecular configurations even small numbers 
of atoms can form. For example, over a billion chemically 
feasible natural product isomers can be generated for the 
molecular formula  C10H15O5 (McKay et al., 2021). It is of 
note that this number probably does not reflect the actual 
size of available biological chemical space. Nevertheless, 

well-annotated high-resolution MS/MS spectra will remain 
a precious resource in the nearby future.

Data augmentation is a very common and successful 
strategy to mitigate the problem of too little training data. 
In the original context of this term, data augmentation means 
creating more diverse training data by altering data points in 
ways which do not counteract the training purpose. A clas-
sic example is that images used to train DL models often 
undergo numerous transformations in a randomised manner, 
e.g., slight changes in the aspect ratio, cropping, or changes 
in brightness and noise. In the training of MS2DeepScore, 
data augmentation was used to slightly modify the input 
spectra (Huber et al., 2021b). In a wider sense, data augmen-
tation could also mean the use of fully or partly synthetically 
generated data. In addition to making the available training 
data more diverse, this approach can also extend the cover-
age of the training set. This, of course, strongly relies on the 
quality of the generated data, i.e., how closely in-silico gen-
erated MS/MS spectra correspond to actual MS/MS spectra 
of the respective molecules. For instance, the usability of 
transformer-based DL architectures for doing mass spectral 
annotations was recently demonstrated with MassGenie 
(Shrivastava et al., 2021). To overcome the limitation of low 
amounts of metabolomics data, the authors of MassGenie 
used in-silico fragmentation to generate MS/MS spectra for 
about 6 million small molecules. Another example of data 
augmentation outside of spectrum generation is DarkChem, 
a DL model with a variational autoencoder (VAE) architec-
ture that can predict chemical properties (e.g., drug-likeness, 
m/z, logP) and generate new molecules with similar prop-
erties (Colby et al., 2020). Such generative models can be 
used to build molecular structure libraries. A risk of these 
generative models is that the DL model is mostly trained on 
generated data and will hence only generalise well to actual 
data if the resemblance between generated and true data is 
high (enough).

A different strategy to cope with limited data is the use 
of transfer learning. Training of many DL models including 
transformers for specific tasks can generally be improved 
by pre-training (i.e., transfer learning) on related datasets, 
especially when target datasets are small or biased (Wolf 
et al., 2019). Pre-training can also be applied to computa-
tional metabolomics to improve automatic peak annotation 
(Gloaguen et al. 2020). A particularly interesting variant of 
this strategy might be the use of unsupervised methods (e.g., 
autoencoders) to pre-train networks on unlabeled data (i.e. 
no metabolite annotations linked to data), which is far more 
abundant than annotated data.

Another key limiting factor besides quantity and quality 
of available training data in ML/DL approaches are differ-
ent sampling biases such as class imbalance (i.e., over- and 
under-represented classes in the training data). Compared to 
the quality and quantity of the training data, sampling biases 

https://mona.fiehnlab.ucdavis.edu/
https://mona.fiehnlab.ucdavis.edu/
https://www.mzcloud.org/
https://www.mzcloud.org/
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are much harder to identify, and their adverse consequences 
are often very difficult to detect. Sampling biases are, despite 
thorough data preparation, easily inherited by subsequent 
machine learning models and can thus degrade the model’s 
performance to a certain degree. However, detecting sam-
pling biases is a task of its own and typically requires exten-
sively annotated training data, ideally also with additional 
information that is not primarily used for training and/or the 
prediction itself. Looking at the 24,101 structurally different 
metabolites (at the 2D-level, first 14 digits of their InchiKey) 
present in the GNPS library (accessed December 2021), the 
chemical compound classes ‘Prenol lipids’ and ‘Carboxylic 
acids and derivatives’ have the highest numbers of assigned 
molecules, while most classes are only assigned to a few 
metabolites, such as ‘Endocannabinoids’ and ‘Diazepanes’, 
which both are assigned to only 1 metabolite (Fig. 2a). 
Please note that chemical classification is somewhat subjec-
tive and dependent on the tool used. Nevertheless, we think 

that ClassyFire provides a good overview of what molecules 
are included in the GNPS library in general. The same is 
true for the representation of different instrument types and 
metabolite masses of MS/MS spectra. In the GNPS library, 
over 200,000 MS/MS spectra are measured with Orbitrap, 
while other instrument types such as qTOF and ion trap are 
much less common (Fig. 2b). In addition, parent masses of 
the MS/MS spectra in the GNPS library show a clear bias 
towards lower masses, with a peak around 300 Da (Fig. 2c). 
Comparing this distribution to an actual NP-rich dataset, like 
the 150 actinomycete strains analysed by Crüsemann et al., 
shows that mass spectral library distributions can be highly 
unrepresentative (Crüsemann et al., 2017). This could par-
tially be explained by the fact that metabolites with higher 
masses tend to be harder to fully characterise, as is illus-
trated by the ~ 14000 MS/MS spectra in GNPS that do not 
have a fully resolved structure and that are mostly of higher 

Fig. 2  Illustration of reference library imbalances with respect to 
chemical classes, instrument types, and annotation rates by precur-
sor mass. These factors may affect machine learning training data-
set quality and representativeness. a ClassyFire classes of all 24,101 
unique structures from the positive ionisation mode MS/MS spectra 
in GNPS. Chemical compound classes were determined by using 
ClassyFire superclasses (Djoumbou Feunang et  al., 2016). For sim-
plicity, classes are numbered from most to least occurring. b Instru-
ment types for the 314,318 positive ionisation mode spectra in GNPS. 

Instrument type names were simplified to the ones shown in the fig-
ure. c Parent mass distributions of the 314,318 positive ionisation 
mode spectra in GNPS, the 13,908 positive ionisation mode spectra 
in GNPS that had no annotated SMILES, and the 9129 spectra in the 
dataset used by Crüsemann et al. (2015). Matchms was used to pro-
cess the mgf files in the same way as in MS2DeepScore; here, MS/
MS spectra with at least one fragment peak and a parent mass were 
considered
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molecular mass, such as lipids with unresolved double bond 
location (Fig. 2c).

Given this lack of representative metabolomics data-
sets for training, accurate de novo molecule annotation for 
more distant chemical entities is still not possible and such 
annotation workflows will remain reliant on expert curation 
for now. We expect that inferring molecule identity is only 
reliable when there is a high enough overlap with existing 
library entries. De novo metabolite identification by analyti-
cal chemistry experts implicitly includes more information 
about the sample than only the spectrum. Such information 
includes, for example, sample origin and chemical com-
pound class. Future methods might choose to include such 
heterogeneous data to aim for increased model efficacy.

Strategies to overcome certain sampling biases are avail-
able, however, the respective bias and its extent must be 
known. One of the most basic approaches is over- and under-
sampling, which means that data from under-represented 
classes will be used more frequently during training (and/
or data from over-represented classes less frequently). This 
strategy was partly used in the training of MS2DeepScore by 
sampling training MS/MS spectra based on their InChIKey 
to avoid over-representation of molecules with high num-
bers of MS/MS spectra in the training data (Huber et al., 
2021b). Another method to counteract class imbalance in 
training datasets is to weigh training samples unevenly. Still, 
strategies like over/under-sampling and differently weighing 
training samples are generally not able to fully circumvent 
adverse effects from severe sampling biases and are only a 
poor substitute for missing training data. Additionally, it is 
essential for the field that method developers clearly disclose 
the sampling biases and their extent in their data when they 
are aware of them.

3.2  Different quality levels of spectra 
and how to deal with it

Another important factor in creating training data is to 
ensure adequate and consistent quality of mass spectral 
data. For instance, Li et al. note that their entropy scores 
display different distributions between NIST20, MassBank 
and GNPS (Li et al., 2021). Especially GNPS tends towards 
larger numbers of high entropy spectra due to higher spectral 
noise. These observed differences in entropy are caused by 
differences in experimental approaches, instrumentation and 
chemical matrices used, with GNPS contributions coming 
from a more diverse set of methodologies. For data curation, 
Li et al. suggest removing any signals with less than 1% of 
the base peak intensity. Applying this filter on GNPS data 
leads to entropy distributions more closely resembling those 
of MassBank. It is not uncommon for ML and DL training 
data to be subjected to data cleaning to improve the quality 
of the information on which future predictions will be based. 

It is important to share filtering settings used, as well as 
expectations with respect to data quality for the ML and DL 
tools, to ensure that their predictions are not disproportion-
ately affected by high noise levels of experimental spectra, 
or by sequential applications of multiple filtering strategies.

3.3  Strategies for machine learning driven 
metabolite annotation

Despite all limitations around current training data as 
described above, we observe that several different ML-
based approaches already deliver very promising results 
for metabolite annotation. Here, we identify two different 
strategies (Fig. 3). These strategies have in common that 
they mainly rely on MS/MS data, i.e., fragment peaks and 
intensities. However, recently, additional and often com-
plementary information such as instrument type or colli-
sion energy, retention time or order are also utilised for ML 
model training (Bach et al., 2022; García et al., 2022; Wit-
ting & Böcker, 2020).

The first strategy is generally not aimed at immediate 
metabolite annotation, but rather to translate MS/MS spec-
tra into abstract representations that still are chemically 
meaningful although likely not understandable for anything 
but the trained model. DL models have been explored for 
directly predicting molecular fingerprints (Fan et al., 2020; Ji 
et al., 2020). Due to the under-representation of less common 
structural features in the training data, however, the focus 
was on predicting only frequently activated bits. An entirely 
different approach is Spec2Vec, which applies techniques 
from NLP to learn spectra representation in an unsupervised 
fashion (Huber et al., 2021a). The created representations 
are low-dimensional numerical vectors (embedding), which 
were shown to be able to find chemically related molecules. 
Using supervised training based on annotated spectra, 
MS2DeepScore is another DL approach that converts MS/
MS spectra into abstract embeddings (Huber et al., 2021b). 
Similar to MS2DeepScore, Gleams uses a Siamese neural 
network to compare two MS/MS spectra and was trained on 
peptide spectra (Bittremieux et al., 2022). Strategy 1A relies 
on embedding-based library searches whereby chemically 
most related substances in a library are identified through 
comparisons of the abstract embeddings. In most cases, this 
will lead to identifying related rather than identical mol-
ecules since it -again- relies on the very limited coverage of 
the possible chemical space. To avoid the severe restrictions 
of the limited amount of reference standards, strategy 1B 
uses in-silico generation of spectra either as either the only 
source of reference data or in addition to existing reference 
standards. In most cases, large chemical databases such as 
PubChem are used to collect candidate molecules, e.g., by 
querying based on precursor mass. The chemical structure of 
those candidates is used to generate in-silico spectra, which 
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are then compared to the original query spectrum, typically 
using a wide range of different analysis pipelines which can 
include various ML and DL tools.

Examples of strategy 1 in combination with in-silico 
spectra matching are SIRIUS (Dührkop et al., 2019) and 
MetFID (Fan et al., 2020). Based on mass or formula, can-
didate structures are selected from a database and then com-
pared to the query spectrum by comparing the reference 
molecular fingerprints to predicted fingerprints. The pre-
dicted fingerprints here are either computed from fragmen-
tation trees (SIRIUS, using CSI:Finger ID (Dührkop et al., 
2015)) or deep learning models (e.g., MetFID). Candidate 
selection, however, is not restricted to the use of molecular 
fingerprints and could in principle also be done based on 
chemically informed embeddings as provided by MS2Deep-
Score. This could be done, for example, by comparing dis-
tances between an unannotated embedding with annotated 
embeddings in a hyper-dimensional embedding space. COS-
MIC is an example of strategy 1 using in-silico data genera-
tion (Hoffmann et al., 2021), combined with a confidence 
scoring mechanism. COSMIC expands the known chemical 
space in a biologically inspired, semi-rule-based manner, in 
order to find more plausible candidate structures. Although 
COSMIC is clearly an improvement over previous models, 
accurately identifying false discoveries in metabolomics 

remains a challenge. In practice, the quality of the candidate 
selection relies on the quality of the predicted representa-
tions, but can also be improved by more elaborate selection 
algorithms such as Bayesian models (Dührkop et al., 2019) 
or other machine learning models (e.g., structured support 
vector machines in MetFID). Recently, LC-MS2Struct was 
proposed to integrate MS, MS/MS, as well as retention time 
information to increase the accuracy of the candidate struc-
ture selection (Bach et al., 2022).

In strategy 2 (Fig. 3), deep learning techniques are trained 
to directly predict chemical structures from MS/MS spectra. 
This concept is very much in line with the data-driven con-
cepts behind applying DL models, which means that com-
plex pipelines of many highly adjusted tools (as in strategy 
1) could potentially be replaced by one model that learns 
to translate fragmentation patterns into chemical structures. 
Currently, however, this seems to be severely limited by the 
amount of available training data and its sparse coverage of 
chemical space. MassGenie is one of the first approaches to 
demonstrate what this might eventually look like. It uses a 
transformer architecture that is trained using 6 million in-
silico generated spectra (Shrivastava et al., 2021). Not unex-
pectedly based on our previous considerations, it turns out 
that this model does not generalise well enough to be used 
for broad-scale structure prediction. Spec2Mol is another 

Fig. 3  Two main machine learning (ML) based strategies applied 
today to link MS/MS spectra to molecules. Strategy 1 describes 
embedding-based library searches whereby chemically most related 
substances in a library are identified through comparisons of abstract 

embeddings of library molecules (step 1). This library can be 
expanded by including in-silico generated MS/MS spectra (step 2). 
Strategy 2 describes de novo structure elucidation directly from MS/
MS spectra, circumventing any database comparison
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DL model for de novo structure prediction from mass spec-
tral data using an encoder-decoder architecture GRU (Litsa 
et al., 2021). Interestingly, Spec2Mol can retrieve func-
tional groups from spectra alone, but robust full structure 
elucidation is still a challenge for the model. Related trans-
former architectures were reported to work more reliably 
when restricted to the chemically more defined sub-space 
of peptides (Yilmaz et al., 2022). Using a combination of 
fingerprint and formula prediction with an encoder-decoder 
LSTM, MSNovelist (Stravs et al., 2021) can be seen as a 
hybrid between strategies 1 and 2, but mostly follows strat-
egy 2 in avoiding the need for any comparison/candidate 
data. MSNovelist demonstrated that suitable deep learning 
models can already produce promising results and predict 
molecule structures for a notable fraction of the tested spec-
tra. However, such approaches are still far away from replac-
ing candidate or library matching approaches (Stravs et al., 
2021). We note that for peptides it was demonstrated that 
DL can give very accurate predictions for retention time 
and fragment ion intensities (Gessulat et al., 2019). Regard-
ing our prior discussion on the coverage of chemical space, 
however, it should be noted that peptides represent a very 
particular region of the chemical space with much higher-
than-average coverage that can also be enriched in-silico in a 
more straightforward manner than generic small molecules. 
Peptides also have a much more straightforward fragmen-
tation schema than other metabolites due to their modular 
properties.

3.4  Perspective on machine learning for metabolite 
annotation

It is clear that MS/MS spectral-based small molecule struc-
ture elucidation remains a challenging task (Liu et al., 2021). 
The sheer size of the unexplored chemical space makes it 
practically impossible to create representative databases of 
experimental MS/MS data. Additionally, currently avail-
able datasets are skewed towards specific chemical classes. 
Moreover, different datasets exhibit different levels of noise. 
This implies that structure elucidation approaches based on 
similarity searches alone will be heavily impaired when 
investigating truly novel molecules. De novo structure elu-
cidation from MS/MS data with ML and DL remains to be 
solved, although great initial strides have been taken. Initial 
methods focused on translating models from NLP to com-
putational metabolomics, and more recent techniques from 
various other related fields are also beginning to make their 
appearance (e.g., transfer learning, adversarial methods, and 
graph-based models).

We would also like to emphasise that DL is not a surro-
gate for good scientific practices. Rich annotated data from 
well-performed experiments are paramount to develop an 
effective machine learning model. This also includes the use 

of community-adopted standard ontologies for those anno-
tations (e.g., for naming mass spectrometry instruments 
or molecular structures). With the development of widely 
adopted standards already existing tools such as matchms 
can greatly help with combining MS/MS data from different 
sources (Huber et al., 2020).

As discussed, generative models have clear limitations 
and alone cannot be used to mitigate the issues relating to 
unrepresentative and biased datasets. State-of-the-art models 
that can link 50–70% of spectra to molecules accurately (or 
have a correctly predicted molecule in the top 10 of selected 
molecules) are not accurate enough to be used in practice. 
In order to improve structure elucidation in the short term, 
a hybrid DL and rule-based approach would be advisable 
(e.g., combining de novo structure elucidation with gener-
ated molecular libraries and fragmentation trees). At this 
moment, DL alone is not accurate enough to robustly infer 
molecule structure from MS/MS data, but by narrowing 
down the search field with for example sample meta-data, 
desired results become much more achievable. If we con-
sider neighbouring fields such as proteomics, it is clear that 
with enough sufficiently varied training data, DL models 
should be able to learn biochemically relevant patterns 
from spectral data: i.e., with > 200,000 protein sequences 
with known 3D structure combinations, AlphaFold2 was 
able to make sequence-based 3D structure predictions of 
unprecedented quality (Jumper et al., 2021). Until sufficient 
metabolomics examples are available, combinations of rule-
based and data-driven approaches are likely the most power-
ful road ahead.

4  Benchmarking: test and training sets & 
good practice

With the development of many new computational tools, it 
is important that their performance is measured in a way that 
is objective and transparent and, ideally, allows a straight-
forward comparison to other tools. In metabolomics bench-
marking we can separate two core components, i) the crea-
tion of a good test set of mass spectra, and ii) the metrics 
used to quantitatively evaluate different performance aspects 
of tools. The former determines how well benchmarking 
results are generalizable, while the adequate choice of the 
latter is critical for meaningful evaluations. However, there 
is no standard for benchmarking mass spectrometry-based 
metabolite annotation tools available currently, nor are there 
standardised test datasets. Here, we outline challenges and 
recommendations for the creation of meaningful and trans-
parent tool evaluations and benchmarking studies.
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4.1  Selecting a good test set

It is generally accepted that test sets should reflect real data 
in order to provide accurate and realistic performance meas-
ures. Here, depending on the research context, we distin-
guish two benchmarking scenarios. The first approach aims 
to test the general applicability of a tool on a diverse set of 
use cases. These test sets should reflect the full diversity of 
chemical compound classes and mass ranges of real data. 
The second approach aims to show the performance for a 
specific use case, usually on which the tool performs particu-
larly well. In-house created test sets would fall in the second 
category since these test sets are often not representative 
for all types of metabolomics experiments (i.e., metabolite 
types (i.e., chemical classes), mass ranges, instruments) and 
therefore the results cannot be expected to generalise well 
to all other use cases. Still, showing the relative tool perfor-
mance on a custom test set can be valuable, since it can more 
clearly show what tool performs best in that concrete use 
case. However, it is important to clearly discuss the limita-
tion of generalising these findings to the general chemical 
space.

When comparing tools to show their general applicabil-
ity, doing a random selection of spectra from a large library 
may seem like a fair method that generalises well. However, 
this does not guarantee that the performance translates well 
to any real samples. Currently, only of a small percentage 
of all known metabolites there are annotated and authen-
tic MS/MS spectra available (da Silva et al., 2015; Frainay 
et al., 2018). A glimpse of the low coverage of mass spectral 
libraries can already be caught through their much lower size 
compared to structural libraries. However, structural librar-
ies themselves are not exhaustive either and hence the true 
scope of the dark matter of metabolomics is expected to be 
much larger still (da Silva et al., 2015). On top of this low 
coverage, it is expected that there will be sampling biases in 
the reference libraries, towards certain mass ranges, instru-
ment types, and fragmentation parameters, amount of noise, 
chemical classes, organism-specific/model-organism metab-
olites or metabolomic pathways. For instance, Frainay et al. 
showed that some specific human metabolomic pathways 
are poorly covered by annotated MS/MS spectra (Frainay 
et al., 2018). Such sampling biases will often be a natural 
consequence of the way the data is generated, which also 
makes it very hard to avoid. Some spectra are easier to anno-
tate, some compounds are more fragile or harder to measure, 
and some chemical classes are studied more extensively due 
to increased attention to certain research questions, sample 
types, or model organisms. Given the many reasons to expect 
strong biases as well as the obviously large discrepancies in 
chemical class representations in annotated reference mass 
spectral libraries (Fig. 2), we expect any test set composed 
of a randomly selected set of spectra from these libraries to 

inherit these biases. Therefore, such random test sets serve 
only as poor references for real application performance. 
The consequences of biased test sets become especially clear 
when benchmarking analogue search using mass spectral 
libraries. Analogue search test sets tend to inherit library 
biases such that the composition of test spectra is much more 
similar to the reference libraries than to the composition of 
actual real-world samples. This increased analogue density 
of test sets can easily lead to a substantial overestimation of 
method performance.

A method that can be used to correct for potential sam-
pling biases in large libraries is using stratified sampling. 
Stratified sampling is an approach that ensures that the rela-
tive representation of the groups in your data represents real 
use cases. Examples of groups that can be used for stratifica-
tion are chemical class or mass, taxonomic clades, utilised 
instruments and analytical methods and others. Stratifica-
tion can be a good method to reduce sampling bias in your 
test set. However, it remains challenging to find a good way 
of stratification. Test datasets should be stratified such that 
they represent the use case scenario as closely as possible. 
The many highly different application domains of untargeted 
metabolomics make it impossible to create one unique strati-
fied test set to represent this diversity of use cases. In the 
scenario of global tool comparisons, tool developers would 
like to evaluate their methods on a large and diverse set of 
spectra to indicate the wide applicability of their tools. Here, 
standardisation of the test set and good coverage of chemi-
cal space are essential to give insights into relative method 
performance. Stratification of the test sets improves this type 
of benchmarking in two important ways. On the one hand, 
stratification reduces the impact of arbitrary class imbal-
ances on global performance metrics. On the other hand, 
stratification allows to make evaluations more concrete and 
transparent by allowing the inspection of these very same 
metrics on meaningful subsets of the test data, see Fig. 4 
(e.g., chemical class, sample origin species or environments, 
weight category, instrument type). In the second benchmark-
ing scenario, use case-specific performance evaluations may 
be done with small test sets stratified in a way to represent 
the particular use case scenario as closely as possible. While 
such specific evaluations are not expected to be generalizable 
beyond the target case, they provide specificity and unique 
data that global evaluations necessarily must glance over. 
As such, this second benchmarking scenario is expected to 
be performed by domain experts making use of their own 
reference standard sets, rather than by tool developers, and 
serves to complement the larger benchmarking studies.

The importance of selecting a test set that is a good rep-
resentation of real use cases is critical since many tools have 
differences in performance for different chemical classes or 
mass ranges. Below we will discuss more concrete exam-
ples of the impact a test set can have on performance by 
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illustrating the importance of molecular mass on the perfor-
mance of the tools SIRIUS, Spec2Vec and MS2Deepscore.

Within SIRIUS, the number of possible fragmentation 
trees, and therefore the number of predicted molecular for-
mulas that are computed increase exponentially with higher 
masses. This leads to reduced performance in molecular for-
mula determination for masses higher than 500 Da (Böcker 
& Dührkop, 2016; Böcker et al., 2008). Using the recently 
developed ZODIAC method, this issue is partially resolved 
by reranking the lists of molecular formula candidates in 
larger MS/MS datasets leading to substantially lower error 
rates for molecular formula assignment (Ludwig et  al., 
2020). Besides this, fragmentation tree computation is an 
NP-hard problem and therefore puts a time constraint on 
the performance of SIRIUS. MS/MS spectra with masses 
above 850 Da are therefore currently not able to be com-
puted within realistic timescales. To illustrate, the full 
Actinomycetes (Salinispora/Streptomyces) dataset used in 
MolNetEnhancer takes over 4 weeks to compute using the 
SIRIUS workflow, compared to around 24 h when using the 
same computational resources and a precursor mass cut-off 
of 850 Da. Test sets used for testing the performance of the 
different modules associated with SIRIUS consisted of very 
few spectra with higher masses. For example, spectra with 
masses above 700 Da were discarded when testing COSMIC, 
and the case studies in CANOPUS were restricted to spectra 
with masses below 860 Da (Dührkop et al., 2021; Hoffmann 
et al., 2021). In contrast, Spec2Vec was shown to perform 

less well when applied to spectra with lower (< 600 Da) 
masses. Selecting test sets with different mass ranges will 
therefore influence the performance of Spec2Vec, SIRIUS 
and other methods. This shows that selecting a balanced 
mass range is important in constructing a test set and should 
be reported transparently when a method is evaluated.

A good practice is to test the performance separately for 
specific mass ranges or chemical classes to illustrate if a tool 
has differences in performance. In Fig. 4 an example is given 
of how the performance for chemical classes (a) and mass 
ranges (b) could be tested and visualised in an example of 
MS2Deepscore. This also illustrates the impact molecular 
mass has on the performance of MS2Deepscore.

MS2Deepscore was benchmarked with test sets specific 
for certain mass ranges and chemical classes. All spectra in 
positive mode were selected from spectra from GNPS down-
loaded on 15–12–2021 and were cleaned using matchms 
(Huber et al., 2020). A very large test set was selected of 
100,000 randomly selected spectra. This testset was used to 
create different subsets. From the remaining spectra, 204,318 
were used as a training set to train an MS2Deepscore model 
and 10,000 spectra were used as a validation set. For each 
test set, the RMSE error was determined by comparing the 
prediction with the real Tanimoto score between two mol-
ecules. The comparison was done between all spectra in 
the test set, except for comparing to itself. E.g., for a test 
set of 100 spectra, almost 10,000 comparisons are made. 
Most comparisons between two randomly selected spectra/

Fig. 4  Benchmarking of MS2Deepscore with different types of test 
sets. In all figures the RMSE is determined separately for 10 Tani-
moto score bins, followed by taking the average over these 10 bins. 
a RMSE of MS2Deepscore on test sets with 1500 spectra within a 

molecular mass range. b RMSE of MS2Deepscore on test sets with 
1500 spectra of the most abundant ClassyFire superclasses. c Visuali-
sation of the variance for different test set sizes. This shows there is a 
substantial difference between smaller test sets of 100 spectra
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molecules result in low Tanimoto scores since the chance 
that a molecule is similar is low. A good similarity score 
predicts well across the whole range. Therefore, the RMSE 
was determined separately for 10 Tanimoto score bins, fol-
lowed by taking the average over these 10 bins. This results 
in an RMSE averaged over Tanimoto bins, which is more 
representative of the performance of the model. Test sets for 
specific mass ranges and specific chemical classes were cre-
ated. To select spectra in specific mass ranges 1500 spectra 
were randomly selected from each mass range and used as 
a test set (Fig. 4a). Chemical compound classes were deter-
mined by using ClassyFire superclasses (Djoumbou Feunang 
et al., 2016). Chemical classes were selected that had more 
than 1500 test spectra in the 100,000 test spectra, for each of 
these chemical classes 1500 spectra were randomly selected 
(Fig. 4b). To create Fig. 4c, the 100,000 test spectra were 
split to create test sets of specific sizes. 1000 test sets of 100 
spectra were created, 100 test sets of 1000 spectra were cre-
ated and 10 test sets of 10,000 spectra were created.

In addition to test sets being adequate representations 
of the target chemical space, it is important that test sets 
are large enough for performance metrics to be statistically 
accurate. Figure 4c shows that for test sets of 100 spectra, 
there is a large variance between such different test sets. 
Using larger test sets clearly reduces this risk of random-
ness in your test sets. When comparing methods on small 
test sets, variation in method accuracy due to the test set 
may exceed the actual difference in method performance, 
possibly leading to spurious conclusions with respect to 
relative method performance. Therefore, we strongly rec-
ommend using larger test sets. In some cases, using larger 
test sets is not an option, this could for instance be the case 
when analysing the performance for a specific mass range 
for which limited reference data is available. In these cases, 
either cross-validation or bootstrap approaches may be used 
to evaluate the statistical properties of the performance of 
the tool. In k-fold cross-validation, a dataset is split into k 
parts, with each part serving once as a validation set and the 
remainder serving as a training set. Repeated model train-
ing and validation give an indicator method performance 
variability across the k random sets and correspondingly 
what effective performance differences can be considered 
substantial rather than due to test set sampling alone. If 
repeated model training is computationally prohibitive, the 
bootstrap provides an opportunity to study performance via 
resampling of the test set. Here, the bootstrap sample per-
formance variability gives an estimate of the variability of 
performance using only a single test set (Hastie et al., 2009; 
Kuhn & Johnson, 2013).

Another important factor to consider while benchmarking 
is the robustness to noise of the tested method. Some MS/
MS spectra deposited in mass spectral libraries are already 
cleaned and are thus considered to be of high quality, while 

for other libraries, like many in the GNPS platform, this is 
not done yet. As such, it is common practice to first do some 
filtering and cleaning to prioritize relevant mass signals over 
noise (de Jonge et al., 2022; Huber et al., 2021a, 2021b). We 
do note that for machine learning-based methods that are not 
noise robust, pre-cleaning of mass spectral libraries comes 
with the risk of overestimating the model’s performance. 
Thus, when testing your dataset, it is important to be aware 
that this data was often already cleaned and filtered. To 
ensure that a method also works well with uncleaned input 
spectra collected for biological samples, which are generally 
noisier, it is key that filtering steps used for library and test 
mass spectra are also consistently applied to the real input 
spectra—and that the settings that were used are reported 
in the study. Further studies into the effect of noise filtering 
and spectral pre-processing in general for large-scale mass 
spectral comparisons are required to come up with more 
concrete recommendations.

4.2  Metrics for performance

Besides the variety in options for selecting a suitable test 
set, there is a wide variety of options for different metrics 
for evaluating the performance of a tool. Below we will dis-
cuss the most common methods and their advantages and 
disadvantages.

Methods like spectral library matching, searching molec-
ular structure databases or de novo structure prediction all 
have a similar aim to best predict the molecule belonging 
to a spectrum. The most straightforward method for bench-
marking such methods is doing a prediction for a set of test 
spectra and comparing them to their ground truth. Often 
only the highest scoring hit is selected, but an alternative 
approach that is often used is taking the top-n hits (5 or 
10) into consideration (i.e., a correct annotation is obtained 
when the correct hit is among the first n returned results) 
(Böcker et al., 2008). For a tool that aims to just be used as a 
first step for annotation and heavily relies on manual valida-
tion, looking at the top 10 hits is a useful metric. However, a 
risk of these methods is that many users may just look at the 
top hit, making the performance for the top 10 hits less rel-
evant. We, therefore, argue that analysing the top 1 hit is the 
most informative approach and suggest top-n performance 
to be recorded in a complementary fashion rather than as a 
replacement. A specific case where top-n performance is 
relevant is for tools aiming at predicting substructures, since 
multiple substructures predicted for one molecule can be 
correct, reporting the number of correct hits in the top-n hits 
is relevant, as done for instance in the evaluation of MES-
SAR (Liu et al., 2020).

To evaluate the quality of the predictions the results are 
often evaluated in a binary fashion: the hit is correct or 
wrong. Often used metrics for evaluation of performance 



Good practices and recommendations for using and benchmarking computational metabolomics…

1 3

Page 17 of 22 103

are accuracy, true-positive-rate or false-positive-rate. This 
method is easy to visualise and interpret, however, a down-
side of this method is that molecules that are predicted 
slightly wrong (e.g., small side group at the wrong posi-
tion) are punished equally as predictions that are completely 
wrong. Therefore, a binary evaluation method is unsuitable 
for tools that have a slightly different aim than predicting 
the molecule belonging to a spectrum, for instance, an ana-
logue search or a structural similarity score. An evaluation 
metric that tries to tackle this limitation of binary classifica-
tion is evaluating the performance by calculating the struc-
tural similarity between the predicted molecule and the true 
annotation. Common methods used for predicting structural 
similarity are the Tanimoto/Jaccard coefficient, computed 
from molecular fingerprints. However, there is no consensus 
about what structural similarity score is best (Huber et al., 
2021b). The interested reader is referred to Safizadeh and 
colleagues for more structural similarity approaches (Safi-
zadeh et al., 2021). When using structural similarity scores 
for assessing the performance of a library search method, 
the predicted structure can be compared to the real structure. 
The performance can be assessed by calculating the RMSE 
for all test spectra or by visualising the distribution of the 
Tanimoto scores using a histogram. Using a structural simi-
larity score to evaluate the performance of a similarity score 
(e.g., cosine score, Spec2Vec, MS2Deepscore) becomes a 
regression problem between the structural similarity and 
the spectral similarity. Typical metrics for evaluation are R2 
and root-mean-squared-error rates, quantile–quantile plots 
(QQ-plots), as well as visual depictions of the structural and 
spectral similarity scores and their co-distribution.

Another important step in evaluating tools is the trade-
off between recall and accuracy. Many tools do not always 
return a result for a MS/MS spectrum, but only if the score 
exceeds a certain threshold (for instance within a mass accu-
racy of 0.1 Da or a cosine score > 0.6). Specifying appropri-
ate thresholds is often not trivial, in general using stricter 
thresholds will result in a lower recall but a higher accu-
racy. This trade-off can be visualised with a precision-recall 
curve. To make a fair comparison between different tools 
it is important to consider both the accuracy and the recall.

There is a lot of variation in computational time for dif-
ferent methods. A long computational time or the need for a 
lot of computational power can be limiting for some applica-
tions and it is therefore important to discuss. In addition, the 
computation time of some computational tools is strongly 
dependent on the size of the molecule that is processed, in 
these cases, this is also important to discuss. It is of note 
that a long(er) computational time does not always need to 
be a hampering factor: if the results can subsequently be 
used for a long and thorough analysis or can be quickly que-
ried afterwards without the need for lengthy retraining of a 

model, and as such, this could work for a viable metabolite 
annotation strategy.

4.3  Lack of effective method comparisons

Currently, there is a lack of comparison studies between dif-
ferent approaches for metabolite annotation, which makes it 
difficult for users to select the most appropriate method for 
their data analysis. One of the reasons why such a compari-
son has not systematically been carried out yet is that the 
different tools have a wide variety of goals such as spectral 
clustering, library or analogue searching, similarity scores 
or search for substructures, but also different strengths and 
weaknesses, like annotating small molecules or annotating 
large molecules. Instead of comparing tools to find the best 
tool out there, the focus should be on showing the strength 
and weaknesses of each tool to make it easier for a user to 
select a tool that best suits their needs. It would be very valu-
able to have large-scale comparison/benchmarking studies 
that highlight the strengths and weaknesses of the different 
scores and methods from the different applicable use case 
scenarios.

In addition to a variety of use cases, there are a lot of dif-
ferent datasets that could be used for validation purposes, 
making straightforward comparisons of tools difficult. A 
notable endeavour to harmonise such a comparison and to 
allow the different methods to blindly and thus fairly com-
pare against each other are the CASMI challenges (http:// 
casmi- conte st. org). In this contest, the organisers put 
together a test dataset composed of only MS/MS spectra. 
This test dataset is given to the participants (i.e., developers 
of different in-silico metabolite annotation tools) without 
them knowing about the true identities of the metabolites 
behind the respective MS/MS spectra. The authors then 
apply their tools independently and the results are centrally 
compared with their respective ground-truth by the organis-
ers of the CASMI challenge. We appreciate that studies use 
publicly available datasets for benchmarking, and we believe 
that this will be essential for effective performance compari-
sons showing the strengths and weaknesses of methods (as 
these can be reused without restrictions or financial require-
ments); however, the oftentimes small set of molecules used 
(i.e., few tens or hundreds), is unlikely to be sufficient to gen-
eralise to the many use cases of untargeted metabolomics. 
Nevertheless, the addition of new CASMI challenge MS/MS 
spectra to the public domain is always very much appreci-
ated and very useful indeed.

4.4  Conclusions benchmarking

Currently, there is no golden standard for compiling a good 
test set and how to evaluate a method's performance on it. 
Both the test set and the utilised metric will depend on the 

http://casmi-contest.org
http://casmi-contest.org
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goals of a tool. However, since the selection of a test set 
and the metric can have a large impact on performance it is 
crucial to clearly discuss the limitations and biases of the 
selected test sets or metrics in publications. Besides a clear 
discussion of the limitations, there is a need for in-depth 
comparison studies that compare available tools. Instead of 
aiming to prove which tool is best, it is more relevant to 
show the strengths and weaknesses of each tool, for instance 
by showing the difference in performance for different mass 
ranges and chemical classes. In the short term, we propose 
the development of stratification schemes to guide the crea-
tion of large, stratified test sets that are randomly selected 
from mass spectral reference libraries, and to transparently 
highlight method performance for the different chemical 
classes and mass ranges, as well as of the different analytical 
methods that produced the input data. By doing so, aggre-
gate performance measures have a clearer interpretation, and 
group-specific metrics can be evaluated for maximal trans-
parency and insight. In the long term, we envision the devel-
opment of standardised test sets that include informative 
subdivisions for straightforward comparison across studies, 
as well as the development of tools with functionality that 
enable end users to quickly and with minimal effort validate 
and compare different tools using their own in-house refer-
ence libraries.

5  Overall conclusions

As we argue above, in-silico metabolite annotation meth-
ods in combination with large reference databases have the 
potential to transform the outcome of untargeted metabo-
lomics approaches into structural information, thereby 
allowing for much finer-grained biological interpretations. 
This transformation has gained much traction and acceler-
ated in recent years with a constant stream of novel tools 
improving upon existing methods and tools. Most in-silico 
approaches highlighted here can also be transferred to 
and used in many laboratories as a part of generic (open 
source) software thereby enabling large-scale applications 
of the computational methods. Moreover, with the pub-
licly available spectral and chemical structure databases, 
which are continuously growing, also boosted by recent 
FAIR (i.e. Findable, Accessible, Interoperable, and Reus-
able) data sharing initiatives (Neumann, 2022), researchers 
and tool developers are starting to have uncomplicated and 
straight-forward access to structural and mass spectral data 
of myriads of molecules. This has fuelled the large-scale 
and repository-scale reuse of mass spectrometry data (Haug 
et al., 2019; Jarmusch et al., 2020, 2021; Sud et al., 2016), 
now also including retention time data (García et al., 2022). 
Furthermore, the adoption of standards such as the Universal 
Spectrum Identifier (USI) (Deutsch et al., 2021) will further 

aid in the harmonization of efforts, making access to large 
amounts of data for training and validation purposes much 
more straightforward.

Some of the most reliable methods to date employ 
machine learning and deep learning methods based on data-
base similarity searching. However, the reach of these meth-
ods is limited to the covered chemical space in the used data-
set for training. It has become clear that only a fraction of 
chemical space is covered, which makes it practically impos-
sible to create representative databases of experimental MS/
MS data. Training data generated from these databases will 
be biased towards certain chemical classes and mass ranges. 
This results in challenges for creating machine learning 
methods that generalize well to novel metabolites. Current 
efforts aimed at further homogenizing different datasets will 
help make sure that all available data can be used for training 
new ML and DL models and thus help increase their scope 
and performance. In addition, we suggest using stratification 
and over- and under-sampling to counteract biases in the 
data to be used in the short term. Since there is still a clear 
lack of (curated) metabolomics example data, combinations 
of rule-based and data-driven approaches are likely the most 
powerful. This would include developing and using robust 
in-silico MS/MS spectra generation in order to enrich our 
current datasets. Nonetheless, it remains crucial to increase 
the publicly available data and to focus on creating more 
reference data for underrepresented chemical classes. This 
is also important since de novo structure elucidation from 
MS/MS spectra remains a challenging task.

While DL developments in metabolomics are still in their 
infancy, there is reason to be optimistic about their future 
in the field. In the light of i) current advances in related 
fields that also look promising (i.e., considering DeepDIA 
and DLEAMSE developed for proteomics (Qin et al., 2021; 
Yang et al., 2020), ii) the ever-increasing knowledge of 
how small molecules behave in the mass spectrometer (i.e., 
through quantum mechanics calculations (Lee et al., 2022), 
and iii) the increasing amount of training data, it is very 
likely that deep learning approaches will substantially boost 
the field. However, it is unlikely we will arrive there within 
the next 5—10 years. Until then, it will remain very impor-
tant to make benchmarking possible, fair, and be explicit in 
what a method can, and cannot do, so that researchers can 
combine the right toolset for their task at hand.

We further note that the large number of novel tools 
makes it hard for users to judge which tool suits their needs 
best. While new tools are often benchmarked and compared 
with each other, there is a lack of standardized test data 
sets for critical performance evaluations and comparisons. 
This lack of standardization makes it difficult for end-users 
to find and utilize the most beneficial tools for their own 
experiments. A challenge in the standardization of bench-
marking methods is that many tools developed have slightly 
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different goals and therefore different benchmarking metrics 
are justified for different tools. Here, we discussed the pros 
and cons of often used benchmarking metrics and provide 
a set of recommendations to facilitate the understandable, 
fair, and reproducible benchmarking of metabolite annota-
tion tools. We argue that, currently, the best approach is 
to use large, randomized test sets to show that a tool gen-
eralizes well, while also discussing the limitations due to 
potential biases. In addition, it is key to use specialized 
test sets to show the strength and weaknesses for specific 
subsets, like for instance specific mass ranges or chemical 
compound classes. This makes it possible for users to pick 
the best tool for their specific needs and focuses the field 
on improving the weaknesses of existing tools. More focus 
on sampling biases in data and in-depth benchmarking will 
remain key to preventing overestimation of the performance 
of tools. In addition to standards in benchmarking metrics, 
we believe the development of standard reference datasets 
to be crucial. Current efforts like CASMI are a great step 
in the direction of standardized benchmarking. However, 
we argue that in the future larger test sets should be used 
and to use subsets to benchmark the performance for spe-
cific chemical classes and mass ranges. We envision that if 
many groups support these recommendations, it will become 
easier to assess where, if, and how computational metabo-
lomics tools are effective in adding biochemical information 
to metabolomics profiles.

Based on the currently ongoing community efforts, we 
expect that combined efforts in increasing the uniform cov-
erage of publicly available data and the development of 
novel tools will rapidly improve the reliability of in-silico 
methods for untargeted metabolomics. Whilst the heteroge-
neity of the input data in metabolomics hampers progress in 
the field, we believe that with a concerted, harmonized, and 
community-based effort, metabolomics could also have its 
“AlphaFold moment” in the not too far distance.
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