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Abstract
Introduction Metabolomics data is commonly modelled multivariately using partial least squares discriminant analysis (PLS-
DA). Its success is primarily due to ease of interpretation, through projection to latent structures, and transparent assessment 
of feature importance using regression coefficients and Variable Importance in Projection scores. In recent years several 
non-linear machine learning (ML) methods have grown in popularity but with limited uptake essentially due to convoluted 
optimisation and interpretation. Artificial neural networks (ANNs) are a non-linear projection-based ML method that share 
a structural equivalence with PLS, and as such should be amenable to equivalent optimisation and interpretation methods.
Objectives We hypothesise that standardised optimisation, visualisation, evaluation and statistical inference techniques 
commonly used by metabolomics researchers for PLS-DA can be migrated to a non-linear, single hidden layer, ANN.
Methods We compared a standardised optimisation, visualisation, evaluation and statistical inference techniques workflow 
for PLS with the proposed ANN workflow. Both workflows were implemented in the Python programming language. All 
code and results have been made publicly available as Jupyter notebooks on GitHub.
Results The migration of the PLS workflow to a non-linear, single hidden layer, ANN was successful. There was a similarity 
in significant metabolites determined using PLS model coefficients and ANN Connection Weight Approach.
Conclusion We have shown that it is possible to migrate the standardised PLS-DA workflow to simple non-linear ANNs. 
This result opens the door for more widespread use and to the investigation of transparent interpretation of more complex 
ANN architectures.

Keywords Metabolomics · Partial least squares · Artificial neural networks · Machine learning · Jupyter · Variable 
importance in projection

1 Introduction

Within a biological system, metabolite concentrations are 
highly interdependent (Dunn et al. 2011). As such, the use-
fulness of multivariate data analysis in metabolomics stems 
from the need to extract biological information from inher-
ently complex covariant data, where metabolite interac-
tion is as important as individual changes in concentration. 
Historically, partial least squares (PLS), a.k.a. projection to 
latent structures (Wold 1975; Wold et al. 1993), has been 
the standard multivariate machine learning (ML) method 
used to construct predictive models to classify metabolite 
profiles. The underlying theory of PLS, and its utility to 
metabolomics, has been documented many times (Geladi 
and Kowalski 1986; Gromski et al. 2015; Wold et al. 1993, 
2001). A key benefit of PLS is the ability to visualise (via a 
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latent variable score plot) the projected metabolomic rela-
tionship (clustering) between individual samples before 
classification.

There are many machine learning (ML) alternatives to 
PLS, several of which have been applied to metabolomics 
data. The most popular include support vector machines 
(Steinwart and Christmann, 2008), random forests (Breiman 
2001), and artificial neural networks (Bishop 1995; Wilkins 
et al. 1994); however, despite coexisting for a similar length 
of time, none of these methods have gained the popular-
ity of PLS. A survey of publications listed on the Web of 
Science using the keywords metabolite*, metabolom* or 
metabonom* reveals that up to and including 2018, 2224 
publications list the use of PLS as a key term, whereas the 
alternatives were listed < 500 times (combined number). 
The key to the popularity of PLS over alternative methods 
can be distilled into a single word—interpretability. His-
torically, the primary aim of machine learning (ML) has 
been accurate prediction, not statistical inference (Mendez 
et al. 2019a). As such, methods for statistically interpreting 
either the similarities between each individual metabolite 
profile, or the importance of individual metabolites across 
multiple samples, have been a secondary consideration. The 
ability for PLS to visualise and infer statistical confidence 
intervals upon the latent relationships within and between 
sample classes, together with the fact that a PLS model can 
be reduced to a simple linear regression (and thus exposed 
to multiple well established post-hoc statistical tests), means 
that it sits alone as an effective hybrid prediction-inference 
algorithm for high dimensional data (Eriksson et al. 2013; 
Wold 1975; Wold et al. 1993).

Artificial neural networks (ANNs) are also of particu-
lar interest because in their simplest form, as with PLS, 
they can be considered as a combination of dimensional-
ity reduction and multiple linear regression. In fact, for a 
linear ANN, with a single hidden layer, the only difference 
between ANN and PLS is the manner in which the constitu-
ent model parameters are optimised (Fig. 1). ANNs can be 
generally considered a projection-based method which share 
a structural equivalence with PLS (Mendez et al. 2019a). 
With non-linear ANNs the projection to latent structures 
ethos is preserved but now non-linear, rather than linear, 
latent structures can be modelled.

ANNs were first applied to metabolomic profiling ca. 
1992 by Goodacre et al. (1992). At that time, due to lack of 
compute power and poor software availability, ANNs were 
very slow to train and considered difficult to interpret. As 
such, by the early 2000s they had been widely disregarded 
and relegated to an intellectual curiosity not considered able 
to provide meaningful biological insight (Goodacre 2003). 
With recent advancements in computational power, the 
availability of easily accessible yet powerful open-source 
packages (e.g. TensorFlow and PyTorch), and the general 

success within industry and other research fields, the rein-
troduction of ANNs warrants renewed investigation. We 
recently showed that ANNs have similar predictive ability to 
PLS across multiple diverse metabolomics data sets (Men-
dez et al. 2019c). However, within the domain of metabo-
lomics, if ANNs are to become a truly viable alternative 
to PLS it will be necessary to develop similar standardised 
and robust methods for data visualisation, evaluation, and 
statistical inference (Mendez et al. 2019a).

Recently, the increased availability of well curated open-
source software libraries, particularly from R and Python 
programming communities, has increased the availability 
and utility of many ML methods, including ANNs. Moreo-
ver, the massive increase in available computer power has 
reduced compute times such that methods previously intrac-
table due to computational expense, such as bootstrap confi-
dence intervals (Efron 1988), have enabled non-parametric 
statistical inference to be derived for previously considered 
uninterpretable ‘black box’ methods. This opens the door 
for the development of an ANN framework comparable to 
that of PLS-DA.

The aim of this study is to migrate the standardised 
optimisation, visualisation, evaluation, and statistical 
inference techniques commonly used in a PLS-DA binary 
classification over to a non-linear, single hidden layer, 
ANN algorithm, and then conduct a direct comparison of 
utility. We provide two functionally equivalent workflows 
(PLS-DA vs. ANN) implemented using the Python pro-
gramming language, and presented as open-access Jupyter 
Notebooks (https ://cimcb .githu b.io/Metab Proje ction Viz/). 
The workflows were applied to two previously published 
metabolomics datasets by Chan et al. (2016) and Ganna et al. 
(2016), but are written to be used with any data set suit-
ably formatted following previous guidelines (Mendez et al. 
2019b). Both workflows include cross-validated hyperpa-
rameter optimisation, latent variable projection scores plots, 
classification evaluation using receiver operator character-
istic curves, bootstrap resampling for statistical inference 
of feature contribution and generalisability of prediction 
metrics.

2  Methods

2.1  Partial least squares discriminant analysis 
(PLS‑DA)

PLS-DA (Wold 1975; Wold et al. 1993) is a widely used 
multivariate ML algorithm used for classifying and inter-
preting metabolomics data, especially applicable when the 
number of metabolites (independent variables) is much 
larger than the number of data points (samples). PLS uses 
the projection to latent space approach to model the linear 

https://cimcb.github.io/MetabProjectionViz/
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covariance structure between two matrices (X and Y). 
If the X matrix is thought of as a set of N data points in 
M-dimensional space (where, N = number of samples, and  
M = number of metabolites), and Y is a binary vector (length 
N) describing the class of each samples (e.g. case = 1 and 
control = 0), and if we consider the algorithm geometrically, 
the PLS algorithm rotates and projects X into a lower K 

dimensional space (typically K = 2 or 3), represented by 
the scores matrix T, such that discrimination (covariance) 
between the two labelled groups in the subspace is maxim-
ised (Eriksson et al. 2013). For this study, PLS-DA models 
was optimised using the iterative SIMPLS algorithm (de 
Jong, 1993). T can be derived from X using Eq. (1), where 
W, the X-weight matrix, describes how the X-variables are 

Fig. 1  Illustration of an ANN 
as a regression model. a 
Network representation of a 
2-layer ANN. b Representation 
of a 2-layer ANN with linear 
activation functions, as a set of 
equations, simplified to a linear 
regression model
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linearly combined, or geometrically rotated, to form the 
score vectors, t1 t2 … tK.

The predicted classification (Y*) can then be calculated 
from T using Eq.  (2), where C is the Y-weights matrix 
describing how the Y vector is rotated to map to the covari-
ance described by T.

These matrix equations, Eq. (1) and Eq. (2), can be com-
bined and simplified to a single linear regression, Eq. (3), 
where BPLS is a vector of coefficient values.

This matrix equation, Eq. (3), can also be described as 
a single linear regression in standard form, Eq. (4), where 
�0 ... �N is a vector of linear coefficients.

2.1.1  PLS‑DA optimisation

The optimal number of latent variables, K, is determined 
such that the T matrix is just sufficient to accurately describe 
the underlying latent structure in X but not so large as to also 
model random correlation and produce a model that is a poor 
classification tool for new X-data (see cross-validation in 
Sect. 3.4). In machine learning terminology any parameter 
which is used to define a model’s structure, or an optimisa-
tion algorithm characteristic, is known as a hyperparameter. 
Thus, the number of latent variables is the single PLS-DA 
hyperparameter.

2.1.2  PLS‑DA evaluation

In order to provide some level of independent model evalu-
ation it is common practice to split the source data set into 
two parts: training set and test set (typically, 2/3 training 
and 1/3 test). Once the optimal number of latent variables 
has been determined using the training data only ( �

�����
 and 

�
�����

 ), the resulting model, �∗ = ��
���

 , is then indepen-
dently evaluated by applying the test data ( �

����
 ; suitably 

transformed and scaled) to the model, �∗

����
= �

����
�
���

 . 
A measure of the predictive ability of the model can then be 
calculated by comparing the training prediction (�∗

�����
) to 

the expected training outcome (Ytrain), and the test predic-
tion (Ytest

*     ) to the expected test outcome (Ytest).

(1)�=��

(2)�
∗ = ��

�

�
∗ = ��

�

�
∗ = ���

�

(3)�
∗ = ��

���

(4)y∗ = �0 + �1x1 + �1x2 +…+ �MxM

While true effectiveness of a model can only be assessed 
using test data (Westerhuis et al. 2008; Xia et al. 2013), for 
small data sets it is dangerous to use a single random data 
split as the only means of model evaluation, as the random 
test data set may not accurately represent the training data 
set (Mendez et al. 2019c). An alternative is to use bootstrap 
resampling. Bootstrap resampling is a method for calculating 
confidence intervals using random sampling with replace-
ment (DiCiccio and Efron 1996; Efron 1981, 2000). The 
theoretical details of this methodology are beyond the scope 
of this paper. Briefly, this technique allows the accurate esti-
mation of the sampling distribution of almost any statis-
tic using repeated random sampling. Each random sample 
selects ~ 2/3 of the data points (called the in-bag sample) 
leaving ~ 1/3 (the out-of-bag sample).

Bootstrapping can be used to calculate confidence meas-
urements for the evaluating the optimal ML model con-
figuration for a given metabolomics data set (Broadhurst 
and Kell 2006; Mendez et al. 2019b; Xia et al. 2013). A 
model with fixed hyperparameter values is retrained on 
data, randomly sampled with replacement (in-bag), and then 
evaluated on the unused data (out-of-bag) for r resamples 
(typically r = 100). The predicted outcome from each in-
bag bootstrap resample as well as other outputs, including 
the predicted outcome, latent scores, latent loadings, and 
feature contribution metrics are stored after each resam-
pling. The out-of-bag prediction of classification is also 
stored, as this can be considered an unbiased estimate of the 
model’s performance when shown new data. Using these 
stored outputs, 95% confidence intervals are calculated using 
the commonly-used bias-corrected and accelerated (BCa) 
method; this method adjusts the percentiles to account for 
the bias and skewness in the bootstrap distribution (Efron 
1987). Following bootstrap resampling, a measure of gener-
alised prediction of each model is calculated as the median 
and 95% confidence intervals of the in-bag and out-of-bag 
predictions.

2.1.3  PLS‑DA visualisation

For a given PLS-DA model it is common practice to visu-
alise the projection of X into the latent variable space to 
provide a generalised understanding of the metabolomic 
relationship (clustering) between individual samples before 
classification. For this, the scores matrix, T, described in 
Eq. (1), can be represented as a scatter plot (scores plot) 
such that each axis of the plot represents a column of the 
T-matrix. For example, a scatter plot of  t1 vs.  t2 will repre-
sent the projections of X onto the first two latent variables 
(i.e. each data point represents a projection of a given sam-
ple’s metabolite profile). It is in this latent variable space 
that one would expect to see different metabotypes cluster. 
The associated weight vectors (columns of W) can also be 
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visualised individually and interpreted as an indication of 
how the X-variables are linearly combined to create each 
score vector, Eq. (5).

For a single optimised model, latent scores plots can 
be generated for training, cross-validation, and test X-data 
sets independently. This is a useful method for determin-
ing if overtraining has occurred (see supplementary Jupyter 
Notebooks).

2.1.4  PLS‑DA variable contribution

For PLS-DA, there are two common methods used to esti-
mate variable contribution. First, as discussed, a PLS-DA 
model can be reduced to a single multiple linear regression, 
Eq. (3), thus feature contribution can be inferred directly 
from the model’s regression coefficients, BPLS. Second, for 
more of a focus on the importance of the X-variables on the 
latent projection, the variable influence on projection (VIP) 
scores can be calculated using Eq. (6) (Favilla et al. 2013). 
VIP is the weighted,,w2

i
 combination of the sum of squares 

of Y explained by each latent variable, SSYi , normalised to 
the cumulative sum of square, SSYcum,

where M is the total number of metabolites, and K is the 
total number of latent variables.

The average VIP score is equal to 1 because the sum of 
squares of all VIP scores is equal to the number of variables 
in X. Thus, if all X-variables have the same contribution to 
the model, they will have a VIP score equal to 1. VIP scores 
larger than 1 indicate the most relevant variables. Bootstrap 
resampling (Sect. 2.1.2) can be applied to calculate 95% 
confidence intervals for both the BPLS coefficient values and 
VIP scores, from which estimates of significant contribution 
to the model can be determined.

2.2  Artificial neural network (ANN)

ANNs consist of layered weighted networks of intercon-
nected mathematical operators (neurons). The most preva-
lent ANN is the feed-forward neural network. Here, each 
neuron acts as a weighted sum of the outputs of the previous 
layer (or input data) transformed by an activation function 
(typically linear or logistic function). This is described in 
Eq. (7), using notation from Fig. 1a, where tj is the output 

t1 = w0,1 + w1,1x1 + w2,1x2 +…+ wM,1xM
t2 = w0,2 + w1,2x2 + w2,2x2 +…+ wM,2xM

…

tK = w0,K + w1,Kx1 + w2,Kx2 +…+ wM,KxM

(5)

(6)��� =

�
M ×

∑K

i=1
w2

i
× SSYi

SSYcum

for the jth neuron in the hidden layer, f0 is the activation 
function, x is a vector of input variables  (x1,  x2, …,  xM), wi,j 
is the weight from input variable,  xi, to the neuron, and w0,j 
is a constant offset value.

A neuron with a linear activation function connected to 
multiple input variables is mathematically equivalent to 
a linear regression with multiple independent variables, 
Eq. (8), where  w0,j …  wN,j is a vector of linear coefficients.

A neuron with a logistic activation function,  f0 (), is 
equivalent to the multivariate logistic regression describe 
in Eq. (9).

An ANN with a single linear hidden layer and a single 
linear output neuron is mathematically equivalent to a PLS-
DA model (Fig. 1). Replacing all the linear neurons with 
logistic neurons in the two-layer ANN results in a complex 
non-linear projection-based discriminant model. For this 
study, we use a two-layer ANN with logistic activation func-
tions in both layers.

2.2.1  ANN optimisation

During ANN training, the interconnection weights between 
each layer of neurons are optimised using an iterative algo-
rithm known as back-propagation. This algorithm has been 
described in detail elsewhere (Bishop 1995). The effec-
tiveness of this optimisation method is dependent on a set 
of hyperparameters. A two-layer feedforward ANN has 5 
hyperparameters: 1 parameter to determine the model struc-
ture, the number of neurons in the hidden layer (equivalent 
to number of latent variables) and 4 parameters that char-
acterise the learning process. These determine the rate and 
momentum of traversing local error gradients (specifically 
learning rate, momentum, and decay of the learning rate 
over time) and the number of times the back-propagation 
is applied to the ANN (the number of training epochs). For 
this study, preliminary explorative analysis indicated that 
hyperparameters: momentum, decay, epochs could be set to 
a constant value (0.5, 0 and 400 respectively) with little vari-
ation on performance. This reduced the number of tuneable 
hyperparameters to: (i) the number of neurons in the hidden 
layer, and (ii) the learning rate.

(7)tj = f0

(
w0,j +

M∑
i=1

wi,j × xi

)

(8)tj = w0,j + w1,jx1 + w2,jx2 +⋯ + wM,jxM

(9)tj =
1

1 + e
−

�
w0,j+

∑M

i=1
wi,j×xi

�
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2.2.2  ANN evaluation

Model evaluation using a test set and model evaluation 
using bootstrap resampling is identical to that described in 
Sect. 2.1.2. except replacing the PLS-DA prediction,  Y*, 
with the ANN equivalent.

2.2.3  ANN visualisation

For an equivalent representation of the PLS-DA projection 
to latent space, we provide a projection to neuron space. 
Each hidden neuron represents a transformed weighted 
sum of the X-variables (Eq. 7). Thus, for each pairwise 
combination of neurons, plotting the weighted sum before 
transformation provides a similar means to PLS-DA for 
visualising and interpreting any clustering between indi-
vidual samples before classification. Similarly, associ-
ated weight vectors can also be visualised individually 
and interpreted as an indication of how the X-variables 
are linearly combined to create each neuron scores vector 
before transformation.

2.2.4  ANN variable contribution

For ANN, several variable contribution metrics have 
been proposed (Olden et al. 2004); however, the two most 
comparable metrics to the PLS-DA BPLS coefficients and 
VIP scores are the Connection Weight Approach (CWA) 
(Olden and Jackson 2002) and Garson’s Algorithm (GA) 
(Garson 1991), respectively. Similar to BPLS, for a two-
layer ANN with linear activation functions (Fig. 1b), fea-
ture contribution can be inferred directly from a model’s 
linear coefficients, BANN, as shown in Eq. (10), where C 
is the weights for the hidden-output layer, and W is the 
weights for the input-hidden layer.

This equation can be used to calculate variable con-
tribution for two-layer non-linear ANNs, renamed as 
CWA, and describes relative (and directional) metabolite 
contribution.

While VIP may not be directly applied to non-linear 
ANNs, a similar measure of weighted absolute relative con-
tribution of each metabolite per neuron can be calculated 
using Garson’s Algorithm (Garson 1991). First, absolute 
CWA i,jvalues are calculated across the network by multi-
plying each neuron input weight, wi,j, to the corresponding 
output weight,cjand converting to an absolute value.

(10)��� = �
���

= ��

(11)
|||CWAi,j

||| =
|||wi,j × cj

|||

Second, as shown in Eq. (12), for each hidden neuron the 
total absolute connection weight value is calculated, where 
M is the total number of metabolites.

Then, the overall contribution for each input variable, 
GAi, is calculated as shown in Eq. (13), where K is the total 
number of hidden layer neurons.

Unlike VIP there is no general threshold of importance 
for Garson’s Algorithm, so we propose using the average GA 
score as a comparable equivalent to indicate metabolites of 
importance in the model.

2.3  Computational workflow

The standard workflow for the PLS visualisation and inter-
pretation, and the proposed equivalent ANN visualisation 
and interpretation is described in Fig. 2. Both the PLS-DA 
and ANN workflows were implemented in the Python pro-
gramming language using a package called ‘cimcb’ (https 
://githu b.com/CIMCB /cimcb ) developed by the authors. 
This package contains tools for the analysis and visuali-
sation of untargeted and targeted metabolomics data. The 
package is based on existing well curated open-source pack-
ages (including numpy (Kristensen and Vinter, 2010), scipy 
(Virtanen et al. 2019), bokeh (Bokeh Development Team 
2018), keras (Chollet 2015), pandas (McKinney 2010), 
scikit-learn (Pedregosa et al. 2011), and Theano (Theano 
Development Team2016)). It utilises these packages through 
helper functions specifically designed to simplify the appli-
cation to metabolomics data, following guidelines previously 
described (Mendez et al. 2019b).

Each step of the respective PLS-DA and ANN workflow 
is described in detail in the associated Jupyter Notebook 
file (included in supplementary material and https ://cimcb 
.githu b.io/Metab Proje ction Viz/). The method of embedding 
explanatory text within functional code and visualisations 
follows previously published guidelines (Mendez et  al. 
2019b). The generic workflow is now briefly described.

2.3.1  Prepare data

For an adequate comparison of visualisation and interpre-
tation methods, across PLS and ANN, it was important 
that identical data were used in both models. The X matrix 
of metabolite concentrations, and associated Y vector of 

(12)|||CWAj

||| =
M∑
i=1

|||CWAi,j

|||

(13)GAi =

K�
j=1

⎛
⎜⎜⎝

���CWAi,j

���
���CWAj

���

⎞
⎟⎟⎠

https://github.com/CIMCB/cimcb
https://github.com/CIMCB/cimcb
https://cimcb.github.io/MetabProjectionViz/
https://cimcb.github.io/MetabProjectionViz/
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classification labels (case = 1, control = 0) were extracted 
from the excel spreadsheet. Metabolites in X were 
included for modelling if they had a QC relative standard 
deviation  (RSDQC) < 20% and < 10% missing data (Broad-
hurst et al. 2018). The datasets were split using a ratio of 
2:1 (2/3 training, 1/3 test) using stratified random selec-
tion. After splitting the data into training and test sets, the 
columns of X were natural log transformed, mean centred, 
and scaled to unit variance with missing values imputed 
using k-nearest neighbour prior to modelling following 
standard protocols for metabolomics (Broadhurst and Kell 
2006). The means and standard deviations calculated from 
the training set were applied to scale the test set data.

2.3.2  Hyperparameter optimisation

For both PLS-DA and ANN algorithms the optimal hyper-
parameter values were determined using 5-fold cross-vali-
dation (CV) with 10 Monte Carlo repartitions (Broadhurst 
and Kell 2006; Hastie et al. 2009; Xia et al. 2013). For 
the PLS-DA workflow, a linear search was used to opti-
mise the number of latent variables (1 to 6). For the ANN 
workflow, a grid search was used to optimise the number 
of neurons (2 to 6) and the learning rate (0.001 to 1). The 
optimal hyperparameter values were determined by evalu-
ating plots of R2 and Q2 statistics. Two plots were gener-
ated: (i) a standard R2and Q2 plot against hyperparameter 
values, and (ii) an alternative plot of ||R2 − Q2||vs.Q2 . Using 
the later plot, the optimal hyperparameter was selected at 
the point of inflection of the outer convex hull. The area 
under the receiver operating characteristic curve (AUC) 
is a recommended alternative non-parametric measure of 
classification performance (Szymańska et al. 2012), thus 
equivalent plots of AUC Full and AUC cv metrics are also 
generated for comparison.

2.3.3  Permutation test

Following hyperparameter optimisation, a permutation test 
was applied to the optimal model configuration. In a per-
mutation test, the expected outcome label is randomised 
(permuted), and the model with fixed hyperparameter 
values is subsequently trained and evaluated (Lindgren 
et al. 1996). For both PLS-DA and ANN, this process was 
repeated (n = 100) using fivefold CV to construct a dis-
tribution of the permuted model statistics. While R2and 
Q2 statistics are commonly used in permutation testing 
(Eriksson et al. 2013), AUC Full and AUC cv metrics were 
also included for ANNs, given its common usage as a 
measure of non-linear classification performance.Fig. 2  Data analysis workflow. Flowchart of the data analysis workflow 

used for the PLS and ANN methods. Arrows identify the figure corre-
sponding to the respective workflow step
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2.3.4  Model evaluation using test set

As previously described in Sect. 2.1.2, the measure of the 
predictive ability of the model using a test set is calculated 
by comparing the training score ( �∗

�����
 ) to the expected out-

come (Ytrain) classification, and the test score ( �∗
����

 ) to the 
expected outcome (Ytest) classification. This is visualised 
using three plots:

1. A violin plot that shows the distribution of the predicted 
score, by outcome, for the training and test set.

2. A probability density plot that shows the distribution of 
the predicted score, by outcome, for the training and test 
set via overlapping probability density functions.

3. A receiver operator characteristic (ROC) curve of the 
training and test sets.

2.3.5  Model evaluation using bootstrap resampling

Model evaluation using bootstrap resampling is described 
in Sect. 2.1.2. Following bootstrap resampling (n = 100), a 
measure of generalised prediction of each model is calcu-
lated and visualised using the protocol described in 2.3.4, 
except this time presenting the 95% confidence intervals of 
the 100 in-bag and out-of-bag predictions.

2.3.6  Model visualisation: scores plot & weights plot

Pairwise latent variable scores plots and associated weight 
vector plots are also provided. The scores plots are similar 
in construction to those generated during hyperparameter 
optimisation, except they are based on the in-bag and out-
of-bag scores averaged across repeated prediction for each 
sample (aggregate score). 95% confidence intervals for each 
class are calculated using standard parametric methods. The 
95% confidence intervals for each weight vector plots were 
constructed using the distribution of each weight variable 
across the 100 bootstrap resampled models. Any metabo-
lite weight with a confidence interval crossing the zero line 
(coloured blue) are considered non-significant to the latent 
variable (or neuron).

2.3.7  Variable contribution plots

The BPLS coefficients and VIP scores for the PLS models 
were calculated using the methods described in Sect. 2.1.4. 
The CWA and Garson scores were calculated for the ANNs 
using the methods described in Sect. 2.2.4. There metrics 
were also applied to all 100 models of each type generated 
during the bootstrap resampling. Variable contribution 
plots were constructed. The 95% confidence intervals for 
each vector plots were calculated using the distribution of 
each variable’s metric across the 100 bootstrap resampled 

models. Any metabolite weight with a confidence interval 
crossing the zero line are considered non-significant to the 
latent variable (or neuron).

The variable contribution metrics for each model type 
was compared and contrasted through visual inspection 
of a scatter plots of BPLS vs. CWA ANN and of VIPPLS vs. 
GarsonANN scores, and by calculating the associated Pear-
son’s correlation coefficient.

3  Results

3.1  Datasets

In this study, a previously published dataset by Chan et al. 
(2016) was used to illustrate the standardised PLS work-
flow and the proposed equivalent ANN workflow. This 
urine nuclear magnetic resonance (NMR) dataset, com-
prised of 149 metabolites, is publicly available on Metabo-
lomics Workbench (Study ID: ST0001047). For the work 
described herein a binary classification was performed: 
gastric cancer (n = 43) vs. healthy controls (n = 40).

The computational libraries developed for this study 
require data to be converted to a standardised format using 
the tidy data framework (Wickham, 2014). This stand-
ardised format has been previously described (Mendez 
et al. 2019b, 2019c), and allows for the efficient reuse of 
these workflows for other studies. To demonstrate this, 
we include the application of the identical workflows and 
visualisation techniques to a second previously published 
dataset (Ganna et al. 2016) as a supplementary document. 
This plasma liquid chromatography-mass spectrometry 
(LC–MS) dataset, comprised of 189 named metabo-
lites, is publicly available on MetaboLights (Study ID: 
MTBLS90), and for this study, samples were split into 
two classes by sex: males (n = 485) and females (n = 483). 
This dataset did not report QC measurements and therefore 
the data cleaning step was unable to be performed.

Following data cleaning, for the urine NMR gastric 
cancer data set 52 metabolites were included in data mod-
elling (case = 43 vs. control = 40). Figures 3, 4, 5 and 6 
(and Supplementary Figs. S1-2) show the optimisation, 
visualisation, evaluation and statistical inference for the 
PLS-DA compared to the ANN algorithms. Similar plots 
are provided in supplementary documentation for the 
plasma LC–MS data set (males = 485 vs. females = 483). 
All 4 workflows are also available as interactive Jupyter 
notebooks (https ://cimcb .githu b.io/Metab Proje ction Viz/), 
either to be downloaded or to be run in the cloud through 
mybinder.org. See Mendez et al. (2019b) for guidance.

https://cimcb.github.io/MetabProjectionViz/
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3.2  Model optimisation

Using the = ||R2 − Q2||vs.Q2 plot, both the number of latent 
variables (LV = 2; Fig.  3b) and ANN hyperparameters 
(learning rate = 0.03 & hidden neurons = 2; Fig. 3d) were 
clearly interpretable. These findings were verified using per-
mutation testing (Supplementary Fig. 1).

3.3  Model evaluation and visualisation

Strategies for model evaluation and visualisation were 
successfully transferred from PLS-DA to ANNs. For both 
example data sets the ANN model performed slightly bet-
ter than the PLS-DA for both the training and test data sets 
(Fig. 4). Both models somewhat overtrained despite rigorous 
cross-validation. For the PLS-DA model the AUC Train = 0.97 
and the AUC Test = 0.89. For the ANN model the AUC 
Train = 1.00 and AUC Test = 0.90. Bootstrap remodelling also 
showed similar results. The PLS-DA model had an in-bag 
area under the ROC curve (AUC) with 95% CI of 0.92–0.99. 
Similarly, the ANN produced an in-bag AUC with 95% 
CI of 0.95–0.99. The out-of-bag predictions showed that 

both models overtrained with out-of-bag AUC 95% CI of 
0.72–0.98 (PLS-DA) and 0.77–1.00 (ANN). The bootstrap 
projections confirmed these findings and illustrated that the 
models were still able to project significant mean differences 
between classes, for both the in-bag and out-bag projections 
(Fig. 5).

3.4  Model inference

Feature contribution was determined by calculating boot-
strap confidence intervals for the model coefficients BPLS 
(or equivalent CWA ANN) and of the VIPPLS (or equivalent 
GarsonANN). Across the two models, BPLS and CWA ANN 
showed a high degree of correlation (Fig. 6a; Pearson’s 
r = 0.85, p = 2.8 × 10−15). Twenty-three metabolites signif-
icantly contributed to the PLS-DA model and 25 metabo-
lites significantly contributed to the ANN model, with an 
overlap of 17 metabolites being significant in both models 
(Fig. 6a). The VIPPLS and GarsonANN values showed a 
reduced, but still significant, degree of correlation with 
each other (Fig. 6b; Pearson’s r = 0.75, p = 1.33 × 10−10). 
Based on median values alone (Fig. 6b), 12 metabolites 

Fig. 3  Hyperparameter optimisation. Plots of R2 and Q2 statistics; red 
circle, optimal hyperparameter value(s). a & c Standard R2 and Q2 
vs hyperparameter values plot for PLS and ANN, respectively. Solid 

line, R2; dashed line, Q2. b & d The alternate ||R2 − Q2||vs.Q2 plot for 
PLS and ANN, respectively. The optimal hyperparameters shown in 
panel c were identified using the plot in panel d 



 K. M. Mendez et al.

1 3

17 Page 10 of 15

were deemed as “important” across both models and 
an additional 12 metabolites were “important” in one, 
but not both models. When taking into consideration 
bootstrapped confidence intervals (Fig. 6d) VIPPLS and 
GarsonANN yielded 7 and 8 “important” metabolites, 
respectively. Six metabolites deemed “important” by Gar-
sonANN were also deemed important by VIPPLS. Although 

mathematical calculations for variable contribution were 
different for the two models, Fig. 6 shows that the overall 
visualisation strategy was transferrable.

Fig. 4  Visualisations of model 
evaluation. Predicted scores 
(train and test) split into the 
respective binary classification, 
visualised in three different 
ways. a, b Violin plots; c, d 
probability distribution function 
(pdf) plots. Red, healthy con-
trols (control); blue, gastric can-
cer (case). e, f ROC curves with 
95% CIs derived from 100 itera-
tions of bootstrap resampling. 
Green line predicted scores for 
training set; green 95% CIs, IB 
predictions; yellow line, predic-
tion scores for test set; yellow 
95% CIs, OOB predictions. 
PLS-DA AUC Train = 0.97, AUC 
Test = 0.89, AUC IB = 0.92–0.99, 
AUC OOB = 0.72–0.98. ANN 
AUC Train = 1.00, AUC Test = 0.90, 
AUC IB = 0.95–0.99,  
AUC OOB = 0.77–1.00
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4  Discussion

The migration of the PLS-DA optimisation, evaluation, and 
interpretation workflow to a single hidden layer ANN was suc-
cessful. The strategy for visualising hyperparameter optimisa-
tion was adapted to the ||R2 − Q2||vs.Q2 plot (Fig. 3c–d) and 
readily employable to both model types. Not only did it allow 

for simultaneous interpretation of 2 hyperparameters (ANNs), 
but it provides an alternate interpretation strategy for PLS-DA 
optimisation if the standard R2 and Q2 vs hyperparameter value 
plot is ambiguous. Model evaluation and projection (scores) 
plots were directly transferrable from PLS-DA to ANNs. Pro-
jecting the neuron weights (in place of latent variables) before 
the transfer function allows for a comparative and clear visual 

Fig. 5  Bootstrap projection 
(scores) plots. Projection plots 
show LV2 vs LV1 for PLS and 
Neuron 2 vs Neuron 1 for ANN. 
a, b projected scores of the 
median IB; c, d projected scores 
for median OOB; e, f median 
IB and median OOB scores 
overlaid. Red, healthy control 
(control); blue, gastric cancer 
(case). Inner ellipses, 95% CI of 
the mean; outer ellipses, 95% CI 
of the population. Solid lines, 
IB predictions; dashed lines, 
OOB predictions
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Fig. 6  Variable contribution. Visualisation of variable contribu-
tion for PLS (coefficients and VIP) and ANN (CWA and Garson’s 
algorithm). a Scatterplot of ANNCWA  vs. BPLS, Pearson’s r = 0.85 
(p-value = 2.79e−15). b Scatterplot of GarsonANN vs. VIPPLS, Pearson’s 
r = 0.75 (p-value = 1.33e−10). Dashed lines at respective “importance” 

cut-off: GarsonANN = 0.038, VIPPLS = 1.00. c Median (and 95% CI) 
BPLS (left) and ANNCWA  (right). Blue, contribution not significant 
based on 95% CIs; red, contribution significant based on 95% CIs. d 
Median (and 95% CI) VIPPLS (left) and GarsonANN (right)
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disruption of sample similarity. The bootstrap resampling/
remodelling enabled both the PLS-DA and ANN models’ pre-
dictions to be interpreted with statistical rigor. Both models 
had similar performance, but as described (and expected) in 
the bootstrap projections (Fig. 5) and loadings (Supplementary 
Fig. S2).

CWA  and Garson provided suitable variable contribution 
metrics for the ANN model. The surprising similarity between 
BPLS and CWA ANN, and VIPPLS and GarsonANN indicates the 
validity of both CWA ANN and GarsonANN as methods of deter-
mining feature importance. These findings are validated by the 
second study (supplementary documentation). It is important 
to note that no one ML method will be superior for identifying 
the most biological plausible metabolites. The high level of 
overlap between comparable variable contribution methods, 
in these results, suggest that deviations are likely random false 
discoveries due to lack of power (as reflected in the 95% CIs 
are how close they are to the zero line). As the cut-off for both 
VIP and GarsonANN are not statistically justified limits (Tran 
et al. 2014), we recommend opting for BPLS for PLS and CWA 
ANNfor ANN, and using the 95% CI from bootstrap resampling 
to determine statistically significant metabolites.

As a side note, it is worth discussing two additional 
points. First, there is an advantage of using bootstrap resa-
mpled predictions and projections once the optimal hyper-
parameters are fixed. This is particularly important if the 
sample size is small and there may be large differences in 
results depending on how the samples are split into training 
and test sets. The out-of-bag predictions provide an unbi-
ased estimate of model performance, and the averaged out-
of-bag projections a more realistic estimate of generalised 
class-based cluster similarity. Bootstrapping can also aid 
in preventing false discoveries regarding metabolite sig-
nificance, as the resulting 95% CIs will identify metabolites 
with unstable contributions to the model. Second, model 
outcomes and resulting interpretations can affected by the 
quality of the input data. We have previously shown that PLS 
and ANNs show similar predictive ability, when using the 
same input data, and that sample size is an important deter-
minant of model stability (Mendez et al. 2019c). However, 
to our knowledge, an extensive comparison of different data 
cleaning (Broadhurst et al. 2018), pre-treatment (van den 
Berg et al. 2006), and imputation (Di Guida et al. 2016; Do 
et al. 2018) procedure options has not been performed for 
ANNs. As such, individual users should consider and test 
these effects prior to modelling their own data.

5  Conclusion and future perspectives

We have shown that for binary discrimination using 
metabolomics data it is possible to migrate the workflow 
from PLS-DA to a single hidden layer non-linear ANN. 

For the two presented examples the ANN does not perform 
any better than PLS-DA, and based on coefficient plots 
there is very similar feature contribution. However, these 
results show that ANNs can be evaluated alongside PLS-
DA for any data set (using the provided Jupyter notebooks 
it is possible to evaluate any binary classification data set 
provided it is formatted appropriately before uploading). 
If a highly non-linear relation should arise, then ANN may 
be a better approach to PLS. This remains to be proven.

More importantly these results open the door to investigat-
ing more complex models. As discussed previously (Mendez 
et al. 2019a), an area of increasing interest to the metabolomics 
community is multi-block data integration (e.g. multi-omic or 
multi-instrument). Currently, methods employed are based on 
hierarchical application of multiple linear projection models. 
For example, OnPLS (Löfstedt and Trygg, 2011; Reinke et al. 
2018) is a combinatorial amalgamation of multiple PLS mod-
els, and Mixomics (Rohart et al. 2017) is a stepwise integration 
of canonical correlation analysis and sparse PLS. The inherent 
flexibility of ANN architecture allows complex relationships 
to be combined into a single model. It may be possible to build 
an ANN to combine multiple data blocks into a single model 
without resorting to over-simplified data concatenation. For 
these types of models to be useful will be necessary to incorpo-
rate feature importance, and interpretable visualisation strate-
gies. The work presented here is a first step to applying statisti-
cal rigor and interpretability to more complex ANN models.
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