Skip to main content

Advertisement

Log in

Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Introduction

Mitochondria represent an important milieu for studying the pathogenesis of several major diseases. The need for organelle-level metabolic resolution exists, as mitochondrial/cytosolic metabolites are often diluted beyond detection limits in complex samples. Compartment-specific studies are still hindered by the lack of efficient, cost-effective fractioning methods—applicable to laboratories of all financial/analytical standing.

Objectives

We established a novel mitochondrial/cytosolic purification pipeline for complimentary GC-TOF–MS and 1H-NMR metabolomics using robust, commercially available fractionation strategies.

Methods

Magnetic based mitochondria isolation kits (MACS) were adapted for this purpose, accompanied by cytosolic filtering. Yield was assessed through the percentage recovery of citrate synthase (CS; a mitochondrial marker), purity by immunoblotting against compartment-specific proteins and integrity interrogated through the respiratory coupling ratio (RCR). The effects of the kit-based buffers on MS/NMR analyses of pure metabolite standards were evaluated. Finally, biological applicability to mammalian disease models was shown using Ndufs4 mouse brain tissue.

Results

With minor modifications, MACS produced around 60% more mitochondria compared to a differential centrifugation method. Less than 15% of lysosomal LAMP-2 protein was found in the MACS isolates, confirming relative purity—while RCR’s above 6 indicate sufficient mitochondrial integrity. The filtering approach effectively depleted mitochondria from the cytosolic fraction, as indicated by negligible Hsp60 and CS levels. Our GC–MS pilot yielded 60–70 features per fraction, while NMR analyses could quantify 6–10 of the most abundant compounds in each fraction.

Conclusion

This study provides a simple and flexible solution for mitochondrial and cytosolic metabolomics in animal model tissues, towards large-scale application of such methodologies in disease research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The metabolomics and metadata reported in this paper are available via Metabolomics Workbench, https://www.metabolomicsworkbench.org with unique file identifier Gunter007dekok_20191218_151540 and Data Track ID 1877.

References

  • Afanasyeva, M., Ustiugova, A., Golyshev, S., Kopylov, A., Bogolyubova, A., Demin, D., et al. (2018). Isolation of large amounts of highly pure mitochondria for “omics” studies. Biochemistry (Moscow),83, 76–85.

    CAS  Google Scholar 

  • Aucamp, J., Bronkhorst, A. J., Peters, D. L., Van Dyk, H. C., Van der Westhuizen, F. H., & Pretorius, P. J. (2017). Kinetic analysis, size profiling, and bioenergetic association of DNA released by selected cell lines in vitro. Cellular and Molecular Life Sciences,74, 2689–2707.

    CAS  PubMed  Google Scholar 

  • Bayraktar, E. C., Baudrier, L., Özerdem, C., Lewis, C. A., Chan, S. H., Kunchok, T., et al. (2019). MITO-Tag Mice enable rapid isolation and multimodal profiling of mitochondria from specific cell types in vivo. Proceedings of the National Academy of Sciences,116, 303–312.

    CAS  Google Scholar 

  • Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon, J. C., et al. (2007). Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nature Protocols,2, 2692.

    CAS  PubMed  Google Scholar 

  • Birsoy, K., Wang, T., Chen, W. W., Freinkman, E., Abu-Remaileh, M., & Sabatini, D. M. (2015). An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell,162, 540–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bissantz, C., Kuhn, B., & Stahl, M. (2010). A medicinal chemist's guide to molecular interactions. Journal of Medicinal Chemistry,53, 5061–5084.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brand, M. D., & Nicholls, D. G. (2011). Assessing mitochondrial dysfunction in cells. Biochemical Journal,435, 297–312.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, M.R., Sullivan, P.G., Dorenbos, K.A., Modafferi, E.A., Geddes, J.W., & Steward, O. (2004). Nitrogen disruption of synaptoneurosomes: An alternative method to isolate brain mitochondria. Journal of Neuroscience Methods,137, 299–303.

  • Chan, C. C., Lee, Y., Lam, H., & Zhang, X.-M. (2004). Analytical method validation and instrument performance verification. New York: Wiley.

    Google Scholar 

  • Chen, W. W., Freinkman, E., Wang, T., Birsoy, K., & Sabatini, D. M. (2016). Absolute quantification of matrix metabolites reveals the dynamics of mitochondrial metabolism. Cell,166(1324–1337), e11.

    Google Scholar 

  • Cheng, M. Y., Hartl, F.-U., Martin, J., Pollock, R. A., Kalousek, F., Neuper, W., et al. (1989). Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature Communications,337, 620.

    CAS  Google Scholar 

  • Corcelli, A., Saponetti, M. S., Zaccagnino, P., Lopalco, P., Mastrodonato, M., Liquori, G. E., et al. (2010). Mitochondria isolated in nearly isotonic KCl buffer: Focus on cardiolipin and organelle morphology. Biochimica et Biophysica Acta,1798, 681–687.

    CAS  PubMed  Google Scholar 

  • de Bari, L., & Atlante, A. (2018). Including the mitochondrial metabolism of l-lactate in cancer metabolic reprogramming. Cellular and Molecular Life Sciences,75, 2763–2776.

    PubMed  Google Scholar 

  • Dona, A. C., Jiménez, B., Schäfer, H., Humpfer, E., Spraul, M., Lewis, M. R., et al. (2014). Precision high-throughput proton NMR spectroscopy of human urine, serum, and plasma for large-scale metabolic phenotyping. Analytical Chemistry,86, 9887–9894.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Broadhurst, D. I., Atherton, H. J., Goodacre, R., & Griffin, J. L. (2011). Systems level studies of mammalian metabolomes: The roles of mass spectrometry and nuclear magnetic resonance spectroscopy. Chemical Society Reviews,40, 387–426.

    CAS  PubMed  Google Scholar 

  • Dunn, W. B., Wilson, I. D., Nicholls, A. W., & Broadhurst, D. (2012). The importance of experimental design and QC samples in large-scale and MS-driven untargeted metabolomic studies of humans. Bioanalysis,4, 2249–2264.

    CAS  PubMed  Google Scholar 

  • Esterhuizen, K., van der Westhuizen, F. H., & Louw, R. (2017). Metabolomics of mitochondrial disease. Mitochondrion,35, 97–110.

    CAS  PubMed  Google Scholar 

  • FDA, U.S. (2001) Guidance for industry, bioanalytical method validation. Federal Register 66.

  • Fiehn, O. (2002). Metabolomics—The link between genotypes and phenotypes. In C. Town (Ed.), Functional genomics (pp. 155–171). Dordrecht: Springer.

    Google Scholar 

  • Franko, A., Baris, O. R., Bergschneider, E., Von Toerne, C., Hauck, S. M., Aichler, M., et al. (2013). Efficient isolation of pure and functional mitochondria from mouse tissues using automated tissue disruption and enrichment with anti-TOM22 magnetic beads. PLoS ONE,8, e82392.

    PubMed  PubMed Central  Google Scholar 

  • Fratila, R. M., & Velders, A. H. (2011). Small-volume nuclear magnetic resonance spectroscopy. Annual Review of Analytical Chemistry,4, 227–249.

    CAS  PubMed  Google Scholar 

  • Frezza, C. (2017). Mitochondrial metabolites: Undercover signalling molecules. Interface Focus,7, 20160100.

    PubMed  PubMed Central  Google Scholar 

  • García-Sevillano, M., García-Barrera, T., Navarro, F., Montero-Lobato, Z., & Gómez-Ariza, J. (2015). Shotgun metabolomic approach based on mass spectrometry for hepatic mitochondria of mice under arsenic exposure. BioMetals,28, 341–351.

    PubMed  Google Scholar 

  • Gielisch, I., & Meierhofer, D. (2015). Metabolome and proteome profiling of complex I deficiency induced by rotenone. Journal of Proteome Research,14, 224–235.

    CAS  PubMed  Google Scholar 

  • Glaves, J., Li, M., Mercier, P., Fahlman, R., & Sykes, B. (2014). High-throughput, multi-platform metabolomics on very small volumes: 1 H NMR metabolite identification in an unadulterated tube-in-tube system. Metabolomics,10, 1145–1151.

    CAS  Google Scholar 

  • Go, Y.-M., Roede, J. R., Orr, M., Liang, Y., & Jones, D. P. (2014a). Integrated redox proteomics and metabolomics of mitochondria to identify mechanisms of cd toxicity. Toxicological Sciences,139, 59–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Go, Y.-M., Uppal, K., Walker, D.I., Tran, V., Dury, L., Strobel, F.H., Baubichon-Cortay, H., Pennell, K.D., Roede, J.R. and Jones, D.P. (2014b) Mitochondrial metabolomics using high-resolution Fourier-transform mass spectrometry. In Mass spectrometry in metabolomics (pp. 43–73). New York: Springer.

  • Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M., & Moritz, T. (2004). Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Analytical Biochemistry,331, 283–295.

  • Hall, A. M., & Roberson, E. D. (2012). Mouse models of Alzheimer's disease. Brain Research Bulletin,88, 3–12.

    CAS  PubMed  Google Scholar 

  • Hohmann, M., Felbinger, C., Christoph, N., Wachter, H., Wiest, J., & Holzgrabe, U. (2014). Quantification of taurine in energy drinks using 1H NMR. Journal of Pharmaceutical and Biomedical Analysis,93, 156–160.

    CAS  PubMed  Google Scholar 

  • Hornig-Do, H.-T., Günther, G., Bust, M., Lehnartz, P., Bosio, A., & Wiesner, R. J. (2009). Isolation of functional pure mitochondria by superparamagnetic microbeads. Analytical Biochemistry,389, 1–5.

    CAS  PubMed  Google Scholar 

  • Hubbard, W. B., Harwood, C. L., Prajapati, P., Springer, J. E., Saatman, K. E., & Sullivan, P. G. (2019). Fractionated mitochondrial magnetic separation for isolation of synaptic mitochondria from brain tissue. Science Report,9, 9656.

    Google Scholar 

  • Jin, F., Wu, Q., Lu, Y. F., Gong, Q. H., & Shi, J. S. (2008). Neuroprotective effect of resveratrol on 6-OHDA-induced Parkinson's disease in rats. European Journal of Pharmacology,600, 78–82.

    CAS  PubMed  Google Scholar 

  • Junghans, L., Teleki, A., Wijaya, A. W., Becker, M., Schweikert, M., & Takors, R. (2019). From nutritional wealth to autophagy: In vivo metabolic dynamics in the cytosol, mitochondrion and shuttles of IgG producing CHO cells. Metabolic Engineering,54, 145–159.

    CAS  PubMed  Google Scholar 

  • Kappler, L., Li, J., Häring, H.-U., Weigert, C., Lehmann, R., Xu, G., et al. (2016). Purity matters: A workflow for the valid high-resolution lipid profiling of mitochondria from cell culture samples. Scientific Reports,6, 21107.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kayser, E. B., Sedensky, M. M., & Morgan, P. G. (2016). Region-specific defects of respiratory capacities in the Ndufs4(KO) mouse brain. PLoS ONE,11, e0148219.

    PubMed  PubMed Central  Google Scholar 

  • Kruse, S. E., Watt, W. C., Marcinek, D. J., Kapur, R. P., Schenkman, K. A., & Palmiter, R. D. (2008). Mice with mitochondrial complex I deficiency develop a fatal encephalomyopathy. Cell Metabolism,7, 312–320.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lake, N. J., Bird, M. J., Isohanni, P., & Paetau, A. (2015). Leigh syndrome: Neuropathology and pathogenesis. Journal of Neuropathology and Experimental Neurology,74, 482–492.

    CAS  PubMed  Google Scholar 

  • Lee, W. D., Mukha, D., Aizenshtein, E., & Shlomi, T. (2019). Spatial-fluxomics provides a subcellular-compartmentalized view of reductive glutamine metabolism in cancer cells. Nature Communications,10, 1351.

    PubMed  PubMed Central  Google Scholar 

  • Lindon, J. C., Nicholson, J. K., & Everett, J. R. (1999). NMR spectroscopy of biofluids (pp. 1–88). Annual reports on NMR spectroscopy: Elsevier.

    Google Scholar 

  • Lindeque, J.Z., Hidalgo, J, Louw, R., & van der Westhuizen, F.H. (2013). Systemic and organ specific metabolic differences in metallothionein knockout mice when challenged with exercise. Metabolomics,9, 418–432.

  • Liu, X., & Xu, G. (2018). Recent advances in using mass spectrometry for mitochondrial metabolomics and lipidomics—A review. Analytica Chimica Acta,1037, 3–12.

    CAS  PubMed  Google Scholar 

  • Luo, R., David, L., Hung, H., Devaney, J., & Gilson, M. K. (1999). Strength of solvent-exposed salt-bridges. The Journal of Physical Chemistry B,103, 727–736.

    CAS  Google Scholar 

  • Mamer, O., Gravel, S.-P., Choinière, L., Chénard, V., St-Pierre, J., & Avizonis, D. (2013). The complete targeted profile of the organic acid intermediates of the citric acid cycle using a single stable isotope dilution analysis, sodium borodeuteride reduction and selected ion monitoring GC/MS. Metabolomics,9, 1019–1030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mason, S., Terburgh, K., & Louw, R. (2018). Miniaturized 1H-NMR method for analyzing limited-quantity samples applied to a mouse model of Leigh disease. Metabolomics,14, 74.

    PubMed  Google Scholar 

  • Matuszczyk, J.-C., Teleki, A., Pfizenmaier, J., & Takors, R. (2015). Compartment-specific metabolomics for CHO reveals that ATP pools in mitochondria are much lower than in cytosol. Biotechnology Journal,10, 1639–1650.

    CAS  PubMed  Google Scholar 

  • Moffett, J. R., Ross, B., Arun, P., Madhavarao, C. N., & Namboodiri, A. M. (2007). N-Acetylaspartate in the CNS: From neurodiagnostics to neurobiology. Progress in neurobiology,81, 89–131.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nagrath, D., Caneba, C., Karedath, T., & Bellance, N. (2011). Metabolomics for mitochondrial and cancer studies. Biochimica et Biophysica Acta Bioenergetics,1807, 650–663.

    CAS  Google Scholar 

  • Nunnari, J., & Suomalainen, A. (2012). Mitochondria: in sickness and in health. Cell,148, 1145–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmieri, F., & Monne, M. (2016). Discoveries, metabolic roles and diseases of mitochondrial carriers: A review. Biochimica et Biophysica Acta,1863, 2362–2378.

    CAS  PubMed  Google Scholar 

  • Pan, D., Lindau, C., Lagies, S., Wiedemann, N., & Kammerer, B. (2018). Metabolic profiling of isolated mitochondria and cytoplasm reveals compartment-specific metabolic responses. Metabolomics,14, 59.

    PubMed  PubMed Central  Google Scholar 

  • Passarella, S., & Schurr, A. (2018). l-Lactate transport and metabolism in mitochondria of Hep G2 cells—The cori cycle revisited. Frontiers in Oncology,8, 120.

    PubMed  PubMed Central  Google Scholar 

  • Patti, M.-E., & Corvera, S. (2010). The role of mitochondria in the pathogenesis of type 2 diabetes. Endocrine Reviews,31, 364–395.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, M. H., & Sperling, E. (1952). Cyclophorase system. XXIII. Correlation of cyclophorase activity and mitochondrial density in striated muscle. Proceedings of the Society for Experimental Biology and Medicine,79, 352–354.

    CAS  PubMed  Google Scholar 

  • Picard, M., Wallace, D. C., & Burelle, Y. (2016). The rise of mitochondria in medicine. Mitochondrion,30, 105–116.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Picard, M., White, K., & Turnbull, D. M. (2012). Mitochondrial morphology, topology, and membrane interactions in skeletal muscle: A quantitative three-dimensional electron microscopy study. Journal of Applied Physiology,114, 161–171.

    PubMed  PubMed Central  Google Scholar 

  • Pustylnikov, S., Costabile, F., Beghi, S., & Facciabene, A. (2018). Targeting mitochondria in cancer: Current concepts and immunotherapy approaches. Transl Res,202, 35–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roede, J. R., Park, Y., Li, S., Strobel, F. H., & Jones, D. P. (2012). Detailed mitochondrial phenotyping by high resolution metabolomics. PLoS ONE,7, e33020.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggeri, B. A., Camp, F., & Miknyoczki, S. (2014). Animal models of disease: Pre-clinical animal models of cancer and their applications and utility in drug discovery. Biochemical Pharmacology,87, 150–161.

    CAS  PubMed  Google Scholar 

  • Schymanski, E. L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H. P., et al. (2014). Identifying small molecules via high resolution mass spectrometry: Communicating confidence. Environmental Science and Technology,48, 2097–2098.

    CAS  PubMed  Google Scholar 

  • Shepherd, D., & Garland, P. (1969). The kinetic properties of citrate synthase from rat liver mitochondria. Biochemical Journal,114, 597–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steinhauser, M. L., & Lechene, C. P. (2013). Quantitative imaging of subcellular metabolism with stable isotopes and multi-isotope imaging mass spectrometry. Seminars in Cell & Developmental Biology,24, 661–667.

    CAS  Google Scholar 

  • Tahrir, F. G., Shanmughapriya, S., Ahooyi, T. M., Knezevic, T., Gupta, M. K., Kontos, C. D., et al. (2018). Dysregulation of mitochondrial bioenergetics and quality control by HIV-1 Tat in cardiomyocytes. Journal of Cellular Physiology,233, 748–758.

    CAS  PubMed  Google Scholar 

  • Terburgh, K., Lindeque, Z., Mason, S., Van der Westhuizen, F., & Louw, R. (2019). Metabolomics of Ndufs4−/− skeletal muscle: Adaptive mechanisms converge at the ubiquinone-cycle. Biochimica et Biophysica Acta,1865, 98–106.

    CAS  PubMed  Google Scholar 

  • Tsai, C. (1967). Spontaneous decarboxylation of oxalacetic acid. Canadian Journal of Chemistry,45, 873–880.

    CAS  Google Scholar 

  • Tsai, G., & Coyle, J. T. (1995). N-acetylaspartate in neuropsychiatric disorders. Progress in Neurobiology,46, 531–540.

    CAS  PubMed  Google Scholar 

  • Tzelepis, F., Blagih, J., Khan, N., Gillard, J., Mendonca, L., Roy, D.G., Ma, E.H., Joubert, P., Jones, R.G., and Divangahi, M. (2018) Mitochondrial cyclophilin D regulates T cell metabolic responses and disease tolerance to tuberculosis. Science Immunology3.

  • Van Aardt, W. J., Le Roux, J. M., Lindeque, J. Z., Mason, S., & Louw, R. (2016). The effect of temperature on the respiration and metabolism of the African burrowing scorpion (Opistophthalmus latimanus). Comparative Biochemistry and Physiology Part D: Genomics and Proteomics,20, 50–56.

    Google Scholar 

  • Van Vranken, J. G., & Rutter, J. (2016). The whole (cell) is less than the sum of its parts. Cell,166, 1078–1079.

    PubMed  PubMed Central  Google Scholar 

  • Vendelin, M., Béraud, N., Guerrero, K., Andrienko, T., Kuznetsov, A. V., Olivares, J., et al. (2005). Mitochondrial regular arrangement in muscle cells: A “crystal-like” pattern. American Journal of Physiology-Cell Physiology,288, C757–C767.

    CAS  PubMed  Google Scholar 

  • Wang, A. C., & Bax, A. (1993). Minimizing the effects of radio-frequency heating in multidimensional NMR experiments. Journal of biomolecular NMR,3, 715–720.

    CAS  PubMed  Google Scholar 

  • Warrack, B. M., Hnatyshyn, S., Ott, K. H., Reily, M. D., Sanders, M., Zhang, H., et al. (2007). Normalization strategies for metabonomic analysis of urine samples. Journal of Chromatography B. Analytical Technologies in the Biomedical and Life Sciences,877, 547–552.

    Google Scholar 

  • Wu, M., Neilson, A., Swift, A. L., Moran, R., Tamagnine, J., Parslow, D., et al. (2007). Multiparameter metabolic analysis reveals a close link between attenuated mitochondrial bioenergetic function and enhanced glycolysis dependency in human tumor cells. American Journal of Physiology: Cell Physiology,292, C125–C136.

    CAS  PubMed  Google Scholar 

  • Yao, J., Irwin, R. W., Zhao, L., Nilsen, J., Hamilton, R. T., & Brinton, R. D. (2009). Mitochondrial bioenergetic deficit precedes Alzheimer's pathology in female mouse model of Alzheimer's disease. Proceedings of the National Academy of Sciences of the USA,106, 14670–14675.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported by the National Research Foundation of South Africa (NRF; Grant Numbers 92736 and 117424) and the Technological Innovation Agency of the Department of Science and Technology of South Africa (TIA; Grant Number Metabol.01). Opinions expressed and conclusions arrived at, are those of the authors and are not necessarily to be attributed to the NRF or the TIA. We acknowledge and thank Dr’s Shayne Mason and J Zander Lindeque of the NWU, Human Metabolomics, for their invaluable assistance during metabolomics and data analyses, as well as Mr’s Luciano WIllemse and Charl du Plessis for helping in acquiring chemometrics data for the chemical standard mixtures investigated in this study.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by RL, but planned and executed in equal parts by both authors. Data were acquired predominantly by GV and analysed concomitantly by both authors. The manuscript was compiled by GV under supervision of RL.

Corresponding author

Correspondence to Roan Louw.

Ethics declarations

Conflict of interest

Both authors declare to have no conflicts of interest.

Ethical approval

The AnimCare animal research ethics committee of North-West University approved (NWU-00568-19-S5) the animal protocols used here. All animals were maintained and all procedures performed in accordance with the code of ethics in research, training and testing of drugs in South Africa and complied with national legislation.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1434 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Walt, G., Louw, R. Novel mitochondrial and cytosolic purification pipeline for compartment-specific metabolomics in mammalian disease model tissues. Metabolomics 16, 78 (2020). https://doi.org/10.1007/s11306-020-01697-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11306-020-01697-9

Keywords

Navigation