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Abstract
Introduction  Premature adrenarche (PA) for long time was considered a benign condition but later has been connected to 
various diseases in childhood and adulthood which remains controversial.
Objective  To investigate the effect of premature adrenarche on the metabolic phenotype, and correlate the clinical and bio-
chemical data with the metabolic profile of children with PA.
Methods  Nuclear magnetic resonance (NMR)-based untargeted and targeted metabolomic approach in combination with 
multivariate and univariate statistical analysis applied to study the metabolic profiles of children with PA. Plasma, serum, 
and urine samples were collected from fifty-two children with Idiopathic PA and forty-eight age-matched controls from the 
division of Pediatric Endocrinology of the University Hospital of Patras were enrolled.
Results  Metabolomic results showed that plasma and serum glucose, myo-inositol, amino acids, a population of unsaturated 
lipids, and esterified cholesterol were higher and significantly different in PA children. In the metabolic profiles of children 
with PA and age-matched control group a gradual increase of glucose and myo-inositol levels was observed in serum and 
plasma, which was positively correlated their body mass index standard deviation score (BMI SDS) values respectively. 
Urine 1H NMR metabolic fingerprint of PA children showed positive correlation and a clustering-dependent relationship 
with their BMI and bone age (BA) respectively.
Conclusion  This study provides evidence that PA driven metabolic changes begin during the childhood and PA may has 
an inductive role in a BMI–driven increase of specific metabolites. Finally, urine may be considered as the best biofluid for 
identification of the PA metabolism as it reflects more clearly the PA metabolic fingerprint.
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1  Introduction

Idiopathic Premature adrenarche (PA) has been considered, 
for a long time, to be a benign condition when pathologi-
cal causes of hyperandrogenism such as adrenal tumors and 
non-classical adrenal hyperplasia are excluded. Risk factors 
linked to PA, are prematurity, birth weight, rapid weight 

gain and obesity (Novello & Speiser, 2018; Voutilainen & 
Jääskeläinen, 2015).

Furthermore, in recent years, many studies have proposed 
the association of PA with insulin resistance, increased car-
diovascular risk, metabolic syndrome, ovarian hyperandro-
genism and increased risk for polycystic ovarian syndrome 
(PCOS), especially in girls with PA and low birth weight 
(Ibáñez et al., 1998; Neville & Walker, 2005). However, 
the impact of PA as a precursor of metabolic syndrome of 
childhood remains controversial, since there are published 
studies that do not support the link of PA with low birth 
weight (Boonstra et al., 2004) or the later sequela of ovar-
ian hyperandrogenism (Mathew et al., 2002). Until now, the 
biochemical definition of premature adrenarche is based on 
a modest increase of adrenal androgens in blood serum. To 
give a deeper insight into the underlying pathophysiological 
processes of PA, we studied the metabolic profiles of this 
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condition, using spectroscopic tools on diverse biological 
fluids (Georgiopoulou et al., 2022; Holmes et al., 2008).

More specifically, we performed nuclear magnetic reso-
nance (NMR)-based untargeted metabolomic analysis on 
three biofluids (plasma, serum, and urine) of children with 
PA and a control group, focusing mainly on low molecular 
weight metabolites (< 1 kDa) (Chasapi et al., 2019; Geor-
gakopoulou et al., 2020; Katsila et al., 2021; Tsagkarakou 
et al., 2021; Zompra et al., 2021). Considering that children 
with PA have their own steroid metabolic pattern (Remer 
et al., 2005; Storbeck et al., 2019), we examined a stand-
ard group of steroid hormones which are commonly used 
in clinical practice as markers of their PA clinical charac-
teristics. The three measured adrenal steroids dehydroe-
piandrosterone sulfate (DHEAS), androstenedione (Δ4Α) 
and 17α-hydroxyprogesterone (17-OHP) were examined as 
categorizing factors of the 1H NMR metabolic profiles of 
children with PA. Moreover, we evaluated the association of 
bone age (BA), body mass index (BMI) standard deviation 
score (SDS) and birth weight (BW) to the NMR metabolic 
profiles.

2 � Methods

2.1 � Ethics statement

The study was approved by the Ethics Committee of the 
University Regional General Hospital of Patras, Rio, Greece. 
Informed consent obtained from all the participants of the 
study. All methods performed in accordance with the Ethical 
Principles for Medical Research Involving Human Subjects 
of the Helsinki Declaration.

2.2 � Patient’s population

A total of 100 children, 52 with PA (49 girls and 3 boys) and 
48 healthy children (30 girls and 18 boys) were enrolled in 
this study (Table 1). All children with PA had onset of signs 
of adrenarche before the age of 8 years for girls and 9 years 
for boys, with no other adrenal pathology as the cause of 
adrenarche. Girls with thelarche or clitoromegaly and boys 
with testes > 4 mL were excluded from the study. All patients 
were followed for at least 6  months, and none entered 
puberty. None of the PA children and control subjects was on 
any medication. Birth weight and length were recorded from 
the national book of child’s health. The control group con-
sisted of girls and boys attending our community pediatric 
outpatient clinic for routine health visits, or for preoperative 
assessment for minor surgeries. Age, height (measured by 
a Harpenden stadiometer) and weight were measured, and 
pubertal status was clinically assessed according to Tanner 
stages (Emmanuel & Bokor, 2021). ΒΑ was assessed by 
the same senior pediatric endocrinologist (D. Chrysis) and 
evaluated according to Greulich and Pyle atlas (Dahlberg 
et al., 2019). The study was approved by the Ethics Commit-
tee of the University Hospital of Patras. Informed consent 
was obtained from the parents of the participants.

2.3 � Sample collection and preparation

Biofluids (plasma, serum, and urine) were collected, stored, 
and prepared for NMR analysis according to the below-men-
tioned protocols, with adaptations as described by Bernini 
et al. (Bernini et al., 2011). Storage and NMR sample prepa-
ration were carried out at the Department of Pharmacy of 
University of Patras.

Table 1   Baseline characteristics 
of 100 participants

SGA small for gestational age, AGA​ appropriate for gestational age, LGA large for gestational age, BW birth 
weight, BMI body mass index, DHEAS dehydroepiandrosterone sulfate, 17-OHP 17a-hydroxyprogesterone, 
Δ4A androstenedione, BAA bone age advancement
* Testing for gender performed using Chi-squared test, **Testing for age, gestational age and birth weight 
performed using t-test

Characteristics Controls n = 48 PA n = 52 P-value

Male/Female 18/30 3/49 P < 0.001*

Age (years ± SD) 7.69 ± 2.17 7.72 ± 1.56 P = 0.93**

Gestational age SGA/AGA/LGA 7/38/1 6/46/0 P = 0.55**

Birth weight (gr ± SD) 2891.05 ± 739.99 2965.5 ± 440.42 P = 0.54**

BMI: > 1.5SD/ ≤ 1.5SD n:7/n:41 n:19/n:33
DHEAS (mcg/dL) – 114.69 ± 52.85
Δ4A (ng/mL) – 0.46 ± 0.31
17-OH Progesterone (mcg/mL) – 1.18 ± 0.75
Bone age (year) – Median =  + 1 y, 

range = 0 y to 3 y
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Fasting blood plasma and serum samples were with-
drawn from donors using BD Vacutainer® K3-EDTA 
(K3-ethylenediamine tetra-acetate) spray-coated tubes and 
BD Vacutainer® SST™, respectively. Serum samples were 
left 0.5 h at room temperature (RT) for the completion of 
the clotting cascade. All blood samples were centrifuged 
at 1500 g × 0.17 h at RT and supernatant from each sample 
was aliquoted in fractions of 600 μL. Aliquots were stored 
in 2 mL cryovials at -80 °C. Urine samples were collected in 
fasting state and were stored immediately at 4 °C for a maxi-
mum of 2 h before their centrifugation at 2500 g × 0.17 h at 
RT. Supernatant from each sample was aliquoted in three 
fractions of 1 mL and they were stored in 2 mL cryovials 
at − 80 °C.

2.4 � NMR sample preparation

NMR samples were prepared by thawing aliquots of the 
stored fluids followed by the addition of a suitable buffer. 
Plasma and serum samples were mixed with a buffer of 
pH = 7.4 (0.14 M Na2HPO4, 0.5 mM 4,4-dimethyl-4-silap-
entane-1-sulfonic acid (DSS), 4% NaN3 in H2O) according 
to protocols reported elsewhere Buffer used for urine sam-
ples prepared in 100% D2O and pH = 7.4 (1.5 M KH2PO4, 
0.05 mM DSS and 4% NaN3 2 mM). 300 μL of plasma and 
serum samples were mixed with 240 μL buffer and 60 μL 
D2O, while 540 μL of urine samples were mixed with 60 μL 
buffer (Suarez-Diez et al., 2017). The final step before NMR 
experiments was the transfer of 550 μL in a 5 mm NMR tube 
(Bruker BioSpin GmbH).

2.5 � NMR experiments

All samples were measured in a Bruker Avance III HD 
700 MHz NMR spectrometer equipped with a 5 mm cry-
ogenically cooled TCI gradient probe, at 36.85  °C and 
26.85 °C for blood derivatives and urine, respectively and 
were processed using TopSpin 3.5 pl7 software (Bruker 
BioSpin GmbH). One-dimensional 1H NOESY (Nuclear 
Overhauser Effect SpectroscopY) spectra using presatura-
tion routine for water suppression were recorded, with 32 
number of scans of 98.3 K data points with 14,005.6 Hz 
spectral width, for plasma and serum. For urine samples 1D 
1H NOESY spectra recorded with 64 scans of 65.5 K data 
points and 10,504.20 Hz spectral width. 1D 1H CPMG 
(Carr-Purcell-Meiboom-Gill) spectra were acquired only 
for plasma and serum samples to avoid the signal contribu-
tion, result of the high molecular weight molecules (protein 
and lipid content) in their composition. For the acquisition 
of the 1D 1H CPMG spectra, 32 scans of 73.7 K data points 
and 18,028.8 Hz spectral width were used. Homonuclear 2D 
NMR 1H J-resolved (J-res) spectra were also acquired for 
all each sample using four scans per 128 increments for F1 

(spin–spin coupling constant axis) and 12.3 K data points for 
F2 (chemical shift axis). Spectral width used was 78.13 Hz 
and 11,627.91 Hz for F1 and F2, respectively. During all 
experiments, the signal of water was suppressed by presatu-
ration pulse.

2.6 � NMR spectral processing

Before the statistical analysis, zero- and first-order phase 
correction of spectra was applied. The plasma and serum 
spectra were aligned on the double resonance peak of ano-
meric proton of a-glucose at 5.24 ppm, while urine spectra 
were aligned on the DSS singlet at 0.00 ppm (Pearce et al., 
2008) using TopSpin 4.0.7 (Bruker BioSpin GmbH). Both 
procedures were performed manually. 8 spectra out of the 
300, were not suitable for the analysis and were excluded 
(Table 1). The NMR spectral data were converted by AMIX 
software (Bruker BioSpin GmbH) in bucket tables. Spectral 
regions 0.00–10.00 ppm segmented into integrated spectral 
domains (buckets) of equal width (0.02 ppm) excluding 
the water signal. Furthermore, 1H signals of the antico-
agulant Ethylenediamine tetra-acetate (EDTA) (H-EDTA, 
Ca2+-EDTA, Mg2+-EDTA) were excluded from the bucket-
ing of plasma data, while DSS and Urea resonance signals 
were excluded from the bucketing of urine data.

2.7 � Statistical analysis and computational tools

The metabolites’ assignment was performed in a non-auto-
mated way using the free version of Chenomx NMR Suite 
8.3, the databases Human Metabolome DataBase (HMDB), 
Biological Magnetic Resonance Bank (BMRB), DrugBank 
and the available bibliography (Salek et al., 2007; Wishart 
et al., 2007). A few 1H signals could not be assigned due to 
the high percentage of overlapping areas. SIMCA 16.0.1 
(Umetrics, Sweden) and the programming language R (Rstu-
dio 3.5.2) were used for the multivariate (untargeted) and 
univariate (targeted) statistical analysis of the spectral data 
(Saccenti et al., 2014). Pareto scaling was selected as the 
most suitable scaling method for the blood samples, and 
urine samples were scaled to unit variance. The unsuper-
vised multivariate method principal component analysis 
(PCA) was applied to all NMR metabolomic profiles, as a 
data structure investigation approach (data not shown). It 
was followed by the supervised multivariate method par-
tial least square—discriminant analysis (PLS-DA) to pro-
vide information about each sample’s class. Each PLS-DA 
model was constructed using the first six latent variables 
(LVs). PLS-DA VIP scores above 1.00 reveal the statisti-
cally significant metabolites for the examined classifica-
tion. Additionally, supervised partial least square (PLS) 
models were constructed to relate metabolic profiles for 
continuous response to androgens, BA, BMI (expressed as 
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SD scores-SDS) and BW. Androgen levels and BA associa-
tions to PA metabolic profile were estimated through the 
population distribution in each PLS model. The parameters 
R2 and Q2 were calculated via sevenfold cross validation, 
summarizing the appropriateness of the model for the exam-
ined data sets. Metabolite univariate analysis and statistical 
significance were based on the non-parametric statistical test 
Kruskal–Wallis by ranks (H test) for independent samples 
at level of significance a = 0.05. For each one successfully 
assigned metabolite, all spectra were aligned in the peak of 
interest and the area under the curve was calculated (Krzy-
winski & Altman, 2014). The false discovery rate (FDR) 
correction was applied to the Kruskal–Wallis test results 
according to the Benjamini & Hochberg method and the 
mean log2-fold changes were also calculated for the exam-
ined metabolites (Benjamini & Hochberg, 2000; Ren et al., 
2015). The investigation of the metabolite-metabolite cor-
relations between the two biofluids (urine and plasma) con-
ducted using the Correlation Heatmaps tool for features on 
MetaboAnalyst 5.0 platform (Pang et al., 2021).

2.8 � Data deposition

NMR data have been uploaded in the MetaboLights database 
(https://​www.​ebi.​ac.​uk/​metab​oligh​ts) (Haug et al., 2013). 
Study’s accession number is MTBLS2387.

3 � Results

In total, 39 metabolites were identified in plasma, 38 metab-
olites in serum and 54 metabolites in urine 1H NMR spectra 
(Matzarapi et al., 2021). Blood plasma and serum metabolic 
profiles did not diverge much on the metabolites’ composi-
tion but differed from urine metabolome, as expected. Urine 
metabolome due to the inherent high chemical complexity 
contributes significantly to the metabolic signature of PA.

The comprehensive multivariate and univariate statistical 
analysis of the 1H NMR metabolic profiles of children with 
PA and age-matched controls were performed for the three 
examined biofluids. PLS-DA classification models revealed 
a clustering tendency of plasma, serum, and urine 1H NMR 
metabolic profiles of children diagnosed with PA compared 
to the controls. Univariate statistical analysis of targeted 
metabolite levels reveals smooth differences between the 
PA and the control’s metabolic profile. Investigation of the 
association level amongst the metabolite bulk identified 
in the two biofluids, urine and plasma, performed through 
interactive analysis and using linear regression method. 
Pearson’s correlations of the 39 plasma and the 54 urine 
metabolites on the semiquantitative and log-transformed 
data were measured and illustrated (Fig S1). Correlation 
pattern revealed two major clusters, which are considered to 

exhibit high consistency by analogy to the biofluid of origin. 
According to this outcome and due to accurate biological 
inferences, all NMR metabolomic data were analysed and 
estimated independently.

3.1 � Plasma and serum samples

Plasma metabolic profiles reveal high similarity in the 
PLS-DA multivariate space (R2Y (cum) = 33.5% and Q2Y 
(cum) = − 47%) (Fig. 1a). Between children with PA and 
controls, levels of glucose, glycerol, serine, alanine, lysine, 
unsaturated fatty acids and esterified cholesterol were 
found to be statistically significant, according to the PLS-
DA variable importance in projection (VIP) scores, for the 
classification of both plasma and serum metabolic profiles 
(Table 2). The metabolites leucine, lactic acid and N-acetyl-
D-glucosamine (GlcNAc) were also statistically significant 
for the diagnostic classification of plasma samples (Table 2). 
Also, serum metabolic profiles when used for classifica-
tion displayed minimum clustering tendency (Fig. 1a R2Y 
(cum) = 45.6% and Q2Y (cum) = − 69.2%). PLS-DA indicate 
myo-inositol, proline and glycine as additional statistically 
significant serum metabolites (Table 2).

The boxplots and the mean log2-fold changes clarified the 
variation of nine out of the eleven metabolites subjected into 
univariate analysis. Specifically, glucose, leucine, glycerol, 
and alanine are increased in plasma metabolic profile of chil-
dren with PA, while lactic acid and GlcNAc are decreased 
(Fig. 2, Table 3). Furthermore, glucose, myo-inositol and 
serine are increased in serum spectra of PA, while glycerol 
and glycine are decreased in this group (Fig. S2, Table 3). 
Plasma and serum lysine, plasma serine and serum proline 
were excluded from the targeted analysis (univariate) due to 
high 1H NMR signals overlap.

3.2 � Urine samples

Comparison of urine 1H NMR metabolic profile of PA 
children versus controls through PLS-DA, revealed a bet-
ter clustering unlike the blood derivatives (Fig. 1a R2Y 
(cum) = 69.3% and Q2Y (cum) = − 42.3%). The VIP scores 
of PLS-DA indicate that 3-methylhistidine, hippuric acid, 
mannitol and urocanic acid are statistically significant for 
group classification. The above metabolites are decreased in 
children diagnosed with PA. VIP scores’ result and classifi-
cation values of the PLS-DA model suggest that untargeted 
analysis and the whole urine metabolic fingerprint contribute 
significantly to class identification (Table 2).

3.3 � Correlations with androgens, BA, BMI and BW

We subsequently studied, within the PA group, the cor-
relation of the NMR metabolic profiles with androgens 

https://www.ebi.ac.uk/metabolights
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in serum (DHEAS, Δ4Α, 17-ΟΗP), bone age and the 
anthropometric data (BMI and BW). While NMR meta-
bolic profiles in children with higher androgen levels tend 
to differentiate from the metabolic profiles of the con-
trol group, no distinct classification was achieved. Even 
though BA is not a parameter that metabolically could 
lead to a distinct categorization of the PA blood meta-
bolic profile, clinically is an association factor underlying 
PA pathophysiology. Since BA in prepubertal children 
is related to obesity (Kwon et al., 2017) and childhood 
obesity provide a specific urine steroid profile (Gawlik 
et al., 2016), we attempted to test the BA as a correla-
tion factor. When the correlation of BA with the urine 1H 
NMR metabolic profiles of PA children was examined, 
it was observed that urine 1H NMR spectral profiles of 
children with advanced BA by more than 1.5 years, pre-
sented a tendency for clustering in the PLS multivariate 
space (Fig. 3 R2Y (cum) = 93.6% and Q2Y (cum) = 3.96%). 
Additionally, it is acknowledged that high BMI values are 
positively correlated with elevated levels of blood glucose 
(Ortmeyer et al., 1993). Standing on this, all (control and 
PA children, n = 100) serum and plasma 1H NMR profiles 
were divided into four groups according to their BMI SDS 
values and univariate analysis was performed to investi-
gate the glucose and myo-inositol levels variations. Glu-
cose and myo-inositol are increased in the PA and control 
children with BMI SDS > 1.5 when they are compared 
with the PA and control children with BMI SDS ≤ 1.5, 
respectively (Fig. S3, Table 4). Finally, BW did not have 
any significant association with children’s plasma, serum, 
or urine 1H NMR metabolic profiles.

4 � Discussion

To date, this study is the first NMR-based metabolomics 
study of children with PA and age-matched healthy con-
trol children. Current results shed light on the relationship 
between this endocrine disorder and its impact on meta-
bolic profile. The metabolic fingerprint of children with 
premature adrenarche is differentiated from the control 
group according to quantitative changes in certain metab-
olites. More specifically the findings highlight that in all 
three biofluids analyzed, plasma, serum and urine, PA’s 
metabolic profiles show differences mainly on glucose, 
myo-inositol, amino acids, a population of unsaturated 
lipids and esterified cholesterol. Most of the statistically 
significant metabolic alterations belong to the glucose-
alanine pathway, and lipid metabolism.

The above changes in metabolites lie within the context 
of a complex interplay among insulin, glucose metabo-
lism and inositol-related molecules. Myo-inositol in the 
form of phosphate derivatives (inositol phosphoglycans) 
exerts an insulin-mimetic activity, acting downstream of 
insulin receptors to reduce hyperglycemia and promote 
muscular gluconeogenesis (Huang et al., 1993; Ortmeyer 
et al., 1993). Insulin resistant states followed by increased 
fasting glucose levels, reduce the levels of myo-inositol in 
serum and affects the intra/extracellular ratio of inositol 
molecules, contributing to metabolic dysregulation (Bletsa 
et al., 2021; Prieto, 2008). These metabolic interactions 
are tightly linked to changes in plasma and urine myo-
inositol levels (Croze et al., 2015).

Fig. 1   NMR-based non targeted analysis of plasma, serum, and urine 
PA metabolic profile. PLS-DA score plots of the three first compo-
nents of the statistically significant comparisons among children. 
a 1H CPMG NMR plasma spectra of 50 PA versus the 48 controls; 

b 1H CPMG NMR serum of 51 PA versus the 47 controls; c 1H 1D 
NOESY NMR urine of 51 PA and 45 control. Children with PA are 
presented with turquoise, while control children are with purple 
spheres
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Previous studies have correlated the glucose, myo-inosi-
tol, fatty acids and amino acids levels changes to increased 
insulin levels in children and adolescents with obesity, as 
well as PCOS in girls (Cree-Green et al., 2019; Martos-
Moreno et al., 2017). Components of metabolic syndrome 
such as increased fasting glucose levels accompanied by 
hyperinsulinemia have been reported by two independent 
research groups in children with PA (Ibáñez et al., 1997; 
Utriainen et al., 2007). Data presented herein, clearly show 
that both, obesity, and PA, have an impact on metabolites 
like glucose and myo-inositol. Investigation of BMI as a 
response-driven factor on metabolic profiles, showed that 
data analysis’ results are in line with the association between 
obesity and insulin resistance, suggesting a positive correla-
tion of BMI with the glucose levels (Corvalan et al., 2013; 
D'Adamo et al., 2009). Interestingly, our study shows that 
the effect of premature adrenarche on glucose and myo-ino-
sitol levels is much more prominent in children with PA than 

controls, with the increase of BMI. Therefore, it seems that 
premature adrenarche may enhance the BMI–driven increase 
of metabolites like glucose and myo-inositol and deteriorate 
the metabolic dysregulation. In clinical practice, this empha-
sizes the importance of weight loss in children with PA to 
ameliorate its metabolic consequences.

The study of untargeted NMR-based metabolomics in 
urine suggests that this biofluid may be considered as the 
best to characterize in depth and monitor the PA, as its 
metabolic fingerprint is clearly reflected on urine. The 
metabolites 3-methylhistidine, hippuric acid, mannitol 
and urocanic acid are statistically significant decreased 
according to the supervised method PLS-DA for this clus-
tering of urine samples. Similar urine metabolic profiles 
have been reported by others showing that the decreased 
urinary excretion of hippuric acid distinguishes adoles-
cents with obesity from normal weight ones (Cho et al., 
2017). Both urocanic acid and 3-methylhistidine are part 

Table 2   Statistically significant 
blood plasma, serum and 
urine metabolites according 
to the VIP scores of PLS-DA 
(VIP > 1)

Biofluid δ 1Η (ppm) VIP scores Metabolites

Plasma 3.71 7.16 Glucose, leucine, cholesteryl ester
3.85 6.99 Glucose, serine, GlcNAc
3.67 5.54 GlcNAc, glycerol
3.73 4.66 Glucose, alanine, cholesteryl ester
1.29 4.28 –(CH2)n- fatty acids
1.33 3.68 Lactic acid
3.79 3.56 Glucose, lysine, GlcNAc
3.83 3.46 Glucose, serine, sugar
1.27 3.39 –(CH2)n- fatty acids
1.31 3.33 –(CH2)n- fatty acids

Serum 2.05 4.83 Proline, GlcNAc
3.67 4.82 Glycerol
3.89 4.26 Unassigned
3.85 3.78 Serine, glucose
3.57 3.71 Glycine, glycerol, glucose
1.29 3.68 –(CH2)n- fatty acids
3.65 3.44 Myo-inositol
3.73 3.38 Alanine, glucose
3.79 3.34 Lysine, glucose
3.87 3.33 Unassigned

Urine 7.67 2.31 3-methylhistidine
3.37 2.30 Unassigned singlet
8.23 2.29 Metabolite with substituted imidazole ring
7.85 2.13 Hippuric acid, urocanic acid
8.13 2.06 Metabolite with substituted imidazole ring
7.31 1.93 Urocanic acid, metabolite with substituted 

imidazole ring
3.89 1.92 Mannitol, unassigned
7.59 1.91 Metabolite with substituted imidazole ring
8.27 1.90 Metabolite with substituted imidazole ring
8.01 1.89 Metabolite with substituted imidazole ring
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of histidine metabolism which is strongly associated 
with body inflammation (Gibbs et al., 2008; Niu et al., 
2012). Studies conducted in both humans and animals 
have shown a significantly negative correlation between 
histidine levels (plasma and serum) and inflammatory 
conditions (Holeček, 2020; Niu et al., 2012; Sun et al., 
2014). Children with PA are characterized by high risk 
of obesity, insulin resistance, cardiovascular disease, 
and PCOS, which are all linked to inflammation (Ibáñez 
et al., 2002; Utriainen et al., 2010). In the current study, 
urine 1H NMR metabolome may be indicative of early 
subtle inflammatory state in children diagnosed with PA. 
Plasma and serum 1H NMR metabolome also supports 

the inflammatory profile through the dysregulation of 
glucose and myo-inositol levels. Children with PA may 
thus be at higher risk of developing metabolic syndrome 
later in life.

We should also note that the present study involved a 
limited number of boys with PA. Indeed, the female gender 
is the dominant group in our PA sample group. Although 
this may be considered as a limitation which could lead 
to a sex-biased interpretation of the PA metabolic signa-
ture, agrees with the 9:1 female to male ratio in children 
population that exhibit PA. Despite urine’s complexity as 
a biofluid, NMR metabolomics show greater sensitivity 
when applied in PA classification.

Fig. 2   1H NMR signals in superimposition (left) and boxplots (right) 
of plasma metabolites derived by univariate analysis. Left figures: 
Spectral superimposition of plasma 1H NMR peaks for each exam-
ined metabolite (y-axis: relative intensity (a.u.); x-axis: δ 1Η (ppm)). 
Red and green 1H NMR spectral peaks correspond to the control and 

PA group, respectively. Right figures: Boxplots derived by univari-
ate analysis for each one of the examined plasma metabolites (y-axis: 
relative intensity (a.u.); x-axis: group title, boxplot dots: each dot rep-
resent the.1H NMR spectrum of each child in different color)
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5 � Conclusion

In conclusion, urine 1H NMR metabolic profile provides 
a better clustering tendency between PA children and 

controls than plasma and serum 1H NMR metabolic pro-
files and considering its non-invasive collection, urine 
could be easily further evaluated to establish its diagnostic 
potential for this specific disorder. The dysregulation on 
glucose pathway and the inflammatory profile depicted in 
PA’s urine metabolome, as examined by high-resolution 
NMR spectroscopy might become a monitoring tool for 
the progression of metabolic syndrome and its complica-
tions, as the children grow through adolescence to adult 
life.
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Table 3   The mean log2-fold change of blood plasma and serum 
metabolites (PA over control) levels (Fig. S1, Fig. S2)

Metabolites’ fold changes are presented using the calculated metabo-
lite peak area in NMR spectra of PA and control group (Δp-PA/con-
trol)
↑Increased in children with PA
↓Decreased in children with PA

Biofluid Metabolite Mean log2-fold change 
(PA/control)

In PA 
chil-
dren

Plasma Alanine 0.019 ↑
Glucose 0.011 ↑
Glycerol 0.382 ↑
Lactic acid − 0.071 ↓
Leucine 0.049 ↑
GlcNAc − 0.435 ↓

Serum Glucose 0.021 ↑
Glycerol 0.084 ↑
Glycine − 0.002 ↓
Myo-inositol 0.008 ↑
Serine 0.027 ↑

Fig. 3   3D PLS scores plot of 40 PA urine metabolic profiles. 1H 1D 
NOESY NMR spectra distributed according to the BA (years) of 
the corresponding child. Urine metabolome of children with PA and 
BA < 1.5 years are presented in blue, while urine metabolome of chil-
dren with PA and BA ≥ 1.5 years are in red

Table 4   The mean log2-fold change of blood plasma and serum glu-
cose and myo-inositol levels (Fig. S3)

Metabolites’ fold changes are presented using the calculated metab-
olite peak area in NMR spectra of BMI SDS > 1.5 (low) and BMI 
SDS ≤ 1.5 (high) (Δp-high/low)

Βiofluid Μetabolite Mean log2-fold 
change (high/low)

BMI 
SDS > 1.5

Plasma PA Glucose 0.167 ↑
Myo-inositol 0.148 ↑

Plasma control Glucose − 0.029 ↑
Myo-inositol − 0.775 ↑

Serum PA Glucose 0.012 ↑
Myo-inositol 0.166 ↑

Serum control Glucose 0.081 ↑
Myo-inositol 0.196 ↑
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