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Abstract
Introduction Obesity is a precursor of type 2 diabetes (T2D).
Objectives Our aim was to identify metabolic signatures of T2D and dietary factors unique to obesity.
Methods We examined a subsample of the Boston Puerto Rican Health Study (BPRHS) population with a high prevalence 
of obesity and T2D at baseline (n = 806) and participants (without T2D at baseline) at 5-year follow-up (n = 412). We 
determined differences in metabolite profiles between T2D and non-T2D participants of the whole sample and according 
to abdominal obesity status. Enrichment analysis was performed to identify metabolic pathways that were over-represented 
by metabolites that differed between T2D and non-T2D participants. T2D-associated metabolites unique to obesity were 
examined for correlation with dietary food groups to understand metabolic links between dietary intake and T2D risk. False 
Discovery Rate method was used to correct for multiple testing.
Results Of 526 targeted metabolites, 179 differed between T2D and non-T2D in the whole sample, 64 in non-obese par-
ticipants and 120 unique to participants with abdominal obesity. Twenty-four of 120 metabolites were replicated and were 
associated with T2D incidence at 5-year follow-up. Enrichment analysis pointed to three metabolic pathways that were over-
represented in obesity-associated T2D: phosphatidylethanolamine (PE), long-chain fatty acids, and glutamate metabolism. 
Elevated intakes of three food groups, energy-dense takeout food, dairy intake and sugar-sweetened beverages, associated 
with 13 metabolites represented by the three pathways.
Conclusion Metabolic signatures of lipid and glutamate metabolism link obesity to T2D, in parallel with increased intake of 
dairy and sugar-sweetened beverages, thereby providing insight into the relationship between dietary habits and T2D risk.
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PE  Phosphatidylethanolamine
SSB  Sugar-sweetened beverages
T2D  Type 2 diabetes
TG  Triglyceride

1 Introduction

Obesity, the most common metabolic disease globally and 
in the US, is a precursor of type 2 diabetes (T2D) (Abdul-
lah et al., 2011; Kodama et al., 2014). Individuals with 
obesity, particularly those with central adiposity, have an 
increased risk of developing T2D, compared to those with 
normal weight (Serrano Rios, 1998; Smith, 2015). Obesity is 
both a consequence and driver of metabolic imbalances and 
dysfunctional metabolic processes. However, the metabolic 
processes that underlie the pathogenesis of T2D are unclear. 
Additionally, how dietary intake contributes to and acceler-
ates such process remains to be determined.

It has been established rather unequivocally that there are 
strong links between lifestyle factors and risk and incidence 
of type 2 diabetes (Magkos et al., 2020), particularly dietary 
intakes (Toi et al., 2020). Important dietary factors that have 
been linked to T2D risk include fat (Rice Bradley, 2018), 
carbohydrate (Sainsbury et al., 2018), proteins (Zhao et al., 
2019), alcohol use (Han, 2020; Hirst et al., 2017). Given 
the habitual nature of dietary factors, their influence on 
metabolic function can be profound. For example, increased 
intake of sugar-sweetened beverage has been linked to ele-
vated occurrence of T2D (Malik et al., 2010). Similarly, low-
fat dairy intake is associated with reduced risk of T2D (Mitri 
et al., 2019). However, the metabolic links between dietary 
intake and T2D risk remain to be explored.

We hypothesized that the metabolic disruptions leading 
to the development of T2D may be different among obese 
individuals compared to non-obese individuals and this 
may be reflected by plasma metabolite measures. Extensive 
data on blood metabolites, clinical parameters, and dietary 
intakes support further investigations to characterize the bio-
processes involved in obesity-driven T2D in comparison to 
T2D in a set of non-obese individuals (Roden & Shulman, 
2019). Hispanic populations in the USA have experienced 
severe health disparity (Tucker et al., 2010). Characteriza-
tion of the metabolic mechanisms underlying such health 
disparity in metabolic diseases, like obesity and T2D, is still 
lacking. The Boston Puerto Rican Health Study (BPRHS) is 
well-positioned to support analyses examining the relation-
ships between adiposity and T2D among Hispanics with a 
high prevalence of obesity and T2D (Tucker et al., 2010). 
Assessment of incident T2D at the 5-year follow-up of the 
BPRHS provides the opportunity to test longitudinal asso-
ciations with T2D. Although adiposity, as measured by waist 
circumference, and occurrence of T2D are highly correlated, 

not all obese individuals develop T2D and not all individuals 
with T2D were obese before diagnosis (Boden, 1998). Thus, 
the BPRHS cohort offers a special opportunity to uncover 
the bioprocesses involved in these two distinct paths to T2D 
development.

2  Methods

2.1  Study population

BPRHS is a longitudinal cohort study designed to investi-
gate the relationship between stress, nutrition, and health 
outcomes, like metabolic diseases, in Puerto Ricans liv-
ing in the Greater Boston area (Tucker et al., 2010). Vis-
its were conducted from 2004 to 2015 at three time points: 
baseline, 2-years, and 5-years. Detailed recruitment and 
data collection methods were described previously (Noel 
et al., 2009; Tucker et al., 2010). Of the 1,504 self-identified 
Puerto Rican adults, aged 45 to 75 years, 1311 had com-
plete dietary, clinical, and biochemistry measures. Plasma 
samples from 817 participants were sent to Metabolon Inc. 
(Morrisville, NC, USA) for metabolomics analysis. Among 
these participants, 415 did were not diagnosed with T2D at 
baseline and completed 5-year follow-up visit, of which 66 
developed T2D during the follow-up period.

2.1.1  Obesity and type 2 diabetes assessment

In this study, as waist circumference is a stronger indica-
tor than BMI for T2D risk (see section 3), obese partici-
pants (group) were defined as those with waist ≥ 102 cm in 
men, ≥ 88 cm in women, whereas non-obese participants 
(group) were those with waist < 102 cm in men, < 88 cm 
in women. Type 2 diabetes: T2D is defined as either 
FPG ≥ 126 mg/dL, or use of hypoglycemic agents (self-
reported). Clinical examinations for obesity and T2D were 
conducted both at baseline and 5-year follow-up.

2.1.2  Physical activity and education score

Physical activity was measured using a modified version 
of the Harvard Alumni survey Paffenbarger questionnaire 
(Paffenbarger et al., 1993). A physical activity score was 
calculated according to the weighted sum of hours spent on 
various activities during a 24-h period (Paffenbarger et al., 
1993). Education score was calculated based on education 
level: no schooling or less than 5th grade,  5th–8th grade, 
 9th–12th grade, college degree, and some graduate school 
(Tucker et al., 2010).



Metabolite patterns link diet, obesity, and type 2 diabetes in a Hispanic population  

1 3

Page 3 of 12 88

2.1.3  Dietary assessment

A food frequency questionnaire (FFQ) adapted and vali-
dated for use in this population of Hispanic adults was used 
to assess usual dietary intake (Tucker et al., 1998). Based 
on similarity of key nutrient content, 126 types of foods 
were categorized into 34 food groups (Noel et al., 2009). 
For example, pizza (servings) included all types of pizza/
Mexican/Other take-out food (eggroll, dumpling, turnover, 
empanadas, tamale, enchiladas, quesadilla, burrito, taco 
with beef and cheese), Soups (broth or bouillon in servings) 
included covered bean (pea, lentil) soup, homemade soup, 
ramen noodle, chicken noodle, vegetable beef or chicken 
soup. Soft drinks (SoftDrinks in servings) comprised of 
regular and diet soft drinks, fruit drinks, sweetened energy 
drinks and tea intake were assessed together as sweetened 
beverages. These include (1) regular cola and caffeine free 
cola; (2) carbonated drinks with added sugar; (3) juice or 
flavored drink, fruit-flavored nectar (peach, pear, mango, 
lemonade) and fruit punch, but excluding 100% fruit juice; 
(3) other flavored drinks with vitamins and added sugar; (4) 
purchased pre-sweetened ready-to-drink tea; (5) diet cola 
drinks and diet non-cola drinks. Total soft drink intake was 
calculated and converted to servings per day.

2.2  Metabolomic profiling

Plasma samples were collected and stored at − 80 °C at 
baseline from all recruited participants of BPRHS. Metabo-
lomic analysis was conducted once on 806 plasma samples 
collected at baseline by Metabolon Inc. (Evans et al., 2009). 
Briefly, metabolomic analyses were performed using ultra-
high- performance liquid chromatography-tandem mass 
spectroscopy after proteins were extracted from the plasma. 
Metabolites were detected and qualified by measuring the 
area under the curve of the peaks with reference to a library 
of over 4500 purified standards for retention time/index, 
mass-to-charge ratio, and chromatographic data. The meas-
ures of each metabolite were normalized across all samples 
and validated by the Metabolon Inc. (Wulff & Mitchell, 
2018). In total, there were 526 targeted metabolites available 
and included in this study. Among these, 432 metabolites 
were designated to 54 metabolic pathways that included at 
least three metabolites in each pathway (Zhou et al., 2020).

2.3  Statistical analysis

All statistical analyses were conducted using SAS 9.4 
(SAS Inc.), R, or SVS 8.7 (GoldenHelix Inc). Missing data 
was omitted for all statistical analyses.

2.3.1  Associations between obesity, metabolites, dietary 
intake, and T2D

To determine the association between obesity and T2D, a 
logistic regression was used with T2D as the dependent 
variable and waist or BMI as predictors, controlling for sex, 
age, education, smoking, alcohol use, and physical activity. 
This was modeled as T2D = waist or BMI + covariates using 
Proc Logistic with a link function in SAS 9.4. To identify 
metabolites that are associated with T2D, a similar regres-
sion model was used with T2D as the dependent variable and 
the plasma concentration of each metabolite as an independ-
ent variable, controlling for sex, age, physical activity, edu-
cation, smoking, alcohol use, and total energy intake. This 
was modeled as T2D = metabolite + covariates. The same 
model and analyses were applied to the baseline and 5-year 
follow-up. A False Discovery Rate using the Q-value method 
(Storey, 2002) was used to correct for multiple testing. To 
identify food groups that are associated with identified key 
metabolites, a linear regression model: metabolite = food 
group + covariates, was used with metabolites as depend-
ent variables and food group servings as a predictor while 
controlling for age, sex, alcohol use, smoking, education, 
physical activity, and total energy intake.

2.3.2  Confirmation of associations between plasma 
metabolites and T2D incidence at 5‑year follow‑up

After identifying metabolites that were unique to obesity 
were associated with T2D at baseline, we further confirmed 
if the identified 120 metabolites were enriched among the 
metabolites that were associated with T2D incidence dur-
ing the 5-year follow-up. With a linear regression model, 
the identified 120 metabolites were tested for their associa-
tions with T2D incidence at 5-year follow-up among those 
non-T2D participants (n = 412) at baseline. Then enrichment 
analysis was conducted based on identified significant asso-
ciation to identify over-representative pathway.

2.3.3  Metabolic pathway enrichment analysis

To determine if metabolites that are associated with T2D 
were enriched for any given metabolic pathway, enrich-
ment analysis was conducted (Mangano et al., 2021; Zhou 
et al., 2020). All targeted metabolites were organized into 
metabolic pathways based on the annotation database of 
Metabolon Inc., and only pathways that contained three or 
more metabolites were included in this analysis. For each 
pathway, a Z score was calculated as [r – n (R/N)] /√{n 
(R/N)[1-(R/N)][1-(n-1)/(N-1)]}, where N is the total number 
of metabolites assigned into this metabolic pathway, n is the 
total number of metabolites measured in a specific pathway, 
R is the total number of metabolites that were significantly 



 L. D. Parnell et al.

1 3

88 Page 4 of 12

identified in the metabolic signature analysis as described 
above, r is the number of R metabolites that was identified 
as significant in a specific pathway. P values were derived 
from Z scores assuming a normal distribution and were two-
sided. False Discovery Rate based on the Benjamini and 
Hochberg method (Benjamini, 1995) was used to correct 
for multiple testing.

2.3.4  Compound classification and enrichment

With identified statistically significantly different com-
pounds, each unique to either the obese group (n = 120) or 
non-obese group (n = 12), we sought to conduct enrichment 
analyses as these inform which biological functions are 
involved in T2D under different obesity conditions. These 
analyses were performed in two different ways—functional 
categorization (e.g., pathway and bioprocess enrichment) 
and compound classification. This latter approach assesses 
enrichment of ontology or classification terms and is useful 
when identified metabolites are not assigned to pathways. 
The two- and three-tier hierarchical systems (Sumner et al., 
2007) for classifying metabolites from Metabolon and Lipid-
Maps, respectively were used.

In addition, these two sets of compounds were analyzed 
with the Reactome and Mbrole 2.0 tools (Fabregat et al., 
2018; Lopez-Ibanez et al., 2016). These algorithms iden-
tify biochemical physiological pathways, bioprocesses and 
chemical classifications. This analysis, performed under the 
default parameters, yielded P-values of significant enrich-
ment that were corrected by FDR (Benjamini, 1995) within 
each tool itself.

3  Results

3.1  BPRHS study population

The obese and non-obese groups were defined based on 
waist circumference (cm) for its strong association with risk 
of T2D (Smith, 2015). Among 315 participants with T2D, 
79% (n = 249) showed central obesity, and 92% (n = 290) 
were obese or overweight (BMI ≥ 25). We examined the 
differences in general characteristics according to obese 
and non-obese groups (Table 1). Participants in the obese 
group were mainly women and had a significantly higher 
BMI and waist circumference, but no differences in age 
were observed. For lifestyle and behaviors, the obese group 
tended to drink less alcohol and smoke less, but showed no 
differences in physical activity and total energy intake were 
observed.

3.2  Association between obesity and type 2 
diabetes

To confirm the correlation between obesity and T2D, we 
first examined the association between obesity and T2D at 
bassline (n = 806). Both waist circumference (OR = 1.032, 
95% CI 1.021–1.043, beta ± SE = 0.031 ± 0.006  cm, 
P = 1.20E-08) and BMI (OR = 1.031, 95% CI: 1.021–1.051, 
beta ± SE = 0.061 ± 0.012  kg/m2, P = 7.62E-06) were 
strongly associated with T2D prevalence at baseline when 
adjusting for sex, age, smoking, alcohol use, education 
and physical activity. To examine whether either BMI or 
waist were independently associated with T2D, we then 

Table 1  General characteristics 
of participants with metabolome 
profile in BPRHS at the baseline

*Significant difference at T-test between the obese and non-obese group
a The number of participants with type 2 diabetes at the baseline

Total (n = 806) Non-obese (n = 221) Obese (n = 585)

Age (SD) 57.2 (7.4) 56.3 (7.1) 57.5 (7.5)
Women (n, %) 571 (70.8%) 99 (44.8%) 472 (80.7%)*
BMI (SD) 32.1 (6.7) 25.9 (3.1) 34.5 (6.1)*
Waist (cm) (SD) 102.2 (14.8) 87.7 (8.6) 107.6 (12.9)*
Type 2 diabetes (n, %)a 315 (39.1%) 66 (29.9%) 249 (42.6%)*
Hypertension (n, %) 562 (69.7%) 132 (59.7%) 430 (73.5%)*
Smoking (n, %) Non-smoker 376 (46.3%) 90 (40.7%) 283 (48.5%)

Past-smoker 188 (23.2%) 57 (25.8%) 190 (32.5%)
Current smoker 248 (30.5%) 75 (33.9%) 111 (19.0%)*

Alcohol use (n, %) Non-drinker 229 (28.2%) 44 (19.9%) 182 (31.1%)
Past-drinker 336 (41.4%) 71 (32.1%) 175 (30.0%)
Current-drinker 246 (30.3%) 105 (47.5%) 228 (39.0%)*

Education 5.2 (2.8) 5.5 (2.8) 5.1 (2.8)
Physical activity score (SD) 31.4 (4.6) 32.6 (5.6) 31.1 (4.2)
Total energy intake (kcal, SD) 2167 (966) 2180 (859) 2162.4 (1003.9)
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controlled for BMI in the model, and found that waist cir-
cumference remained significantly associated with T2D (OR 
1.031, 95% CI 1.012–1.051, beta ± SE = 0.031 ± 0.010 cm, 
P = 0.0015). On the other hand, when we controlled for 
waist circumference, BMI was no longer significantly 
associated with T2D (OR 1.003, 95% CI 0.961–1.047, 
beta  ± SE = 0.003 ± 0.022 kg/m2, P = 0.893).

Secondly, we also examined the association between 
obesity and T2D incidence at the 5-year follow-up. Among 
806 participants, 412 were free of T2D at baseline. The 
general characteristics between the obese and non-obese 
groups at the baseline are shown in Table S1. Among them, 
15.5% (n = 64) developed T2D at the 5-year follow-up, 
with 9.0% in the non-obese group and 19.2% in the obese 
group. Again, we found that waist circumference was highly 
associated with T2D incidence at 5-year follow-up, even 
after controlling for BMI (OR 1.053, 95% CI 1.031–1.075, 
beta  ± SE= 0.052 ± 0.017, P = 1.58E-06, and OR 1.06, 
95% CI 1.06–1.022, beta  ± SE = 0.059 ± 0.019, P = 0.002). 
However, BMI was not associated with T2D incidence after 
controlling for waist circumference (OR 1.089, 95% CI 
1.089–1.042, beta  ± SE = 0.085 ± 0.022, P = 0.0001, and OR 
0.982, 95% CI 0.908–1.062, beta  ± SE = − 0.018 ± 0.040, 
P = 0.649). These observations suggest waist is a stronger 
predictor of T2D risk than BMI in this study population. 
Hence, we used waist circumference to define obesity for 
investigation of metabolomics links between obesity and 
metabolomics profiles.

3.3  Plasma metabolites associating with type 2 
diabetes

To identify metabolites that differ between T2D and non-
T2D, we first examined the association between T2D and 
individual metabolites in all participants (n = 806) while 
adjusting for sex, age, education, physical activity, smok-
ing, alcohol use, and total energy intake. There were 179 
metabolites (Table S2) that were significantly associated 
with T2D prevalence after correcting for multiple testing 
based on FDR. Enrichment analysis based on Metabolon 
database identified six metabolic pathways that were over-
represented by the metabolites differing between T2D and 
non-T2D participants (Table S2). These include sphingomy-
elins (P = 4.69E-05), long chain fatty acids (P = 6.40E-03), 
phosphatidylinositol (P = 9.88E-03), glutamate metabolism 
(P = 0.0109), phosphatidylethanolamine (P = 0.019), and 
fatty acid metabolism (acyl choline) (P = 0.025).

Participants with a normal weight (non-obesity) can 
still develop T2D. Thus we identified the metabolites that 
showed significant differences between T2D and non-T2D 
status in participants (n = 221) with normal weight (non-obe-
sity). We found 64 metabolites that are associated with T2D 

(Table S2). Six metabolic pathways were overrepresented by 
these metabolites, including sphingomyelin (P = 2.66E-06) 
common to those found in all participants (Table S2).

To identify metabolites that link obesity to T2D risk, 
we then examined the association between metabolites and 
T2D in participants (n = 585) who met the obesity criteria 
by waist (see section 2). After correction for multiple testing 
based on FDR and excluding those metabolites that were 
associated with T2D in participants without obesity, we 
found 120 metabolites that are significantly associated with 
T2D (Table S2). From enrichment analysis, six pathways 
were overrepresented by those metabolites. Among them, 
three pathways, long chain fatty acids (P = 7.48E-04), phos-
phatidylethanolamine (PE) (P = 7.96E-04), and fatty acid 
metabolism (acyl choline) (P = 2.39E-03) were shared with 
those found in all participants (Table 2).

3.4  Enrichment analysis—chemical classification

With these sets of statistically significantly different com-
pounds, each unique to either the obese group (n = 120) or 
non-obese group (n = 12), we conducted in-depth enrich-
ment analyses as these inform which biological functions 
are involved in T2D under different obesity conditions. 
These analyses were done in two different ways—func-
tional categorization (eg., pathway and bioprocess enrich-
ment) and chemical compound classification. This latter 
approach assesses enrichment of ontology or classifica-
tion terms and is useful when identified metabolites are 
not assigned to pathways. The two- and three-tier hierar-
chical systems for classifying metabolites from Metabolon 
and LipidMaps, respectively were used, in addition to the 
classification system of Mbrole (Table S3). This latter tool 
identified 17 different fatty acids and conjugates within the 
obesity-T2D data, a significant enrichment for this molec-
ular class (P = 1.09E-14). Members of this group include 
heptadecanoic acid, eicosadienoic acid, oleic acid, and 
docosapentaenoic acid (22n-3). We also noted a parallel if 
somewhat less robust enrichment in unsaturated fatty acids 
(P = 2.14E-07). Using LipidMaps classifications allowed us 
to identify a slight enrichment in acyl carnitines (P = 1.12E-
04), whose members are octanoylcarnitine, tiglylcarnitine, 
2-methylbutyrylcarnitine, and linoleoylcarnitine, which can 
serve as fuel for skeletal and cardiac muscle. Of note, the 
nonobese-T2D blood metabolite data had a slightly signifi-
cant enrichment in phosphatidylinositols (P = 0.012) and a 
slight depletion in lipids (P = 0.022) (See Table S3).

3.5  Enrichment analysis—pathways 
and bioprocesses

Differences in metabolite levels between T2D and non-
T2D within and unique to the obese group indicated that 
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several pathways were enriched, including biosynthesis 
of unsaturated fatty acids (P = 3.96E-07), carnitine syn-
thesis (P = 1.22E-02), phospholipid/phosphatidylcholine 
to linoleate conversion (P = 1.35E-02), glutamate biosyn-
thesis (P = 1.22E-02), and phosphatidylcholine biosynthe-
sis (P = 3.92E-02). Similarly, for the metabolites unique 
to the non-obese group, different pathways were noted as 
enriched, but these were small in number, likely owing 
to the reduced number of significantly different metabo-
lites in this analysis group. We note slight enrichments 
in glyoxylate/dicarboxylate metabolism and nicotinate/
nicotinamide metabolism, driven by tartarate and maleate, 
respectively (both with P = 0.049).

The malate-aspartate shuttle produces glutamate upon 
glucose stimulation, which supports the stimulatory effect 
of incretins and glutamate uptake into insulin granules, 
thereby promoting insulin secretion (Gheni et al., 2014).

We confirmed the associations between plasma metabo-
lites and T2D incidence at 5-year follow-up.

As we showed obesity was strongly associated with 
T2D not only at the baseline, but also T2D incidence at 
5-year follow-up, we tested whether the 120 metabolites 
that were associated with T2D in obese participants at 
base line were associated with future T2D incidence (i.e., 
5-year follow-up). We conducted the test only in those 
participants free of T2D at baseline (n = 412). Among the 
120 metabolites, 24 were associated with T2D incidence 
at 5-year follow-up (Table S4). Based on the enrichment 
analysis, three metabolic pathways were enriched: phos-
phatidylethanolamine (P = 2.24E-17), long chain fatty acid 
(P = 4.34E-12), and glutamate metabolism (P = 3.02E-02) 
(Table 3). Both phosphatidylethanolamine and long chain 
fatty acid were overrepresented among all participants 
and participants with obesity only. Strikingly, all these 13 
metabolites in three pathways were positively correlated 

Table 2  Metabolic pathways overrepresented by metabolites that are associated with type 2 diabetes

Super pathway Sub pathway No. of metabolites 
assigned to the 
pathway

No. of significant 
metabolites in each 
pathway

Z score P-value FDR

All participants Lipid Sphingomyelins 18 15 4.229 2.35E-05 4.69E-05
(n = 806) Lipid Long chain fatty acid 12 9 2.820 4.80E-03 6.40E-03

Lipid Phosphatidylinositol 
(PI)

4 4 2.656 7.90E-03 9.88E-03

Amino acid Glutamate metabolism 9 7 2.609 9.09E-03 1.09E-02
Lipid Phosphatidylethanola-

mine (PE)
6 5 2.407 1.61E-02 1.88E-02

Lipid Fatty acid metabolism 
(acyl choline)

3 3 2.298 2.16E-02 2.47E-02

Non-obesity Lipid Sphingomyelins 18 9 4.84 1.30E-06 2.60E-06
(n = 221) Carbohydrate Fructose, mannose and 

galactose metabo-
lism

4 3 3.75 1.77E-04 2.66E-04

Lipid Dihydrosphingomy-
elins

3 2 2.81 4.97E-03 6.62E-03

Lipid Plasmalogen 10 4 2.61 8.94E-03 1.12E-02
Amino acid Leucine, isoleucine 

and valine metabo-
lism

20 6 2.37 1.78E-02 2.14E-02

Lipid Phosphatidylinositol 
(PI)

4 2 2.24 2.48E-02 2.90E-02

Obesity only Lipid Long chain fatty acid 12 8 3.56 3.74E-04 7.48E-04
(n = 585) Lipid Phosphatidylethanola-

mine (PE)
6 5 3.46 5.31E-04 7.96E-04

Lipid Fatty acid Metabolism 
(acyl choline)

3 3 3.12 1.79E-03 2.39E-03

Cofactors and vitamins Tocopherol metabo-
lism

4 3 2.43 1.52E-02 1.90E-02

Lipid Polyunsaturated fatty 
acid (n3 and n6)

12 6 2.18 2.92E-02 3.51E-02
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with T2D at the baseline and T2D incidence at the 5-year 
follow-up (Table 4). This observation suggests that three 
over-representative pathways are “molecular mechanisms” 
linking obesity to T2D risk.

3.6  Food groups associated with T2D‑associated 
metabolites unique to obesity

Given that 13 metabolites identified as T2D-biomarkers 
and unique to obesity were assigned to three metabolic 
pathways, we then investigated what types of food were 
associated with these metabolites. Using linear regression 
models, we identified the top food group associated with 
each metabolite while adjusted for age, sex, alcohol use, 
smoking, education, physical activity, and total energy 
intake (Table 5). Two metabolites (glutamate and gamma-
carboxyglutamate) in glutamate metabolism and three of 
five metabolites (1-palmitoyl-2-oleoyl-GPE, 1-palmitoyl-
2-linoleoyl-GPE, and 1-stearoyl-2-linoleoyl-GPE) in phos-
phatidylethanolamine (PE) were highly associated with soft 
drink intake (servings). Three of six metabolites (margarate, 
10-heptadecenoate, and 10-nonadecenoate) in the long chain 

fatty acid pathway were positively associated with energy-
dense takeout food, like pizza (servings). Interestingly, in the 
same pathway, two metabolites (palmitate and stearate) were 
correlated with candy/sugar intake (servings).

4  Discussion

This study confirms the strong association between abdom-
inal obesity and increased risk of T2D at baseline and 
incidence of T2D at 5-year follow-up among this unique 
population of Puerto Ricans living in the US. We identified 
a set of T2D-associated metabolites unique to obese indi-
viduals in this population. Enrichment analysis identified 
key metabolic pathways that were highly overrepresented 
by such metabolites. Similar enrichment was confirmed 
among metabolites that differed between T2D incidence 
and non-T2D at the 5-year follow-up. Furthermore, among 
24 metabolites that were confirmed in the 5-year T2D inci-
dence, we identified 13 metabolites that were correlated with 
sugar-sweetened beverage (SSB, energy-dense takeout food 

Table 3  Metabolic pathways overrepresented by the metabolites unique to obesity and T2D, that are associated with type 2 diabetes incidence at 
the 5-year follow-up

Super pathway Sub pathway No. of metabolites 
assigned to the pathway

No. of significant metab-
olites in each pathway

Z score P-value FDR

Lipid Phosphatidylethanolamine (PE) 6 5 8.561 1.12E-17 2.24E-17
Lipid Long chain fatty acid 12 6 6.983 2.89E-12 4.34E-12
Amino acid Glutamate metabolism 9 2 2.279 2.27E-02 3.02E-02

Table 4  Thirteen metabolites unique to type 2 diabetes and abdominal obesity associated with type 2 incidence at 5-year follow-up

Chemical ID Biochemical Sub pathway T2D in participants 
with obesity

T2D incidence at 5-year 
follow-up

Beta SE P-value Beta SE P-Value

561 Glutamate Glutamate metabolism 2.191 0.674 8.54E-04 2.705 0.933 3.96E-03
100002679 Gamma-carboxyglutamate Glutamate metabolism 0.564 0.232 1.07E-02 1.137 0.44 7.96E-03
519 Myristate (14:0) Long chain fatty acid 0.602 0.212 4.08E-03 1.036 0.37 5.47E-03
424 Palmitate (16:0) Long chain fatty acid 1.432 0.335 1.07E-05 1.717 0.561 2.04E-03
891 Margarate (17:0) Long chain fatty acid 1.435 0.293 2.09E-07 1.386 0.487 4.54E-03
100001278 10-heptadecenoate (17:1n7) Long chain fatty acid 0.586 0.162 2.24E-04 0.625 0.283 2.94E-02
439 Stearate (18:0) Long chain fatty acid 2.321 0.524 4.08E-06 2.437 0.818 2.89E-03
100001277 10-nonadecenoate (19:1n9) Long chain fatty acid 0.813 0.184 3.35E-06 0.709 0.304 2.05E-02
1526 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Phosphatidylethanolamine (PE) 0.356 0.078 8.90E-07 0.285 0.099 5.52E-03
100001870 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) Phosphatidylethanolamine (PE) 0.257 0.081 1.07E-03 0.365 0.135 8.10E-03
100008990 1-palmitoyl-2-arachidonoyl-GPE 

(16:0/20:4)
Phosphatidylethanolamine (PE) 0.642 0.121 1.64E-08 0.507 0.172 3.89E-03

100008976 1-stearoyl-2-linoleoyl-GPE (18:0/18:2) Phosphatidylethanolamine (PE) 0.253 0.091 4.42E-03 0.347 0.144 1.78E-02
100008977 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4) Phosphatidylethanolamine (PE) 0.653 0.134 3.90E-07 0.529 0.207 1.15E-02
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(like pizza), and sugar intake, two of which are known risk 
dietary factors for T2D. These observations suggest that 
energy-dense takeout food and SSB consumption are associ-
ated with three metabolic pathways that appear to contribute 
to T2D development among obese individuals.

There is overwhelming evidence that obesity is a causal 
factor of T2D (Kodama et al., 2014). Consistent with non-
Hispanic populations (CDC, 2012), over 90% of participants 
with T2D in this population are overweight or obese. In this 
study, our results showed that abdominal obesity (defined 
by waist circumference) is a stronger indicator of T2D risk 
than BMI, suggesting that fat deposition is the key risk fac-
tor for T2D in obesity (Smith, 2015). However, not all obese 
participants developed T2D. Over the 5-year follow-up, 19% 
of obese participants developed T2D, whereas only 7.1% 
of participants with normal weight did. This gives rise to 
the notion that there are distinct mechanisms underlying the 
development of obese-associated T2D and T2D occurring 
in the non-obese.

A substantial number of observational and intervention 
studies identified metabolic markers that differ between T2D 
and non-T2D conditions (Ahola-Olli et al., 2019; Guasch-
Ferre et al., 2016). Most metabolomics biomarkers were 
described in the populations of European and Asian ances-
tries. Our findings shared some common metabolites and 
pathways with other populations, such as branched chain 
amino acids (BCAA), phospholipids, triacylglycerols, 

ketone bodies, sphingomyelins, acyl-carnitines and organic 
acids (Fall et al., 2016; Liu et al., 2017; Mahendran et al., 
2013; Tillin et al., 2015; Wurtz et al., 2013).

We also noted metabolites and pathways unique to this 
Hispanic population, including unsaturated fatty acids and 
hydroxyl fatty acids. The category of unsaturated fatty acids 
[FA0103 in LipidMaps] has 1.16-fold enrichment in all 
(n = 172) abdominal obesity-associated metabolites but is 
not significant (P = 0.27). However, in the subset of metabo-
lites unique to abdominal obesity (n = 120), the fold enrich-
ment is 1.47 and reaches significance (P = 0.017). In T2D, 
unsaturated fatty acids are elevated, impairing ABCA1 efflux 
of cholesterol via phospholipase D2 stimulation (Wang & 
Oram, 2005).

The hydroxy fatty acids category [FA0105 in LipidMaps] 
shows significant enrichment in both obese and normal 
weight participants. This significance is lost when examin-
ing the set of metabolites unique to obese-waist, indicating 
that the connections between hydroxy fatty acids and dia-
betes are independent of obesity/adiposity. 3-hydroxyhex-
anoic acid is found in serum and urine of diabetics with 
ketoacidosis (Niwa et al., 1985). HACR3 is a receptor for 
the beta-oxidation intermediate 3-OH-octanoic acid, which 
has antilipolytic activity on human adipocytes. HACR3 is 
coupled to  Gi-type G-proteins and is activated by 2- and 
3-OH-octanoic acid with EC50 values of about 4 and 8 
microM, respectively. Interestingly, 3-OH-octanoic acid 

Table 5  Thirteen metabolites unique to T2D and abdominal obesity associated with dietary food groups

*All beta and P values were calculated based on a linear regression model adjusted for age, sex, alcohol use, smoking, education, physical activ-
ity, and total energy intake. SSB sugar sweeten beverages
a Metabolite concentrations were natural log-transformed
b Food groups were defined in the methods; CompID is the compound identifier (Metabolon)

CompID Chemical ID Biochemicala Sub pathway Food  groupb Beta SE P-value*

57 561 Glutamate Glutamate metabolism servings_SSB 0.054 0.013 3.55E-05
38754 100002679 Gamma-carboxyglutamate Glutamate metabolism servings_SSB 0.028 0.011 8.00E-03
1365 519 Myristate (14:0) Long chain fatty acid servings_Starchy vegetable − 0.092 0.044 3.76E-02
1336 424 Palmitate (16:0) Long chain fatty acid servings_candy/sugar − 0.015 0.007 2.60E-02
1121 891 Margarate (17:0) Long chain fatty acid servings_Pizza 0.129 0.065 4.73E-02
33971 100001278 10-heptadecenoate (17:1n7) Long chain fatty acid servings_Pizza 0.186 0.090 3.80E-02
1358 439 stearate (18:0) Long Chain Fatty Acid servings_candy/sugar − 0.010 0.004 1.61E-02
33972 100001277 10-nonadecenoate (19:1n9) Long Chain Fatty Acid servings_Pizza 0.205 0.092 2.61E-02
19263 1526 1-palmitoyl-2-oleoyl-GPE 

(16:0/18:1)
Phosphatidylethanolamine 

(PE)
servings_SSB 0.058 0.020 3.87E-03

42449 100001870 1-palmitoyl-2-linoleoyl-GPE 
(16:0/18:2)

Phosphatidylethanolamine 
(PE)

servings_SSB 0.055 0.019 3.28E-03

52464 100008990 1-palmitoyl-2-arachidonoyl-
GPE (16:0/20:4)

Phosphatidylethanolamine 
(PE)

servings_Soup 0.151 0.059 1.03E-02

52,446 100008976 1-stearoyl-2-linoleoyl-GPE 
(18:0/18:2)

Phosphatidylethanolamine 
(PE)

servings_SSB 0.050 0.017 3.36E-03

52447 100008977 1-stearoyl-2-arachidonoyl-
GPE (18:0/20:4)

Phosphatidylethanolamine 
(PE)

servings_Fish 0.126 0.061 3.96E-02
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plasma concentrations reach micromolar concentrations 
under conditions of increased beta-oxidation rates, like in 
diabetic ketoacidosis or under a ketogenic diet. These data 
suggest that the ligand receptor pair 3-OH-octanoic acid/
HACR3 mediates in humans a negative feedback regulation 
of adipocyte lipolysis to counteract prolipolytic influences 
under conditions of physiological or pathological increases 
in beta-oxidation rates (Ahmed et al., 2009). 3-OH-isobu-
tyrate is a valine byproduct, and with FGF21 might be 
involved in protein-mediated insulin resistance in humans 
(Harris et al., 2017). Total beta-hydroxy fatty acid (BHFA) 
content increases progressively with age in diabetic hearts in 
mice. Oxidative phosphorylation studies using isolated mito-
chondria from diabetic mice demonstrated depressed state 3 
oxidation rates with both palmityl carnitine and pyruvate as 
substrates. There was a significant decrease in mitochondrial 
total NAD + NADH content in diabetic hearts. The data indi-
cate that deficiencies in total NAD + and NADH content can 
account for the depressed state 3 oxidation of palmitylcarni-
tine and pyruvate in diabetic mice that in turn may explain 
the abnormal accumulation of BFHA (Kuo et al., 1983). 
Carnitine synthesis is one pathway noted in our analyses as 
significantly enriched in the obese-T2D group.

Low sphingomyelin could arise from higher aSMase 
(SMPD1) activity, and high levels of aSMase have been cor-
related with insulin resistance and diabetes (Deevska et al., 
2009). Downregulation of SMS2 (SGMS2) activity results 
in protective effects against obesity, atherosclerosis and dia-
betes and makes SMS2 inhibitors potential medicines (Chen 
& Cao, 2017). Lower serum sphingomyelins associated with 
MetS, lower HDL and lower TG, but not with glucose in two 
cohorts. No relationship to blood pressure and waist circum-
ference were reported (Mahajan et al., 2020). Interestingly, 
we note a slightly significant enrichment for the endothelial 
nitric oxide synthase (NOS3) pathway (P = 0.026) in the 
obesity-T2D data, which may relate to impaired peripheral 
vascular integrity.

Obesity increases the risk of T2D, and this increased 
risk may be attributed to adipose dysfunction, leading to 
the release of cytokines that inhibit insulin signaling and 
subsequent release of NEFA and glycerol (Smith, 2015). 
This study identified three pathways: phosphatidylethanola-
mine (PE), long-chain fatty acids, and glutamate metabo-
lism, which were represented by 13 metabolites (Table 4), 
and supplemental analysis by other metabolomics tools also 
highlighted phosphatidylcholine biosynthesis. In particular, 
we identified four phosphatidylethanolamine (PE) and six 
long chain fatty acids. PC and PE content of skeletal muscle 
responds positively to exercise, and PC:PE ratio is inversely 
related to insulin sensitivity (Lee et al., 2018). Obesity-
related T2D is attributed partially to energy substrate 
imbalance both in the circulation and more importantly in 
the major effector organs of the diabetic condition: liver, 

skeletal muscle, and pancreatic beta-cell islets. Exercise 
enhances insulin sensitivity, skeletal muscle PC by 21% and 
PE by 42%, reduces PC:PE ratio by16%. PC:PE ratio cor-
related negatively with insulin sensitivity (Lee et al., 2018). 
Increased long chain fatty acids and PE observed in this 
study reflected the high risk of T2D in obese participants. 
More strikingly, four PE and long chain fatty acids were 
positively correlated with SSB intake and pizza consumption 
in this population.

Plasma levels of glycosphingolipids, including six sphin-
gomyelins and two dihydrosphingomyelins, are lower in 
T2D (beta < 0, Table S2). These sphingolipids carry a dou-
ble bond, and the presence of a double bond in ceramide 
(sphingolipid) can promote lipid uptake and storage, and 
impair glucose utilization (Chaurasia et al., 2019). Decreases 
of several long and very long chain lactosylceramides were 
significantly associated with increased risk of macroalbumi-
nuria but not chronic kidney disease in T1D (Lopes-Virella 
et al., 2019). In Hispanic Community Health Study/Study 
of Latinos, glycosylceramides, lactosylceramides, or other 
unsaturated sphingomyelins (even if having a saturated fatty 
acid base) were not associated with risk of diabetes; positive 
associations observed with a ceramide score and a score 
of sphingomyelins with fully saturated sphingoid-fatty acid 
pairs were attenuated after adjusting for triglyceride (TG) 
(Chen et al., 2020). Lower lactosylceramide with palmitic 
acid (LC-16) associated with higher glucose levels at base-
line in Strong Heart Family, and may indicate impaired glu-
cose metabolism (Jensen et al., 2019).

A noted strength of this study is the high prevalence of 
both central obesity and T2D and a large number of metabo-
lites examined, giving the analyses herein a statistical power. 
In addition to baseline results, this study provided data on 
T2D incidence at the 5-year follow-up, which provided the 
opportunity to examine both cross-sectional and longitu-
dinal associations between metabolites and T2D. On the 
other hand, this study has limitations in that the metabolites 
were measured only in plasma samples collected at baseline. 
Replication in other Hispanic populations and randomized 
controlled trials are needed in future studies.

In summary, in this Hispanic population with a high prev-
alence of obesity and T2D, we identified T2D-associated 
metabolites and metabolic pathways unique to abdominal 
obesity. Thirteen metabolites, over-represented in three met-
abolic pathways, were correlated with three food groups, 
linking dietary behavior to obesity and T2D risk. Our find-
ings provide strong evidence supporting the role of abdomi-
nal obesity in contributing to T2D, and improve understand-
ing of the mechanisms underlying the development of T2D, 
facilitating the development of strategies for the prevention 
of T2D in Hispanic populations.
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