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Abstract
Introduction Pre-eclampsia is a hypertensive gestational disorder that affects approximately 5% of all pregnancies.
Objectives As the pathophysiological processes of pre-eclampsia are still uncertain, the present case–control study explored 
underlying metabolic processes characterising this disease.
Methods Maternal peripheral plasma samples were collected from pre-eclamptic (n = 32) and healthy pregnant women 
(n = 35) in the third trimester. After extraction, high-resolution mass spectrometry-based untargeted metabolomics was used 
to profile polar and apolar metabolites and the resulting data were analysed via uni- and multivariate statistical approaches.
Results The study demonstrated that the metabolome undergoes substantial changes in pre-eclamptic women. Amongst the 
most discriminative metabolites were hydroxyhexacosanoic acid, diacylglycerols, glycerophosphoinositols, nicotinamide 
adenine dinucleotide metabolites, bile acids and products of amino acid metabolism.
Conclusions The putatively identified compounds provide sources for novel hypotheses to help understanding of the underly-
ing biochemical pathology of pre-eclampsia.

Keywords Pregnancy, human · Pre-eclampsia · Metabolomics · Metabolic profiling

Abbreviations
CV-ANOVA  ANOVA of the cross-validated residuals
FDR  False discovery rate
LC–MS  Liquid chromatography–mass spectrometry
MVA  Multivariate analysis
OPLS-DA  Orthogonal projections to latent structures 

discriminant analysis
PCA  Principle component analysis
PET  Pre-eclampsia (pre-eclamptic toxaemia)

QC  Quality control
ROC  Receiver operator characteristic
RSD  Relative standard deviation
UVA  Univariate analysis
VIP  Variable influence on projection

1 Introduction

Pre-eclampsia is a syndrome that complicates between 3 and 
5% of pregnancies (Lisonkova and Joseph 2013). It is defined 
by de novo hypertension with proteinuria and directly impli-
cated in 14% of global maternal deaths, preterm deliveries 
and infants of low-birthweight (Steegers et al. 2010; WHO 
2015). The impact of this disease is far-reaching with a sig-
nificantly increased risk of diabetes and cardiovascular dis-
ease in later life (Murphy and Smith 2016).

The pathophysiology of pre-eclampsia has been the sub-
ject of substantial research efforts in past decades (Huppertz 
2008). There is a general consensus that the maternal pre-
eclamptic syndrome is caused by maternal systemic endothe-
lial dysfunction triggered by pregnancy (Redman 1991). In 
the first stage, inadequate villous trophoblast differentiation 
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is seen as the origin of pre-eclampsia. The second (symp-
tomatic) stage proposes a state in which the mother, due to 
genetic or environmental factors or increased placental mass, 
is not able to cope with the placental release of apoptotic 
microvesicles (Huppertz 2008).

Insufficient insight into the pathophysiology of pre-
eclampsia is a major reason for the lack of early diagnos-
tic markers, hampering the reliable diagnosis or evaluation 
of disease progression essential for the management of 
this potentially life-threatening gestational complication. 
Therefore, increasing efforts aim to understand perturbed 
metabolic pathways, both as potential sources of early bio-
markers and to uncover metabolic processes involved in the 
pathophysiology of pre-eclampsia. In this context, the dis-
covery of early biomarkers is an important aim for diagnos-
tic purposes. However, an examination of the metabolome 
during the clinical phase of pre-eclampsia is also crucial to 
understand ongoing changes in metabolic processes during 
the symptomatic phase of the disease. Most of the previously 
suggested biomarkers for pre-eclampsia are proteins, pre-
sumed to be derived from the placenta or damaged vascular 
endothelium (Wu et al. 2015). Evaluation of their sensitivity 
and specificity was inconclusive with more studies needed 
to confirm their utility in the clinic.

A number of authors have previously searched for bio-
markers in maternal blood in pre-eclampsia using metabo-
lomics. These studies assessed maternal plasma (Bahado-
Singh et al. 2012; De Oliveira et al. 2012; Kenny et al. 
2005, 2008; Kenny et al. 2010; Turner et al. 2008) or serum 
(Bahado-Singh et al. 2013; Kuc et al. 2014; Odibo et al. 
2011) collected before (first or second trimester) (Bahado-
Singh et al. 2012, 2013; Kenny et al. 2010; Kuc et al. 2014; 
Odibo et al. 2011) and/or after (De Oliveira et al. 2012; 
Kenny et al. 2005, 2008; Turner et al. 2008) disease onset. 
Half of the studies distinguished between early and late onset 
pre-eclampsia (Bahado-Singh et al. 2012, 2013; De Oliveira 
et al. 2012; Kuc et al. 2014), the other half used sample sets 
without considering the gestation at the onset of the disease 
(Kenny et al. 2005, 2008, 2010; Odibo et al. 2011; Turner 
et al. 2008). Analyses were performed with sample numbers 
ranging from 8 to 100 in the pre-eclampsia group (Bahado-
Singh et al. 2012, 2013; De Oliveira et al. 2012; Kenny et al. 
2005, 2008, 2010; Kuc et al. 2014; Odibo et al. 2011; Turner 
et al. 2008). A range of metabolites including polar and 
apolar compounds have been proposed as biomarkers. The 
most comprehensive study in this context utilised a validated 
untargeted analysis using LC–MS with approximately 100 
patients in each subject group (Kenny et al. 2010): It was 
suggested that a combination of 14 metabolites could predict 
pre-eclampsia before the onset of the disease.

However, a recent systematic review and meta-analysis 
concluded that “although there are multiple potential bio-
markers for PE their efficacy has been inconsistent”, (Wu 

et al. 2015). This confusion is likely to be caused by the dif-
ferent experimental (chemical and instrumental) approaches 
and clinical designs chosen and highlights the need for addi-
tional studies in this field. Confirmation of a specific meta-
bolic pathway would set the basis for future studies focus-
sing on specific substance groups.

Although early markers are important, metabolic changes 
are most likely to be maximal after onset of the disease. As 
a prelude to the application of metabolomics in identifying 
metabolites associated with the pre-eclamptic syndrome, 
the present study was designed to test plasma from women 
already diagnosed with pre-eclampsia to provide proof of 
concept that the metabolome of pre-eclamptic women is dis-
tinct from that of women with a normal uncomplicated preg-
nancy. For this, a comprehensive analytical approach was 
chosen to avoid focussing on a specific group of  metabolites.

2  Materials and methods

2.1  Chemicals

Acetonitrile, chloroform and ammonium acetate were pur-
chased from Fisher Scientific (Loughborough, UK). Ammo-
nium carbonate, 2-propanol and methanol were purchased 
from Fluka (Sigma-Aldrich, Hannover, Germany). Deion-
ized water (18.2 MΩ) was prepared using an ELGA USF-
Maxima water purification system (Marlow, UK).

2.2  Plasma collection and preparation

Maternal peripheral blood samples were taken at Royal 
Derby Hospital (UK) from healthy (n = 35) or pre-eclamp-
tic (n = 32) pregnant women after obtaining fully informed 
written consent. Ethics approval for the sample collection 
and utilisation was granted by Derbyshire Research Ethics 
Committee (REC Reference No. 09/H0401/90). Recruited 
subjects in the pre–eclampsia group had (1) normal booking 
blood pressures (at 12–20 weeks of pregnancy), (2) subse-
quently developed blood pressures of ≥ 140 systolic or ≥ 90 
diastolic on two occasions (minimum 24 h apart) and (3) 
had at least 1+ proteinuria (≥ 300 mg/L) using dipstick 
analysis (Meyer et al. 1994). These criteria correspond to 
current guidelines for diagnosis of pre–eclampsia (Magee 
et al. 2014). Subjects in the control group did not have any 
documented hypertensive problems throughout their preg-
nancy. Pre-eclampsia and control samples were matched for 
age, BMI, systolic booking blood pressure, gestational age 
at sampling, parity and ethnicity. Patients were not matched 
for diastolic booking blood pressure, gestational age at deliv-
ery, birth weight/customized weight centile of the baby or 
multiple pregnancy. Patient demo-graphics are shown in 



Untargeted analysis of plasma samples from pre-eclamptic women reveals polar and apolar changes…

1 3

Page 3 of 10 157

Table 1. Early onset pre–eclampsia affected 10 of the 32 
pre-eclampsia patients.

2.3  Plasma preparation

Blood samples were taken into BD Vacutainer EDTA blood 
collection tubes and centrifuged at 1000×g for 15 min at 
4 °C. The plasma was transferred to Eppendorf tubes in 
0.5 mL aliquots, snap-frozen and stored at − 80 °C. Only 
samples that were processed within 1 h were included in 
this study.

2.4  Metabolite extraction

Polar and apolar metabolites were extracted from plasma 
samples (400 µL) with 500 µL chloroform:methanol (1:2) 
followed by centrifugation at 13,000×g for 10 min at 4 °C. 
75 µL of the lower chloroform (apolar) phase were added 
to prepared vials containing 1500 µL isopropanol, giving 
the readily injectable apolar fraction. 600 µL of the aque-
ous (polar) supernatant were transferred into Eppendorf 
tubes and mixed with 900 µL acetonitrile to precipitate pro-
teins. Samples were centrifuged at 13,000×g for 10 min at 
4 °C and 1400 µL were transferred into Eppendorf tubes. 

Following solvent evaporation, the residue was resuspended 
in 100 µL starting mobile phase  (H2O:acetonitrile 4:6) prior 
to injection. A pooled quality control (QC) sample was pre-
pared for each fraction. This was achieved by pooling a 
10 µL aliquot of each extract of the respective fraction.

2.5  LC–MS polar fraction

The LC–MS method was based on a previously reported 
method (Kim et al. 2014). 10 µL of the polar fraction of 
each sample were injected onto an Exactive high-resolution 
mass spectrometry (HRMS) system operating in positive 
and negative ion mode (Accela U-HPLC system coupled 
to a HESI-II Exactive Orbitrap mass spectrometer, Thermo 
Fisher, Hemel Hempstead, UK). Chromatographic sepa-
ration was achieved using a Sequant ZIC-pHILIC 5 µm 
PEEK 150 × 4.6 mm column (Merck Millipore, Darmstadt, 
Germany) using a gradient over 15 min (mobile phase A: 
0 min 40%; 9 min 95%; 10 min 40%; 15 min 40% at 300 µL/
min). Mobile phase A was  H2O with 20 mM  (NH4)2CO3 and 
mobile phase B consisted of acetonitrile without additive. 
Following interface parameters were used: spray voltage 
4500 V (positive mode)/3500 V (negative mode); capillary 
temperature 275 °C; heater temperature 150 °C; flow rates of 

Table 1  Patient demographics 
for maternal plasma collected 
from control and pre-eclampsia 
cohort

Table shows mean (standard deviation) or numbers (%) of n recruited patients. yrs years, wks weeks. Cus-
tomised weight centiles were calculated using Weight Centile Calculator from GROW software version 
6.7.7, 2016 (Gardosi et al. 1992, 1995). Significance testing was performed using student t-test (continuous 
variables) or Chi square test (categorical variables)

Control Pre-eclampsia p value
(n = 35) (n = 32)

Age (yrs) 28.9 (6.7) 30.2 (5.1) > 0.05
BMI 27.0 (7.0) 28.0 (5.1) > 0.05
Booking blood pressure systolic (mmHg) 109.4 (8.4) 112.6 (9.1) > 0.05
Booking blood pressure diastolic (mmHg) 63.6 (7.4) 69.8 (8.7) 0.003
Gestational age at sampling (wks) 36.7 (3.2) 35.9 (2.8) > 0.05
Gestational age at delivery (wks) 38.3 (2.0) 36.9 (2.6) 0.016
Birth weight baby (g) 3149.1 (698.9) 2543.6 (830.7) 0.002
Customised weight centile baby 48.2 (30.0) 27.9 (31.0) 0.008
Multiple pregnancy Singleton 35 (100%) 28 (87.5%) 0.031

Twins 0 4 (12.5%)
Parity 0 14 (40.0%) 22 (68.8%) > 0.05

1 13 (37.1%) 5 (15.6%)
2 4 (11.4%) 4 (12.5%)
3 3 (8.6%) 1 (3.1%)
4 1 (2.9%) 0 (0.0%)

Ethnicity Africa 0 (0.0%) 1 (3.1%) > 0.05
India/Pakistan 4 (11.4%) 4 (12.5%)
Middle East 0 (0.0%) 1 (3.1%)
Southern/

Northern 
Europe

31 (88.6%) 26 (81.3%)
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sheath, auxiliary and sweep gas were 40, 5 and 1 (arbitrary 
units); capillary, tube and skimmer voltages were − 28.6 V, 
− 67.5 V and − 16.6 V. Data acquisition was performed in 
full scan mode with a range from m/z 70 to 1400.

2.6  LC–MS apolar fraction

The LC–MS/MS method was based on a previously reported 
method (Ravipati et al. 2015). 10 µL of the apolar fraction 
of each sample were injected onto an Exactive HRMS sys-
tem operating in positive and negative ion mode. Chro-
matographic separation was achieved using a Poroshell 
SBC18 50 × 2.1 mm 2.7 µm column (Agilent, Santa Clara, 
US) using a gradient over 12 min (mobile phase B: 0 min 
32%; 1 min 60%; 5 min 75%; 6 min 100%; 10 min 100%; 
11 min 32%; 12 min 32% at 450 µL/min). Mobile phase A 
consisted of 40% acetonitrile and 60%  H2O with 13 mM 
 NH4Ac. Mobile phase B consisted of 10% acetonitrile, 10% 
 H2O and 80% isopropanol with 13 mM  NH4Ac. Following 
interface parameters were used in both negative and positive 
mode: spray voltage 4000 V; capillary temperature 250 °C; 
heater temperature 300 °C; flow rates of sheath, auxiliary 
and sweep gas were 30, 15 and 5 (arbitrary units); capillary, 
tube and skimmer voltages were − 26.0 V, − 137.0 V and 
− 26.6 V. Data acquisition was performed in full scan mode 
with a range from m/z 100 to 1900.

2.7  LC–MS analysis

Samples for polar and apolar fraction were analysed in 
separate runs according to a run design as suggested previ-
ously with QC and samples analysed after every 11 sam-
ples (Zelena et al. 2009). Samples were randomized before 
extraction and before injection. Pooled QC samples were 
used to assess the analytical performance.

2.8  LC–MS data analysis

Generated raw data was acquired using Xcalibur software 
(Thermo Scientific, Hemel Hempstead, UK). The data was 
pre-processed using Progenesis QI software (Nonlinear 
Dynamics, Newcastle upon Tyne, UK). Peak picking was 
performed with auto threshold and an automatically cho-
sen QC injection served as reference for chromatographic 
alignment and normalisation. Peak intensities were normal-
ised to all compounds. For this, abundance ratios between 
each sample and the reference run are calculated for all 
compounds. Log10 ratio distributions of each sample are 
then centred onto the log10 ratio distribution of the refer-
ence run by applying an additive or subtractive shift in the 
log space (Waters Corporation 2015). For further advanced 
multivariate analysis (MVA), the four datasets were merged 
to one large dataset before importing to SIMCA (Version 

13.0, Umetrics AB, Umea, Sweden). The data was scaled in 
the default setting unit variance (UV) and log transforma-
tion was applied. PCA and OPLS-DA models of the data 
were created. Cross validation was performed by creating 
an OPLS-DA model with a portion of the observations 
to avoid potential bias. The remaining observations were 
subsequently fitted into this model. In the resulting model, 
variables with a VIP value > 1 were identified as potential 
biomarkers.

Univariate analysis (UVA) was performed using Pro-
genesis QI. Criteria for potential biomarkers were a QC 
CV ≤ 30%, a fold intergroup change of ≥ 1.5 and signifi-
cantly changed metabolite levels after t test and correc-
tion for multiple testing using FDR (false discovery rate). 
Regression analysis was performed to evaluate the effects of 
two unmatched patient parameters (diastolic booking blood 
pressure and singleton/multiple pregnancy) as potential 
confounders. Other unmatched patient parameters (gesta-
tional age at delivery and birth weight/customized weight 
centile of the baby) were not tested as these parameters have 
a causal relationship with pre-eclampsia and with that do not 
meet the criteria for a confounding factor.

Biomarkers that were filtered by both UVA and MVA 
were putatively identified by searching for their m/z val-
ues in the Human Metabolome Database (www.hmdb.
ca), METLIN Metabolomics Database (www.metli n.scrip 
ps.edu) and Lipid Maps (www.lipid maps.org). Putative 
identifications were based on isotope similarity > 75%, mass 
error < 1.5 ppm and expected or demonstrated presence in 
the human organism. Metabolite identification confidence 
was classified using identification classes (Sumner et al. 
2007). Additionally, the quantitative identification score was 
determined as proposed previously (Sumner et al. 2014).

3  Results

3.1  Metabolomic analysis of plasma from control 
and pre‑eclamptic subjects

Plasma samples from pregnant women with (n = 32) and 
without (n = 35) pre-eclampsia were analysed in this study to 
search for metabolites indicating altered biological pathways 
involved in the pathophysiology of pre-eclampsia.

LC–MS metabolomics quality control (QC) samples met 
the required acceptability threshold for both the polar and 
apolar metabolomics analysis methods used in the study 
(Chan et al. 2011; Dunn et al. 2011). Assessment of the peak 
areas of key ions of QC samples confirmed analytical stabil-
ity in terms of peak area (< 30% relative standard deviation 
(RSD)) and retention time (< 2% RSD).

Initial processing of the metabolomics data from the 
study samples revealed 4379 peaks of polar compounds 

http://www.hmdb.ca
http://www.hmdb.ca
http://www.metlin.scripps.edu
http://www.metlin.scripps.edu
http://www.lipidmaps.org
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and 3153 peaks of apolar compounds detected by LC–MS. 
MVA and UVA of these data sets was used to define a set of 
metabolites which showed significant differences between 
the control and pre-eclampsia study groups.

MVA showed no visible separation of control and pre-
eclampsia subjects in a principal component analysis (PCA) 
(data not shown). However, the orthogonal projections to 
latent structures discriminant analysis (OPLS-DA) model 
in Fig. 1a shows a complete separation of control subjects 
and pre-eclampsia subjects. The R2X(cum)-value of 0.286 
and Q2(cum)-value of 0.514 are typical for clinical samples. 
Furthermore, the CV-ANOVA p value is highly significant 
(p = 6 × 10−7), indicating a good model. Validation of the 

dataset was performed by randomly choosing 30% of the 
initial observations and creating a model with the remaining 
observations. The new model based on these training and 
prediction data sets is shown in Fig. 1b. Class affiliation of 
previously removed observations was then predicted. 85% 
of the observations were predicted correctly with a sensitiv-
ity of 82% and specificity of 89%. This demonstrated good 
quality of the OPLS-DA training model, as a prediction of 
those observations that were left out would not be correct 
in an over-fitted model. Figure 1c shows a receiver operator 
characteristic (ROC) curve to evaluate the predictability of 
the OPLS-DA model shown in Fig. 1b (Eng 2007). The area 
under the curve was 0.922.

Fig. 1  Multivariate analysis based on all detected ions: a OPLS-
DA score plot of control (no hypertensive disease, nHD, n = 35) and 
pre-eclampsia (PET, n = 32) samples for all variables. b OPLS-DA 
score plot of training and prediction set for control (no hypertensive 
disease, nHD) and pre-eclampsia (PET) samples for all variables. c 

Receiver operator characteristic (ROC) curves for all variables. The 
figure shows the true positive fraction (TPF) with upper and lower 
95% confidence intervals. The AUC is 0.922 with a standard error of 
0.06
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3.2  Putative plasma biomarkers of pre‑eclampsia

To identify biomarkers for pre-eclampsia, detected com-
pounds were further filtered. Univariate analysis (UVA) 
yielded 37 metabolites after significance testing using 
t-test and correction for multiple testing. Based on a vari-
able influence on projection (VIP) value > 1 in the cross 
validated OPLS-DA model shown in Fig. 1b, 2527 ions 
were filtered using multivariate analysis (MVA). All 37 
compounds filtered by UVA were also filtered by MVA 
and are therefore promising candidates for biomarkers (see 
full list in the Supplemental data Table 1).

Two of the unmatched patient parameters were classi-
fied as potential confounders: (1) diastolic booking blood 
pressure and (2) singleton/multiple pregnancy. Regres-
sion analysis showed that none of these parameters were 
statistically significant (independent) confounders (data 

not shown). Therefore, the data was not adjusted for these 
parameters.

Multivariate analysis was repeated based on the putative 
biomarker metabolites. Two compounds were removed from 
this list and all further analyses, as these were putatively 
identified as labetalol and terbutaline—medications com-
monly given to pre-eclamptic women. The PCA based on 
the 35 most predictive ions showed a visible separation of 
control and pre-eclampsia subjects (data not shown). Sim-
ilarly, the OPLS-DA model in Fig. 2a shows a complete 
separation of control subjects and pre-eclampsia subjects. 
The R2X(cum)-value of 0.629, Q2(cum)-value of 0.648 and 
a highly significant CV-ANOVA p value (p = 5.5 × 10−12) 
indicate an excellent model. A validation of the dataset was 
performed by randomly choosing 50% of the initial observa-
tions and creating a model with the remaining observations. 
The new model based on these training and prediction data 

Fig. 2  Multivariate analysis based on the 35 most predictive ions: 
a OPLS-DA score plot of control (no hypertensive disease, nHD, 
n = 35) and pre-eclampsia (PET, n = 32) samples for the 35 most pre-
dictive ions. b OPLS-DA score plots of training and prediction set 
for control (no hypertensive disease, nHD) and pre-eclampsia (PET) 

samples for the 35 most predictive ions. c Receiver operator char-
acteristic (ROC) curves for the 35 most predictive ions. The figure 
shows the true positive fraction (TPF) with upper and lower 95% con-
fidence intervals. The AUC is 0.964 with a standard error of 0.04
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sets is shown in Fig. 2b. The class affiliation of previously 
removed observations was then predicted. 91% of the obser-
vations were predicted correctly with a sensitivity of 82% 
and specificity of 100%, demonstrating excellent quality of 
the OPLS-DA training model. Figure 2c shows a ROC curve 
to evaluate the predictability of the OPLS-DA model shown 
in Fig. 2b (Eng 2007). The area under the curve was 0.964.

Using metabolomics databases, 9 of the 35 compounds 
could be putatively identified by compound class or 
unique assignment (see Supplemental data Tables 2 and 
3): A taurodeoxycholic acid isomer, methionine sulfoxide, 
3-hydroxyanthranilic acid, an N1-methyl-pyridone-carbox-
amide isomer and urocanic acid in the polar fraction and 
a hydroxyhexacosanoic acid isomer, two different types of 
diacylglycerols and a glycerophosphoinositol in the apolar 
fraction. Scatter plots of control vs PET normalised intensi-
ties for these compounds are shown in Fig. 3. Identification 
classes (Sumner et al. 2007) are shown in Supplemental data 
Tables 2 and 3. The quantitative identification score was 1.0 
in all cases (Sumner et al. 2014).

4  Discussion

The present study examined the metabolome of maternal 
plasma samples to identify altered metabolite pathways that 
may provide new insights into the underlying biology of 
pre-eclampsia. This is the first report of a separate analy-
sis of polar and apolar metabolites in plasma samples for a 
metabolomics approach in this disorder. This comprehensive 
analytical approach leads to an improved resolution of the 
metabolome into its distinct components resulting in maxi-
mum coverage of the metabolome in the biological sample.

This study included patients with mixed risk factors for 
pre-eclampsia. The sample set for pre-eclampsia included 
subjects of mixed parity, women with early and late onset 
pre-eclampsia as well as single and multiple pregnancies. 
Parity and multiple pregnancy are important risk factors for 
pre-eclampsia. Furthermore early and late onset pre-eclamp-
sia are increasingly seen as two different disease entities 
(Raymond and Peterson 2011). The biomarkers identified in 
this pilot work are therefore mainly informative for ongoing 
processes during the clinical appearance of the pre-eclamp-
tic syndrome, which is a common feature of pre-eclampsia 
independent of its origin.

A total of 35 metabolites were found to significantly con-
tribute to metabolic differences in plasma from pre-eclamp-
tic and healthy pregnant women. Not all of these could be 
assigned chemical identities, but the use of database match-
ing allowed putative identification of several metabolites.

The two N-methylpyridone carboxamide isomers are 
NAD metabolites and have previously been shown to accu-
mulate in patients with renal failure (Rutkowski et al. 2003). 

Levels were increased in plasma from pre-eclamptic women. 
They are of interest given that pre-eclampsia is characterised 
by proteinuria, an important diagnostic marker for underly-
ing renal dysfunction. Metabolic markers may be superior 
to proteinuria as a diagnostic tool, as the reliability of the 
latter is under scrutiny (Magee et al. 2014).

A further set of metabolites showing increased levels in 
our pre-eclampsia study was assigned to three closely related 
bile acids: tauro-deoxycholic acid, taurourso-deoxycholic 
acid and taurocheno-deoxycholic acid. Taurine, an element 
of the three structural isomers, has previously been found 
as a biomarker in other studies analysing maternal blood in 
pre-eclampsia (Kenny et al. 2010; Kuc et al. 2014).

A previously proposed marker for oxidative stress, 
methionine sulfoxide, was increased in pre-eclampsia 
(Mashima et al. 2003; Raff et al. 2008). This is in line with 
the increased placental oxidative stress as a known feature 
in pre-eclampsia. Interestingly, levels of the antioxidant 
3-hydroxyanthranilic acid were also raised in pre-eclamptic 
subjects. It is an intermediate of tryptophan catabolism via 
the kynurenine pathway, which is an important pathway for 
the synthesis of NAD. The kynurenine pathway including 
3-hydroxyanthranilic acid as a therapeutic target in pre-
eclampsia was previously hypothesised but further evidence 
is required (Worton et al. 2019). An earlier study looking at 
kynurenine pathway metabolites identified kynurenic acid as 
a plasma marker for pre-eclampsia, however, in contrast to 
our study no significant changes were seen for 3–hydroxy-
anthranilic acid (Nilsen et al. 2012).

Levels of the histidine metabolite urocanic acid were 
found to be elevated in plasma from pre-eclamptic subjects. 
Urocanic acid is mainly known for its role as photoprotectant 
in the skin, however, it was also identified in amniotic fluid 
from normal pregnancies (Orczyk-Pawilowicz et al. 2016).

Concentrations of several lipids were found to change 
significantly when comparing the control and pre-eclampsia 
group. The concentration of the oxylipin, hydroxyhexacosa-
noic acid, was found to be decreased in plasma from pre-
eclamptic women. Its dehydroxylated form, hexacosanoic 
acid, was earlier listed as biomarker in pre-eclampsia (Kenny 
et al. 2010). The complex changes in the oxylipin metabo-
lism are likely to cause substantial physiological effects con-
sidering the potency of this molecule class in the regulation 
of vascular tone and PPAR related gene expression (Omar 
et al. 1992; Shiraki et al. 2005). For three further lipids a 
specific identification was not possible but they could be 
assigned to the lipid classes of diacylglycerol and glycer-
ophosphoinositol isomers. These molecules are part of cell 
membranes and play a role in signal transduction and fatty 
acid storage (Romanowicz and Bankowski 2009).

Two additional compounds were putatively identified as 
the exogenous substances labetalol and terbutalin. Labetalol 
is used for the treatment of hypertension in pregnant women 
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and a number of subjects in the pre-eclampsia cohort were 
receiving this drug. Terbutalin is a β2-receptor agonist, used 
for the management of asthma symptoms or as a tocolytic. 
The fact that the platform could recognise these compounds 
provides confidence for the applicability of the experimental 
approach. It is important to note that metabolomics is sensi-
tive to exogenous influences in that it will also detect exog-
enous compounds derived from diet, food, lifestyle, drugs 
or gut microflora.

In summary, this study demonstrates that the metabolome 
undergoes substantial changes in pre-eclamptic women and 
a range of novel biomarkers were identified. Of the afore-
mentioned compounds none are known and clinically used 
biomarkers in pre-eclampsia (Magee et al. 2014). As such, 
the identified compounds represent novel biomarkers that 
could help to provide new insights into the ongoing patho-
physiological processes of this disease and could eventu-
ally lead to the identification of new drug targets. Although 
most of the putatively identified biomarkers have not been 
previously described, it was in many cases possible to relate 
their metabolic pathways to previously published studies as 
described above.

This work illustrates the potential of untargeted metabo-
lomics in pre-eclampsia research to discover metabolic 
perturbations in pre-eclampsia potentially leading to novel 
hypotheses to help understand the underlying aetiology of 
this disease.
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