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Abstract
Background  Insulin is the key regulator of glucose metabolism, but it is difficult to dissect direct insulin from glucose-
induced effects. We aimed to investigate the effects of hyperinsulemia on metabolomic measures under euglycemic condi-
tions in nondiabetic participants.
Methods  We assessed concentrations of 151 metabolomic measures throughout a two-step hyperinsulinemic euglycemic 
clamp procedure. We included 24 participants (50% women, mean age = 62 [s.d. = 4.2] years) and metabolomic measures 
were assessed under baseline, low-dose (10 mU/m2/min) and high-dose (40 mU/m2/min) insulin conditions. The effects of 
low- and high-dose insulin infusion on metabolomic measures were analyzed using linear mixed-effect models for repeated 
measures.
Results  After low-dose insulin infusion, 90 metabolomic measures changed in concentration (p < 1.34e−4), among which glyc-
erol (beta [Confidence Interval] =  − 1.41 [− 1.54, − 1.27] s.d., p = 1.28e−95) and three-hydroxybutyrate (− 1.22 [− 1.36, − 1.07] 
s.d., p = 1.44e−61) showed largest effect sizes. After high-dose insulin infusion, 121 metabolomic measures changed in 
concentration, among which branched-chain amino acids showed the largest additional decrease compared with low-dose 
insulin infusion (e.g., Leucine, − 1.78 [− 1.88, − 1.69] s.d., P = 2.7e−295). More specifically, after low- and high-dose insulin 
infusion, the distribution of the lipoproteins shifted towards more LDL-sized particles with decreased mean diameters.
Conclusion  Metabolomic measures are differentially insulin sensitive and may thus be differentially affected by the develop-
ment of insulin resistance. Moreover, our data suggests insulin directly affects metabolomic measures previously associated 
with increased cardiovascular disease risk.
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1  Introduction

Insulin is an anabolic peptide hormone secreted by the 
pancreas in response to increased blood glucose levels to 
activate various mechanisms that decrease blood glucose 
levels (Tokarz et al., 2018). Insulin has broad metabolic 
effects, which include increasing the rate of glycolysis 
in fat and muscle, decreasing the rate of lipolysis in fat, 
decreasing the rate of fatty acid oxidation in muscle and 
liver, and increasing the rate of protein synthesis in fat, 
muscle and liver tissue (Dimitriadis et al., 2011; Phillips, 
2008). Insulin resistance is a common pathophysiological 
consequence of obesity in which body cells are unable to 
raise a potent physiological response to insulin. Insulin 
resistance precedes the development of type 2 diabetes 
and is an independent risk factor of cardiovascular dis-
ease (Ormazabal et al., 2018; Roberts et al., 2013; Taylor, 
2012).

Insulin sensitivity is frequently assessed on the basis 
of the ratio between fasting insulin and glucose levels 
calculated as the homeostatic model assessment for insu-
lin resistance (HOMA-IR) index (Gutch et  al., 2015). 
However, an abnormal HOMA-IR index does not pro-
vide insight into the tissue-specific origin of the insulin 
resistance. Insulin not only increases glucose uptake by 
peripheral tissues such as muscle and fat, but insulin also 
decreases endogenous glucose production through sup-
pression of gluconeogenesis in the liver and both processes 
may be affected differentially by insulin resistance (Wal-
lace et al., 2004). A two-step hyperinsulinemic euglyce-
mic clamp analysis was used to assess whole-body insulin 
sensitivity and a glucose tracer was included to distinguish 
hepatic and peripheral insulin resistance (Finegood et al., 
1987; Muniyappa et al., 2008; Steele, 1959). During the 
first step a low dose insulin will predominantly act on the 
liver, whereas during the second step the higher dose will 
also have a major effect on peripheral tissues such as mus-
cle and fat tissue (Saccà et al., 1982). Administration of 
a low insulin dose has thus been used to assess the insu-
lin sensitivity of endogenous glucose production by the 
liver, while administration of a higher insulin dose has 
been used to additionally assess the insulin sensitivity of 
glucose uptake by peripheral tissues, particularly skeletal 
muscle and fat (Bazotte et al., 2014).

Metabolomic measures are thought to reflect the inter-
action between proteins encoded by the genome and the 
environment, such as diet and lifestyle (Beger, 2016). 
Numerous platforms have become available which can 
be exploited to determine the concentrations of a pleth-
ora of metabolomic measures in cells and body fluids 
(Bukowiecka-Matusiak et  al., 2016; Liu & Locasale, 
2017). Metabolomic measures have been performed to 

characterize the response to glucose administration in indi-
viduals with varying levels of insulin sensitivity (Shaham, 
2008; Wang, 2019). These analyses have provided insight 
into the physiological responses and pathophysiological 
processes underlying disease (Wishart, 2019).

Previous studies have shown that multiple blood metabo-
lomic measures are associated with increased insulin resist-
ance and type 2 diabetes (Knebel, 2016; Yang et al., 2018). 
However, the specific effects of hyperinsulinemia, in the 
absence of major changes in blood glucose levels, on liver 
and peripheral tissues in determining blood metabolomic 
measures have not been fully described in healthy individu-
als. Therefore, the aim of this study was to investigate the 
responses of metabolomic measures to two different insulin 
dosages in a two-step hyperinsulinemic euglycemic clamp 
study in healthy middle-aged individuals without diabetes 
mellitus.

2 � Methods

2.1 � Study population and study design

All participants were selected from the Leiden Longev-
ity Study (LLS) (Schoenmaker, 2006). Participants were 
selected based on the following inclusion criteria: mid-
dle-age (50–75 years old), BMI from 22 to 30 kg/m2 and 
living in the proximity of the research center (< 45 min 
by car). Exclusion criteria were: (1) fasting plasma glu-
cose > 6.9 mmol/L (American Diabetes, 2010); (2) pres-
ence of endocrine, renal, hepatic or other significant chronic 
diseases; (3) use of medication known to influence lipoly-
sis, glucose metabolism or growth hormone secretion; (4) 
recent weight changes or attempts to lose weight (> 3 kg 
weight change within last 3 months); (5) smoking; (6) exten-
sive sporting activities (> 10 h per week); (7) inaccessible 
peripheral veins for intravenous catheter insertion for the 
assessment by clinical examination and routine laboratory 
tests. Of the 87 participants that were approached, 17 partici-
pants did not fulfill the inclusion criteria (19%), 44 partici-
pants refused participation (51%), and 26 participants agreed 
to participate in the study (30%). Two participants did not 
finish the study due to medical technical reasons. In total, 
24 participants were included in this experiment. Sixteen 
individuals participated as couples (eight couples) and eight 
participated as singletons. The Medical Ethical Committee 
of the Leiden University Medical Center (LUMC) approved 
the design of the study and all participants gave their written 
informed consent.

Serum samples were acquired during a two-step hyperin-
sulinemic euglycemic clamp study (Fig. 1). All clamp stud-
ies started at 8:00 in the morning after an overnight fast. 
At 08:30 h (t = 0 min), an adjusted primed (17.6 μmol/kg) 
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continuous infusion (0.22 μmol/kg/min) of [6,6-2H2] glu-
cose (enrichment 99.9%; Cambridge Isotopes, Cambridge, 
MA, USA) was started and lasted for 360 min. At 9:00 h 
(t = 30 min), a primed (1.6 μmol/kg), continuous (0.11 μmol/
kg/min) infusion of [2H5]-glycerol (Cambridge Isotopes) 
was started and continued throughout the study. After two 
hours of glucose infusion (t = 120 min), low dose human 
recombinant insulin (10 mU/m2/min, Actrapid, Novo Nord-
isk Pharma BV, Alphen aan den Rijn, the Netherlands) was 
infused continuously for 2 h. After this, high dose insulin 
(40 mU/m2/min) was infused (t = 240 min) for 2 h. During 
the insulin infusion, exogenous glucose 20% enriched with 
3% [6,6‐2H2] ‐glucose was infused at a variable rate to main-
tain the plasma glucose level at approximately 5.0 mmol/L. 
Blood samples were taken at the start of the study, and sub-
sequently every 10 min from 90 to 120, from 210 to 240 and 
from 330 to 360 min. All participants underwent a two-step 
hyperinsulinemic euglycemic protocol and blood samples 
were taken for the measurement of 151 metabolomic meas-
ures (Fig. 1). For the three examined conditions, we meas-
ured 3 samples as the baseline sample (measured at 95, 105 
and 115 min after the start), 4 samples as low-dose insulin 
(measured at 210, 220, 230 and 240 min after the start), and 
another 4 samples as high-dose insulin (measured at 330, 
340, 350, 360 min after the start). The study population and 
study design have been described in more detail elsewhere 
(Wijsman, 2011).

2.2 � Metabolomics analysis

151 lipid and metabolite concentrations in fasting serum 
samples (ratios not included) were measured using a high-
throughput proton NMR metabolomics platform (Nightin-
gale Health Ltd., Helsinki, Finland) (Soininen et al., 2015). 
This method provides quantification of lipoprotein subclass 
profiling with lipid concentrations within 14 lipoprotein 
subclasses. The 14 subclass sizes were defined as follows: 
extremely large VLDL with particle diameters from 75 nm 

upwards and a possible contribution of chylomicrons, five 
VLDL subclasses (average particle diameters of 64.0 nm, 
53.6 nm, 44.5 nm, 36.8 nm, and 31.3 nm), IDL (28.6 nm), 
three LDL subclasses (25.5 nm, 23.0 nm, and 18.7 nm), 
and four HDL subclasses (14.3 nm, 12.1 nm, 10.9 nm, 
and 8.7 nm). Within the lipoprotein subclasses the follow-
ing components were quantified: total cholesterol, total 
lipids, phospholipids, free cholesterol, cholesteryl esters, 
and triglycerides. The mean size for VLDL, LDL and HDL 
particles were calculated by weighting the correspond-
ing subclass diameters with their particle concentrations. 
Furthermore, the majority of the metabolomic measures 
that were determined belong to classes of apolipoproteins, 
cholesterol, fatty acids, glycerides, phospholipids, amino 
acids, fluid balance, glycolysis-related metabolites, inflam-
mation, and ketone bodies. Detailed experimentation and 
applications of the NMR metabolomics platform have been 
described previously (Soininen et al., 2015), as well as rep-
resentative coefficients of variations (CVs) for the metabo-
lomic measures (Kettunen, 2016).

2.3 � Statistical analyses

Characteristics of the study population were presented as 
percentages (for dichotomous variables) and mean values 
(with standard deviation [s.d.]).

Missing metabolomic measurement data, which was most 
frequently due to levels below the limit of detection, were 
imputed by the half of the minimum of the measured value 
in the dataset for a specific metabolomic measure. During 
visual inspection of the data, we observed a decrease in the 
concentration of albumin during the course of the experi-
ment (Supplementary Fig. 1), which indicates that blood 
concentrations were increasingly diluted over time of the 
study period, as found previously (Li & Ji, 2005b). There-
fore, with the exception of the VLDL diameter, LDL diam-
eter, HDL diameter, estimated description of fatty acid chain 
length, and estimated degree of unsaturation (being all not 

Fig. 1   Study design of the two-step hyperinsulinemic euglycemic study
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expressed as mmol/L), correction for dilution of metabo-
lomic measure concentrations was done by normalization to 
the concentration of albumin. This was done by dividing the 
concentrations of metabolomic measures by the concentra-
tion of albumin (consequently concentrations are expressed 
per mmol/L/mmol/L albumin). After this correction step, 
data was log-transformed and subsequently standardized 
(mean = 0, s.d. = 1) to approximate a normal distribution 
and to make all metabolomic measures comparable in unit 
and in magnitude of effect. Outliers were defined as a value 
with > 4 s.d. from the mean, and were excluded from the 
dataset for the analyses prior to any further analyses. Tak-
ing into account time-dependent within-person variation 
in concentrations of the metabolomic measures, a linear 
mixed-effect model for repeated measures was applied to 
explore the changes in metabolomic measures’ concentra-
tions dependent on different insulin infusion doses within 
individuals (including the difference between two dose 
groups compared with the baseline measurement and dif-
ferences between low dose group and high dose group). In 
order to further explore the insulin sensitivity of branched 
chain amino acids (BCAA), we calculated the percentage 
changes of the BCAAs after high dose insulin infusion com-
pared with baseline for all individuals. Subsequently, we 
assessed the correlation of between the percentage change in 
BCAAs with glucose infusion rate (GIR), which is a meas-
ure of whole-body insulin sensitivity, and with glucose dis-
posal rate (GDR), which is a measure of peripheral insulin 
sensitivity.

The statistical analyses were conducted in the R software 
(Version 3.6.2), and subsequent data visualization was per-
formed in either Python (2.7) or using the ggplot2 package 
in R (R Development Core Team, 2019).

We corrected the results for multiple testing using Bonfer-
roni. As conventional Bonferroni correction is too stringent 
given the high correlations between multiple of the included 
metabolic measures, we corrected for the number of inde-
pendent metabolic measures instead, using methodology that 
has been described before by Li and Ji (2005a). Based on 
this method, we corrected for 37 independent metabolomic 
measures. Hence, we considered a P-value of 0.00134 (nota-
bly 0.05/37) the threshold for statistical significance.

3 � Results

3.1 � Characteristics of the study population 
and metabolomic measures

The characteristics of all participants are shown in Table 1. 
In total, 24 participants comprising 12 women and 12 men 
were included in this study. These participants were clini-
cally healthy with a mean age of 62 (s.d. = 4.2) years, mean 

body mass index of 25.8 kg/m2 (s.d. = 1.8), mean fasting 
plasma glucose of 5.0 mmol/L (s.d. = 0.5) and mean fast-
ing plasma insulin of 6.2 mU/L (s.d. = 2.8). Average values 
of each metabolomic measure within different dose groups 
were provided in Supplementary Table 1.

3.2 � Changes in metabolomic measures at low‑dose 
insulin infusion

The standardized mean differences in metabolomic meas-
ures between baseline and low-dose insulin are summarized 
in Fig. 2, and presented in more detail in Supplementary 
Table 2. A total of 90 out of the 151 analyzed metabo-
lomic measures significantly changed in concentration 
after 10 mM insulin infusion. In particular, after infusing 
low dose insulin for two hours, the concentrations of glyc-
erol and three-hydroxybutyrate were materially decreased 
with betas of, respectively, − 1.41 [− 1.54, − 1.27] s.d. 
(P = 1.28e−95), and − 1.22 [− 1.36, − 1.07] s.d. (P = 1.44e−61). 
Other metabolomic measures that majorly decreased in 
concentration during this phase of the experiment included 
acetate (beta =  − 0.76 [− 0.88, − 0.63]; P = 1.52e−32), citrate 
(beta =  − 0.64 [− 0.82, − 0.46] s.d.; P = 6.95e−12), acetoac-
etate (beta =  − 0.57 [− 0.71, − 0.43] s.d.; P = 4.68e−15), LDL 
diameter (beta =  − 0.43 [− 0.56, − 0.30] s.d.; P = 2.71e−11) 
and medium-sized HDL. In contrast, the concentration of 
pyruvate, and the degree of fatty acid unsaturation increased 
with betas of 0.59 [0.40, 0.78] s.d. (P = 7.46e−10) and 0.48 
[0.38, 0.57] s.d (P = 1.53e−22) respectively. In addition, the 
majority of LDL-sized particles and the concentration of 
apo-lipoprotein B (ApoB) increased in concentration after 
low-dose insulin infusion.

3.3 � Changes in metabolomic measures at high‑dose 
insulin infusion

Figure 3 summarizes the mean changes of metabolomic 
measures after high dose insulin infusion, and Supplemen-
tary Table 3 presents the results in more detail. 121 out 
of the 151 metabolomic measures changed significantly 

Table 1   Characteristics of study population

*Plasma glucose and plasma insulin after fasting were calculated 
based on 17 participants due to the missing values of 7 participants

Characteristics Total

N 24
Men, N (%) 12 (50)
Age in years, mean (s.d.) 62.0 (4.2)
Body mass index in kg/m2, mean (s.d.) 25.8 (1.8)
Plasma glucose after fasting in mmol/L, mean (s.d.)* 5.0 (0.5)
Plasma insulin after fasting in mU/L, mean (s.d.)* 6.2 (2.8)
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in concentration with 40 mM insulin infusion compared 
with the baseline. The concentrations of glycerol, leu-
cine, isoleucine and valine largely decreased with betas of, 
respectively, − 1.72 [− 1.85, − 1.59] s.d. (P = 6e−142), − 1.78 
[− 1.88, − 1.69] s.d. (P = 2.7e−295), − 1.65 [− 1.77, − 1.54] 
s.d. (P = 3.8e−174) and -1.53 [− 1.63, − 1.44] s.d. 
(P = 6.6e−243) compared with baseline. In addition, the con-
centrations of acetate, three-hydroxybutyrate, acetoacetate, 
tyrosine, glutamine and citrate also decreased. The concen-
trations of medium, large, extra-large and super extra-large 
VLDL particles and medium HDL and large HDL decreased 
after the high-dose insulin infusion. The concentration of 
pyruvate, lactate, total cholesterol in HDL3, and the degree 
of fatty acid unsaturation increased significantly with 
betas of, respectively, 1.29[1.10, 1.48] s.d. (P = 2.15e−41), 
1.29 [1.09, 1.49] s.d. (P = 1.91e−37), 1.04 [0.91, 1.17] s.d. 
(P = 1.40e−54) and 0.74 [0.65, 0.84] s.d. (P = 2.40e−51). The 
concentrations of almost all LDL-sized particles, small and 
extra small VLDL and ApoB also increased significantly 
after the high dose insulin infusion. In addition, LDL diam-
eter decreased.

Figure 4 showed the percentage changes of isoleucine 
between high dosage insulin and baseline, which indicated 

that the magnitude of the changes in isoleucine was cor-
related with glucose infusion rate. A stronger decrease of 
isoleucine concentration was found in individuals with 
higher glucose infusion rates. Similar patterns of change in 
leucine and valine dependent on the glucose infusion rates 
were observed (Supplementary Figs. 2 and 3). Changes in 
BCAAs at high dose insulin infusion were also positively 
correlated with glucose disposal rate (GDR) with r = 0.68, 
p = 0.00022, r = 0.61, p = 0.0017, and r = 0.5, p = 0.012, for 
isoleucine, leucine, and valine respectively.

3.4 � Differential changes in metabolomic measures 
between high and low dose insulin infusion

Figure 5 shows that 99 metabolomic measures changed 
significantly after high dose insulin infusion compared 
with low dose insulin infusion and Supplementary 
Table  4 provides the results in detail. Apparent addi-
tional decreases were specifically seen in the concen-
trations of branched-chain amino acids, acetate, tyros-
ine, acetoacetate, glutamine and LDL diameter. Among 
these significantly changed metabolomic measures, 
the largest additional changes of concentrations were 

Fig. 2   Circular plot of metabo-
lomic measures after the low 
dose insulin infusion compared 
with baseline. Red bars stand 
for positive betas and blue bars 
stand for negative betas. The 
floating dots represents the sig-
nificance of betas with standard 
of P-value < 0.00134
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Fig. 3   Circular plot of metabo-
lomic measures after high dose 
insulin infusion compared with 
baseline. Red bars stand for 
positive betas and blue bars 
stand for negative betas. The 
floating dots represents the sig-
nificance of betas with standard 
of P-value < 0.00134

Fig. 4   Percentage changes 
of isoleucine in high dose 
insulin infusion compared 
with baseline. Black points 
represent individuals. Red line 
is regression line and light grey 
area represent 95% confidence 
interval
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in branched-chain amino acids, which decreased with 
betas of − 1.39 [− 1.47, − 1.30] s.d. (P = 2.4e−244) for 
leucine, − 1.24 [− 1.35, − 1.14] s.d. (P = 1.6e−123) for iso-
leucine and − 1.20 [− 1.27, − 1.12] s.d. (P = 5.8e−211) for 
valine compared with low-dose insulin infusion. Further-
more, the concentrations of acetate, tyrosine, acetoacetate, 
glutamine, extra-large and super extra-large VLDL par-
ticles also sharply decreased. In contrast, the concentra-
tions of lactate (beta = 1.16 [0.97, 1.35] s.d.; P = 2.38e−33), 
pyruvate (beta = 0.98 [0.80, 1.16] s.d.; P = 1.95e−27) and 
HDL3C (beta = 0.67[0.54, 0.79] s.d.; P = 3.72e−25) greatly 
increased. In addition, LDL diameter further decreased.

Based on the results from the low- and high-dose analy-
ses, a beta-beta plot comparing low-dose insulin infusion 
and high-dose insulin infusion was generated (Fig. 6). 
Metabolomic measures on the diagonal line (Y = X) have 
reached their maximal response already at low-dose insu-
lin infusion, whereas those that deviate from this line show 
a dose-dependent response. Most notably, leucine, isoleu-
cine, valine and lactate, but also LDL diameter showed a 
clear additional effect at high-dose insulin infusion beyond 
that of low-dose insulin infusion.

4 � Conclusions and discussion

This study explored the changes of blood metabolomic 
measures in 24 clinically healthy individuals during a 
hyperinsulinemic euglycemic clamp study. We found that 
a large number of metabolomic measures changed signifi-
cantly in concentration in response to low- and high-dose 
insulin infusion under euglycemic conditions. A total of 
90 out of the 151 analyzed metabolomic measures changed 
significantly at low-dose insulin infusion, while 121 
metabolomic measures changed significantly at high-dose 
insulin infusion. Some metabolomic measures seemed to 
have reached their maximum response already at low-dose 
(10 mU/m2/min) insulin infusion, whereas other metabo-
lomic measures showed an additional response at high-
dose (40 mU/m2/min)) insulin infusion. This shows that 
1H-NMR-based metabolomic measures are differentially 
insulin sensitive.

At low-dose insulin infusion, the largest changes in 
metabolomic measures comprised glycerol, pyruvate, cit-
rate, three-hydroxybutyrate, acetate, acetoacetate and LDL 

Fig. 5   Circular plot of changes 
in metabolomic measures after 
high dose insulin infusion 
compared with low dose insulin 
infusion. Red bars stand for 
positive betas and blue bars 
stand for negative betas. The 
floating dots represents the sig-
nificance of betas with standard 
of P-value < 0.00134
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diameter. These changes are thought to mainly occur via 
the liver. Low-dose hyperinsulinemia-euglycemia stimu-
lates glycolysis in the liver. This results in the increased 
production and turnover of pyruvate, which could leak 
into the circulation (Guo, 2012). Glycolysis also increases 
the demand on the mitochondrial citric acid cycle, which 
requires citrate and this could explain the decrease in cit-
rate. A potential alternative explanation for the observa-
tion of the decrease in glycerol after low-dose (10 mU/m2/
min) insulin infusion is an effect of insulin on inhibiting 
hormone sensitive lipase which would cause a decrease 
in adipose tissue lipolysis. It had been shown previously 
that suppression of lipolysis in adipose tissue is very insu-
lin sensitive, and differences in adipose tissue lipolysis 
between individuals with type 1 diabetes and healthy con-
trols could be detected at insulin doses as low as 4 mU/m2/
min (Schauer, 2011). It is a limitation of the current study 
that, although (tracer) data on the rate of glycerol appear-
ance were available, the insulin dosages applied might not 
be low enough to accurately assess potential differences in 
suppression of lipolysis in adipose tissue (and relate these 
to some of the observed changes in metabolites). After an 

overnight fast, ketogenesis is activated in the liver to meet 
the energy demand of the body (in particular the brain) and 
ketone bodies such as three-hydroxybutyrate, acetate and 
acetoacetate are formed in this process (Barnett & Barnett, 
2003). After the infusion of glucose and insulin during the 
clamp procedure, which is performed in the fasted state, 
the secretion of ketone bodies is acutely inhibited which 
explains their decreased concentrations (Ciaraldi, 2004).

At high-dose intravenous insulin infusion, the larg-
est changes in metabolomic measures included not only 
glycerol, pyruvate, lactate, citrate, three-hydroxybutyrate, 
acetate, acetoacetate, but also leucine, isoleucine, valine, 
tyrosine, and glutamine. In addition, all sizes of VLDL par-
ticles decreased, all sizes of LDL particles increased and 
mean LDL diameter decreased. High-dose insulin infusion 
is thought to affect processes in peripheral tissues such 
as muscle and fat in addition to processes in the liver. In 
muscle, insulin promotes the synthesis of proteins and sup-
presses proteolysis (Lukens, 1964), which could explain 
the observed large decrease in concentrations of amino 
acids including leucine, isoleucine, valine, tyrosine and 
glutamine. The observed correlation between percentage 

Fig. 6   Beta-beta plot of high 
dose insulin infusion versus low 
dose insulin infusion. Metabo-
lomic measures on the diagonal 
line have reached their maximal 
response already at low dose 
insulin infusion, whereas those 
that deviate from this line show 
a dose-dependent response
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changes of BCAAs and glucose infusion rate provides addi-
tional evidence that the observed decrease of BCAAs at high 
dose-insulin infusion are positively related to whole-body 
insulin sensitivity. In addition to these effects, the decrease 
of medium, large, extra-large and super extra-large VLDL 
particles, and the increase of the majority of LDL particles, 
small VLDL, extra small VLDL and cholesterol concentra-
tion are indicative of an increased clearance of triglycerides. 
Triacylglycerol in the large VLDL particles is hydrolyzed 
by lipoprotein lipase resulting in the formation of smaller 
VLDL and LDL (Bhagavan & Ha, 2015).

The increased concentration of ApoB at low-dose insu-
lin infusion could be explained by stimulation of de-novo 
lipogenesis in the liver and an increased VLDL production 
(Julius, 2003). Interestingly, high-dose insulin infusion had 
a more pronounced effect on the lipoprotein profile with-
out additionally affecting the concentration of ApoB. This 
could be explained by direct or indirect high-dose insulin 
induced changes in the activity of plasma proteins that affect 
the interchange of components between lipoproteins in the 
plasma, such as phospholipid transfer protein (PLTP) and 
cholesteryl ester transfer protein (CETP) (Feingold & Grun-
feld, 2000; Van Tol et al., 1997).

Multiple of the metabolomic measures that we identify 
as being insulin dependent in the present study have been 
described before in relation to cardiovascular disease risk. 
For example, triglycerides within all lipoproteins have 
been associated with increased risk of incident myocardial 
infraction and ischemic stroke (Holmes, 2018). In addition, 
high cholesterol levels in HDL particles have been associ-
ated with a lower risk of developing coronary heart disease, 
myocardial infraction and ischemic stroke (Joshi, 2020). A 
main driver of atherosclerotic cardiovascular disease is LDL 
cholesterol which is increased by low-dose insulin and fur-
ther increased by high-dose insulin infusion (Ference, 2017). 
Additionally, the increase of LDL particle number and the 
decrease of LDL particle size have also been associated with 
increased risk of cardiovascular disease (Campos, 1992). 
Both parameters are found to be insulin dose dependent in 
our study. Moreover, the increase of beta-hydroxybutyrate 
in circulating blood has been associated with an increased 
intracranial carotid artery atherosclerosis (Vojinovic, 2018). 
Branched-chain amino acid were also identified to be associ-
ated with incident cardiovascular disease (Tobias Deirdre, 
2018). The insulin dose dependently increased levels of 
these cardiovascular-disease risk associated metabolomic 
measures suggest that increased insulin has atherogenic 
properties independent of glucose concentrations.

Some metabolomic measures identified to be insulin sen-
sitive in our study have also been identified as potential bio-
markers for the risk to develop type 2 diabetes. Specifically, 
higher levels of the BCAAs (leucine, isoleucine and valine) 
and the aromatic amino acids (tyrosine and phenylalanine) 

have been associated with increased risk of type 2 diabetes 
and have the potential to predict the future development of 
diabetes (Wang, 2011). These amino acids were also among 
the metabolites that showed the largest changes in response 
to the high dose insulin infusion in our study. These data 
could be interpreted as indicating that decreased insulin sen-
sitivity of amino acids leucine, isoleucine, valine, tyrosine 
and phenylalanine are predictive for the increased risk of 
developing type 2 diabetes. However, it has also been dem-
onstrated by Mendelian randomization analysis that higher 
levels of the branched chain amino acids themselves are 
causally associated with the risk of type 2 diabetes (Lotta, 
2016). Whether increased levels of branched chain amino 
acids are both consequence and cause of insulin resistance/
type 2 diabetes remains to be established.

Our study has provided insight into the direct effects of 
insulin on changes of metabolomic measures in apparently 
healthy people under euglycemic conditions. A limitation 
of this study is the limited sample size, which does not 
allow specific subgroup analyses. In addition, the age of 
participants ranged from 50 to 75 years old, which means 
the results might not apply to younger ages. Moreover, it 
is important to note that the present study population was 
selected based on their health and partly on their propensity 
to become long-lived. This might have introduced bias in 
our study.

In conclusion, the majority of the plasma metabolomic 
measures determined by an 1H-NMR metabolomics plat-
form are sensitive to insulin and a large fraction of these 
responses are insulin dose-dependent. It thus seems likely 
that some of these metabolomics measures will be differ-
entially affected by the development of insulin resistance. 
Since low- and high-dose insulin levels are assumed to 
target, respectively, the liver and the liver plus peripheral 
organs (i.e. muscle and fat), our data provide insight into the 
direct role of insulin on specific processes in the liver and 
the peripheral tissues. Moreover, our data showed insulin-
specific effects on metabolomic measures such as LDL par-
ticle number and size, which have previously associated with 
an increased risk of cardiovascular disease. The implications 
of this study are to not only avoid the chronic hyperinsu-
linemia that is associated with insulin resistance, but also to 
avoid frequent hyperinsulinemia that is caused by frequent 
snacking as a means to reduce exposure to an atherogenic 
lipoprotein profile.
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