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Abstract
Introduction  By mid-century, global atmospheric carbon dioxide concentration ([CO2]) is predicted to reach 600 μmol mol−1 
with global temperatures rising by 2 °C. Rising [CO2] and temperature will alter the growth and productivity of major food 
and forage crops across the globe. Although the impact is expected to be greatest in tropical regions, the impact of climate-
change has been poorly studied in those regions.
Objectives  This experiment aimed to understand the effects of elevated [CO2] (600 μmol mol−1) and warming (+ 2 °C), 
singly and in combination, on Panicum maximum Jacq. (Guinea grass) metabolite and transcript profiles.
Methods  We created a de novo assembly of the Panicum maximum transcriptome. Leaf samples were taken at two time 
points in the Guinea grass growing season to analyze transcriptional and metabolite profiles in plants grown at ambient and 
elevated [CO2] and temperature, and statistical analyses were used to integrate the data.
Results  Elevated temperature altered the content of amino acids and secondary metabolites. The transcriptome of Guinea 
grass shows a clear time point separations, with the changes in the elevated temperature and [CO2] combination plots.
Conclusion  Field transcriptomics and metabolomics revealed that elevated temperature and [CO2] result in alterations in 
transcript and metabolite profiles associated with environmental response, secondary metabolism and stomatal function. 
These metabolic responses are consistent with greater growth and leaf area production under elevated temperature and [CO2]. 
These results show that tropical C4 grasslands may have unpredicted responses to global climate change, and that warming 
during a cool growing season enhances growth and alleviates stress.
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1  Introduction

Atmospheric carbon dioxide concentrations ([CO2]) have 
risen by 40% since pre-industrial times, with approximately 
half of that increase within the past 40 years. The Interna-
tional Panel on Climate Change (IPCC) has predicted that 
[CO2] will rise to 600 ppm and mean global temperature 
will increase 1.1 to 2.6 °C by the end of the century, with a 
moderate climate change projection scenario (IPCC 2014). 
Although the combined effects of rising atmospheric [CO2] 
and rising temperatures have been studied in field experi-
ments in temperate forests (Sun et al. 2017; Svensson et al. 
2018), croplands (Ruiz-Vera et al. 2015; Cai et al. 2016), 
and grasslands (Ryan et al. 2015), there have been fewer 
field studies of the combined effects of rising [CO2] and 
temperature in tropical and sub-tropical ecosystems. Differ-
ences in climate and nutrient limitation in tropical regions 
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may fundamentally alter how tropical ecosystems respond 
to global climate change compared to well-studied temper-
ate ecosystems (Leakey et al. 2012). Therefore, the paucity 
of data from tropical regions presents a significant chal-
lenge for an accurate understanding of global responses to 
climate change. Adding to this challenge is the realization 
that responses of vegetation to combined elevated [CO2] 
and temperature treatments are different from single-factor 
experiments, and that additive effects are rare (Dieleman 
et al. 2012). Thus, there is a need for multi-factor global 
change experiments, especially in tropical regions.

Pastures cover about 30% of the terrestrial surface in trop-
ical regions and play an important role in carbon sequestra-
tion (Boval and Dixon 2012; Ramankutty et al. 2008). In 
tropical regions, C4 grasses dominate those pastures (Still 
et al. 2003). Panicum maximum Jacq. (Guinea grass) is a 
perennial C4 grass species native to tropical Africa, which 
has been adapted in Brazil as a forage and range grass 
(Pedreira et al. 2015). Approximately 90% of Brazilian cattle 
are raised on pasture land (Cardoso et al. 2016), and peren-
nial C4 grasses such as Guinea grass are principle species 
for the Brazilian feedstock industry. Despite the economic 
importance of Guinea grass to this industry, very little is 
known about how it and other C4 forage grasses will respond 
to rising atmospheric [CO2] and temperature. To address this 
knowledge gap, a Temperature Free Air CO2 Enrichment 
(T-FACE) experiment was established in Ribeirão Preto, 
Brazil to expose Guinea grass to elevated [CO2] (600 ppm) 
and increased canopy temperatures of 2 °C (Britto de Assis 
Prado et al. 2016).

‘Omic’ technologies including transcriptomics and 
metabolomics provide a functional analysis to connect phys-
iological and molecular responses to genetic and phenotypic 
information (Langridge and Fleury 2011). Such technologies 
can be used to better understand the mechanisms underpin-
ning plant responses to global climate change and can reveal 
targets for improving plant performance in the future. In 
recent years there has been an increasing number of studies 
investigating transcriptomic and metabolomic responses of 
C4 grasses to a variety of abiotic stresses imposed in green-
houses and/or chambers (e.g., Sicher et al. 2012; Meyer et al. 
2014; Sui et al. 2015; Toledo-Silva et al. 2013). However, 
there is an increasing need to investigate and understand 
plant transcriptional and metabolic responses to global 
change or abiotic stress in the field where responses can be 
dramatically different from controlled environments (Lovell 
et al. 2016). The combined use of FACE and ‘omic’ technol-
ogies provides a powerful approach for gaining new insight 
into plant molecular responses to global climate change in 
the field. Combining metabolomic and transcriptomic stud-
ies allowing for a holistic view of the plant’s response to 
stress.

Our study combines the power of FACE experiments for 
growing plants under elevated [CO2] and temperature in 
fully open-air conditions with transcriptomic and metabo-
lomics profiling. The aims are to (1) understand the bio-
chemical responses of Guinea grass to rising [CO2] and 
temperature when applied individually and in combination; 
(2) understand how gene expression is altered in each treat-
ment; and (3) integrate the metabolomic and transcriptional 
responses.

2 � Methods

2.1 � Experimental design and tissue collection

The field experiment was conducted in a 2500 m2 field at the 
University of São Paulo in Ribeirão Preto, São Paulo Brazil. 
Guinea grass was planted in a completely replicated design 
with 4 ambient temperature and [CO2] plots (C), 4 elevated 
[CO2] (600 μmol mol−1) and ambient temperature plots (eC), 
4 ambient [CO2] and elevated temperature [+ 2 °C] plots 
(eT), and 4 combined treatment (elevated [CO2] and elevated 
temperature) plots (eCeT). Each plot was 2-m in diameter; 
[CO2] was controlled using Free Air CO2 Enrichment, and 
canopy warming was provided by infrared ceramic heaters as 
described by Britto de Assis Prado et al. (2016). Treatment 
was started on April 22, 2014.

Leaf tissue was collected for transcriptomic and metab-
olomics analysis on two dates: May 22, 2014 (time point 
A—30 days of treatment), and June 14, 2014 (time point 
B—50 days of treatment). Six leaves per experimental plot 
were collected at each time point and then pooled for RNA 
extraction and metabolomics analysis. At the time of sam-
pling, tissue was immediately quenched in liquid nitrogen. 
RNA was extracted in Brazil using the protocol described by 
Bilgin and colleagues (Bilgin et al. 2009), and subsequently 
shipped in ethanol to the U.S. for transcriptomic analysis. 
Lyophilized leaf tissue from the same leaves was sent for 
metabolite analysis. Leaves were sampled for biomass, area, 
and specific leaf area on August 22 and 29th, 2014 from 60 
tillers per treatment as described by Britto de Assis Prado 
et al. (2016).

2.2 � Transcriptional analysis

RNA samples that were shipped from Brazil were re-
suspended by washing with sodium acetate (pH 5.5) and 
glycerol. RNA quantity and quality were re-assessed using 
a spectrophotometer (Nanodrop 1000, Thermo Fisher) and 
microfluidic visualization tool (Bioanalyzer, Agilent Tech-
nologies). 32 samples (16 per time point including 4 from 
each [CO2] and temperature treatment) were submitted for 
library construction and sequencing at the Roy J. Carver 
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Biotechnology Center at the University of Illinois, Urbana-
Champaign. RNAseq libraries were prepared with Illumina’s 
TruSeq Standard RNA sample prep kit according to the 
manufacturer’s instruction (Illumina, San Diego, CA, USA). 
No public reference genome for Guinea grass was available 
at the time of the sequencing. Therefore, a combination of 
MiSeq and HiSeq was used to generate sequences of differ-
ent lengths for de novo genome assembly.

For MiSeq analysis, 50 µg of total RNA per sample was 
pooled for library preparation without RNA fragmentation. 
The MiSeq library was quantified by qPCR and sequenced 
on one MiSeq flowcell for 301 cycles using paired-end 
sequencing. HiSeq paired-end sequencing was done with 
four quantified libraries per treatment which were pooled 
in equimolar concentration and sequenced on two lanes for 
161 cycles. The final read lengths for MiSeq and HiSeq 
were 300 nt and 160 nt in length. A total of 635,649,277 
reads were assembled from the MiSeq/HiSeq pools. Quality 
control for reads generated from sequencing was performed 
using FastQC (http://www.bioin​forma​tics.babra​ham.ac.uk/
proje​cts/fastq​c/). Quality reads were used to perform de novo 
transcriptome assembly using Trinity. The initial assembly 
consisted of 187,216 genes. A filter was applied to keep only 
those genes that had at least 10 reads (across the 4 replicates) 
for an individual treatment. The resulting transcriptome con-
tained 45,073 genes and reads. Functional annotation of the 
genes was done by using BLAST against Arabidopsis thali-
ana, Zea mays, and Setaria italica.

Differential gene expression analysis was performed 
using the R package, LIMMA (Ritchie et al. 2015). Within 
each time point, individual experimental treatments were 
compared to the control (ambient [CO2], ambient tempera-
ture). Following post ‘voom’ normalization, extreme outli-
ers were removed, and 39,208 genes were assessed for dif-
ferential expression analysis. Final normalized reads were 
log2 transformed for differential gene expression analysis. 
DESeq 2 (Love et al. 2014) was also run for comparison 
with the LIMMA approach and results were found to be sim-
ilar but less conservative (Supplemental Fig. 1). A classical 
multidimensional scaling plot (MDS) was created using R 
base package with normalized and transformed reads. MDS 
plots were used to probe the relationships among samples 
in multidimensional space using a dissimilarity measure of 
each pairwise comparison.

2.3 � Metabolic profiling by GC–MS

Untargeted metabolite analysis was performed with pre-
weighed lyophilized tissue (12.67–19.93  mg, average 
16.93 ± 1.92 mg) according to protocol described in Ulanov 
and Widholm (Ulanov and Widholm 2010). For quality con-
trol (QC) 10 µl of leaf extract was taken from each sample 
and pooled, then run and analyzed after every 9 biological 

samples. Samples and QC were dried under vacuum and 
derivatized with 75 µl methoxyamine hydrochloride (Sigma-
Aldrich, MO, USA) (40 mg ml−1 in pyridine) for 90 min at 
50 °C, then with 125 μl MSTFA + 1%TMCS (Thermo, MA, 
USA) at 50 °C for 120 min followed by an additional 2-h 
incubation at room temperature. An internal standard (30 
µL hentriacontanoic acid) was added to each sample prior to 
derivatization. Samples were analyzed on a gas chromatog-
raphy/mass spectroscopy (GC/MS) system (Agilent Inc, Palo 
Alto, CA, USA) consisting of an Agilent 7890 gas chroma-
tograph, an Agilent 5975 mass selective detector, and a HP 
7683B autosampler. Gas chromatography was performed on 
a ZB-5MS capillary column (Phenomenex, Torrance, CA, 
USA). The inlet and MS interface temperatures were 250 °C, 
and the ion source temperature was adjusted to 230 °C. An 
aliquot of 1 µl was injected with the split ratio of 10:1. The 
helium carrier gas constant flow rate was 2.4 ml min−1. The 
temperature program was: 5 min isothermal heating at 70 °C, 
followed by an oven temperature increase of 50 °C min−1 
to 310 °C, and a final 10 min at 310 °C. The mass spec-
trometer was operated in a positive electron impact mode at 
69.9 eV ionization energy in m/z 50–800 scan range. The 
spectra of chromatogram peaks were compared with elec-
tron impact mass spectrum libraries NIST08 (NIST, MD, 
USA), WILEY08 (Palisade Corporation, NY, USA), and a 
custom library. To allow comparison among samples, data 
were normalized to the internal standard (hentriacontanoic 
acid, SIGMA, USA) and standardized to the dry weight of 
the individual sample. The chromatograms and mass spec-
tra were evaluated using the AMDIS 2.71 (NIST, Gaithers-
burg, MD, USA) program, using a custom-built database. 
All known artificial peaks were identified and removed with 
prior data mining. The instrument variability was within the 
standard acceptance limit of 5%.

194 metabolites were identified with GC/MS. Technical 
replicates were averaged across samples. Normalized data 
was log10 transformed and univariate analysis was per-
formed using SAS (SAS/STAT v9.4, SAS Institute, Inc.) to 
identify outliers. The MDS plot was created using R base 
package with normalized and transformed reads. The trans-
formed and normalized metabolomics dataset was analyzed 
using a general linear model (ANOVA) with SAS PROC 
GLM where time point was determined non-significant 
(p > 0.01) and dropped from the model. Means separation 
tests were done using a two-tailed Dunnett, comparing each 
treatment to the control. Metabolites were considered sig-
nificantly different from control if p < 0.01 (Table 1).

2.4 � Weighted gene correlations network analysis 
(WGCNA)

WGCNA was run separately for each time point (Langfelder 
and Horvath 2008). A signed network was performed with 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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a power of 8 and 7 for time point A and B respectively. 
Metabolites were correlated to each module per time point, 
and physiological data was correlated for time point B. 
Time point B data did not perform well in the WGCNA 
network due to the variation within the data, this analysis 
was dropped. The genes present in each module were cor-
related with metabolites that were found significant in the 
ANOVA (p < 0.01), Supplemental File 1 shows the modules 
with DEG for time point A. The GOSlim-Plant was selected 
for the gene ontology classification with a Benjamini & 

Hochberg FDR correction of 0.01 annotated to Arabidopsis 
thaliana.

2.5 � Integration of metabolite and transcriptional 
data

Linear correlation analysis was performed in R, with the 
significantly differentially expressed transcripts and metabo-
lites from the second time point (B), along with the physi-
ological data collected and previously reported by Britto de 

Table 1   List of metabolites with significant changes in the experimental treatments (p ≤ 0.01)

The log2 normalized median values ± standard error and log2fold change (log2(FC)) for each treatment are shown. Metabolites significantly 
changed are denoted by bold value (p ≤ 0.01) or *(p ≤ 0.05). Bold italic cells show increased metabolite content and italics represents decreased 
metabolite content in the treatments

Compound Ambient Elevated [CO2] Elevated Temperature Combination

Log2(x̃) ± SE Log2(x̃) ± SE Log2(FC) Log2(x̃) ± SE Log2(FC) Log2(x̃) ± SE Log2(FC)

1,3-Diaminopropane 9.21 ± 0.27 9.81 ± 0.23 0.60 10.91 ± 0.13 1.70 9.95 ± 0.24 0.75
1-Benzylglucopyranoside 9.61 ± 0.21 10.56 ± 0.17 0.95 10.89 ± 0.26 1.28 10.76 ± 0.15 1.15
2-Methylmalic acid 11.27 ± 0.48 8.25 ± 0.17 − 3.02 9.60 ± 0.17 − 1.67 10.30 ± 0.38 − 0.97
α-ketoglutaric acid 9.93 ± 0.33 7.78 ± 0.21 − 2.15 10.57 ± 0.25 0.63 9.21 ± 0.25 − 0.72
α-tocopherol 10.85 ± 0.23 11.44 ± 0.23 0.59 12.25 ± 0.30 1.41 12.43 ± 0.16 1.58
γ-tocopherol 8.48 ± 0.17 8.90 ± 0.14 0.42 9.12 ± 0.18 0.64 8.26 ± 0.12 − 0.22
Arabinose 12.68 ± 0.12 13.21 ± 0.17 0.52 13.92 ± 0.25 1.24 13.34 ± 0.25 0.65
Arabitol 10.90 ± 0.22 11.61 ± 0.26* 0.71 11.67 ± 0.14 0.77 11.02 ± 0.16 0.12
Dehydroascorbic acid 11.54 ± 0.21 11.81 ± 0.14 0.27 12.57 ± 0.15 1.02 11.71 ± 0.19 0.17
Ethanolamine 14.58 ± 0.15 15.07 ± 0.13* 0.49 15.23 ± 0.11 0.65 14.70 ± 0.16 0.12
Fructose 20.19 ± 0.19 20.57 ± 0.21 0.38 21.27 ± 0.11 1.08 20.38 ± 0.23 0.19
Galactose 15.85 ± 0.18 16.71 ± 0.21 0.87 16.88 ± 0.18 1.03 16.22 ± 0.20 0.37
Gluconic acid 10.03 ± 0.05 10.68 ± 0.23 0.65 10.98 ± 0.17 0.95 10.77 ± 0.20 0.74
Glucose 20.55 ± 0.08 21.10 ± 0.21* 0.55 21.47 ± 0.09 0.92 20.54 ± 0.23 − 0.01
Glyceric acid 16.47 ± 0.12 17.20 ± 0.09 0.72 17.25 ± 0.15 0.78 16.54 ± 0.20 0.07
Inositol 14.78 ± 0.18 15.50 ± 0.19 0.71 15.83 ± 0.15 1.05 15.47 ± 0.16 0.68
Isoleucine 9.59 ± 0.17 10.40 ± 0.25 0.81 10.75 ± 0.22 1.16 10.58 ± 0.25 0.98
Leucine 9.45 ± 0.33 10.11 ± 0.11 0.66 10.95 ± 0.39 1.50 10.44 ± 0.35 0.98
Maltose 15.06 ± 0.15 15.50 ± 0.14 0.44 15.74 ± 0.07 0.68 14.98 ± 0.26 − 0.08
Melibiose 11.08 ± 0.23 11.91 ± 0.19 0.84 13.02 ± 0.27 1.94 12.24 ± 0.37 1.17
Neochlorogenic acid 16.72 ± 0.21 16.96 ± 0.11 0.24 17.32 ± 0.14 0.60 17.17 ± 0.13 0.45
O-acetylsalicylic acid 10.73 ± 0.11 11.00 ± 0.12 0.27 11.79 ± 0.19 1.06 11.09 ± 0.22 0.36
Oxalic acid 13.46 ± 0.16 13.54 ± 0.15 0.08 11.92 ± 0.31 − 1.54 12.04 ± 0.31 − 1.42
Phenylalanine 9.49 ± 0.13 9.83 ± 0.21 0.34 10.76 ± 0.36 1.27 10.81 ± 0.40 1.31
Quinic acid 17.30 ± 0.22 18.22 ± 0.12 0.92 18.14 ± 0.12 0.84 17.68 ± 0.13 0.39
Ribitiol 10.25 ± 0.25 10.81 ± 0.17 0.55 11.57 ± 0.21 1.32 10.90 ± 0.22* 0.64
Ribose 14.92 ± 0.17 15.25 ± 0.10 0.33 15.56 ± 0.12 0.64 15.13 ± 0.18 0.21
Serine 14.04 ± 0.11 13.92 ± 0.11 − 0.12 15.15 ± 0.16 1.11 14.36 ± 0.26 0.32
Sinapic acid 7.30 ± 0.19 7.74 ± 0.15 0.45 7.99 ± 0.20 0.69 7.98 ± 0.18 0.69
Stigmasterol 11.52 ± 0.14 12.14 ± 0.25 0.62 12.75 ± 0.22 1.23 12.65 ± 0.15* 1.13
Threitol 8.97 ± 0.12 9.28 ± 0.09 0.31 10.23 ± 0.15 1.26 9.78 ± 0.16 0.81
Threonine 11.90 ± 0.29 12.38 ± 0.11 0.46 13.30 ± 0.12 1.38 12.77 ± 0.26 0.85
Valine 10.57 ± 0.40 11.19 ± 0.15* 0.61 12.22 ± 0.18 1.64 11.91 ± 0.26 1.34
Xylose 8.80 ± 0.20 9.71 ± 0.15* 0.91 10.26 ± 0.26 1.46 10.08 ± 0.26 1.27
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Assis Prado et al. (2016). Linear correlation was selected 
to highlight possible relationships between the metabolite 
and transcript abundance. Additionally, the approach taken 
in time point A, using WGCNA, was not appropriate for the 
second time point because of high variation within replicates 
of a given treatment and because far fewer transcripts were 
significantly different among treatments (see results). Cor-
relations with an adjusted p value (False Discovery rate) of 
0.05 or less, and a correlation coefficient of 0.6 or greater 
were considered significant in this analysis.

3 � Results

3.1 � Transcriptome analysis

Sequencing produced a total of 635,649,777 paired-end 
reads, which were initially assembled into 187,216 contigs. 
Using a filter that kept only transcripts with at least 10 reads 
across the 4 replicates resulted in a final transcriptome con-
taining 45,073 contigs with an average read length of 400 bp. 
Annotation of those contigs identified 27,502 unigenes with 
11,538 BLASTX hits in the NCBI database. The transcrip-
tome was classified into GO slim terms describing cellular 
components, molecular functions and biological processes 
(Supplemental Fig. 2). The highest abundance terms for 
cellular components, molecular functions, and biological 
processes were “cell”, “catalytic activity”, and “metabolic 
process” respectively, which was similar to another Panicum 
maximum transcriptome previously published (Toledo-Silva 
et al. 2013).

Multidimensional scaling (MDS) analysis of leaf tran-
scripts showed a clear time point separation and clustering 
of treatments within each time point (Fig. 1a). The treat-
ment separation was less apparent in time point B and the 
variability within the control and eC plots was also greater 
(Fig. 1a). Differential transcript expression from time point 
A identified 666 transcripts that were altered in the eCeT 
treatment when compared to control (p < 0.1, Supplemental 
File 2). No transcripts were differentially expressed in the 
eC treatment, when compared to control, and only 3 tran-
scripts were significantly altered in the eT treatment. GO 
slim terms were assigned to the 666 transcripts altered in 
the eCeT treatment. Overrepresentation tests were run to 
identify GO categories with increased occurrence within the 
differentially expressed genes, with a false discovery rate of 
0.05. The most overrepresented GO categories were cellu-
lar component “ribosome”, molecular function “structural 
constituent of ribosome”, and biological process “protein 
folding” (Supplemental Fig. 3). Time point B showed the 
same trend as time point A, but with fewer transcripts sig-
nificantly changing; only 71 total in eCeT, 2 in eT, and 0 in 
eC (p < 0.1, Supplemental File 2). The relaxed p value for 
DEG allowed a larger set of transcripts to test for correlation 
with metabolite content and/or leaf physiological traits. No 
GO categories were overrepresented within the significant 
transcripts in time point B.

3.2 � Metabolite analysis

Untargeted metabolomics was used to investigate bio-
chemical changes in Guinea grass exposed to eC, eT and 

Fig. 1   Multidimensional Scaling (MDS) plots for the transcript and 
metabolite experiments. a MDS plot using transcript data, showing a 
clear time point separation (circles vs triangles) as well as separation 
of elevated temperature and ambient temperature in Timepoint A (cir-
cles). b MDS plot using metabolite data, showing no clear separation 

of time points, but a clear separation of ambient treatment (black) 
from elevated temperature treatment (red). Time Point A (Circles), 
Time Point B (Triangles), Ambient (black), Elevated [CO2] (blue), 
Elevated Temperature (red), Combination (yellow)



	 J. M. Wedow et al.

1 3

51  Page 6 of 13

eCeT. Although 194 total metabolites were identified, only 
125 metabolites were consistently present in the different 
treatments and those were used for analysis. MDS analysis 
revealed a separation of the eT treatment (red symbols) 
from the C plots (black symbols), but no clear separa-
tion between sampling dates (Fig. 1b). Additionally, the 
time points were not significantly different in the ANOVA 
(p > 0.01). A general linear model with a Dunnett’s test 
was run to test for significant differences in abundance 
among treatments, and 34 metabolites were significantly 
altered in at least one treatment compared to the C plots 
(p ≤ 0.01, Table 1). Only 1-benzylglucopyranoside and 
isoleucine were significantly different in each of the treat-
ments compared to the C plots.

Overall the metabolome showed the greatest change 
in the eT treatment compared to C with 30 metabolites 
significantly changing (Table 1). All of the metabolites 
increased in abundance in eT relative to ambient, with the 
exception of 2-methylmalic acid and oxalic acid (Table 1). 
Melibiose showed the largest increase in eT amongst sug-
ars, with a 1.94-fold change; arabinose, fructose, galac-
tose, glucose maltose, ribose, and xylose were also sig-
nificantly increased in eT. Notably sucrose was not altered 
under any treatment. Many amino acids showed significant 
increases under eT compared to ambient with Val Thr, and 
Phe increasing the most (1.64, 1.38, 1.27-fold; Table 1). 
Organic acids, including neochlorogenic acid and sinapic 
acid, which are involved in secondary metabolism and 
specifically monolignol metabolism showed significant 
increases under the eT treatment compared to C (Table 1).

The eC treatment did not affect the metabolome as 
much as eT, with only 2 metabolites showing a log2-
fold ≥ |1| and p ≤ 0.01. 2-Methylmalic acid (citramalate) 
had a large decrease (− 3.02-fold) in the eC plots, and this 
compound decreased across all treatments. Additionally, 
α-ketoglutaric acid had a large decrease (− 2.15-fold) in 
eC. Ile was the only amino acid impacted in the eC plots, 
and was moderately increased by 0.81 fold (Table  1). 
Quinic acid, an important intermediate of the lignin path-
way, increased in the eC plots (0.92-fold). 1-Benzylglu-
copyranoside had 0.95 log2-fold change in the eC plots.

The combination of eC and eT showed similar trends to 
the eT plots alone, but with a dampened effect (Table 1). 
All metabolites that had a significant change in the eCeT 
treatment were also significantly altered in the eT treat-
ment. In both eT and eCeT, α-tocopherol increased sig-
nificantly with a log2-fold > 1. Many compounds that were 
significantly increased in eT were not significantly altered 
in eCeT. For example, Ser and Thr were significantly 
increased in the eT treatment, but were not significantly 
impacted in eCeT, with a fold-change trend of decreas-
ing in relative leaf content. Additionally, many sugars and 
sugar alcohols including; arabinose, fructose, galactose, 

glucose, and inositol increased in the eT plots but not in 
eCeT.

3.3 � Integration of metabolite and transcript data—
timepoint A

Weighted gene correlation network analysis (WGCNA) 
was used to construct a signed network of clustered genes 
from the time point A (sampled after 30 days of treatment). 
Using 9802 transcripts, expression data were clustered into 
9 unique modules. GO enrichment was performed for each 
module to identify the overrepresented biological functions 
within each grouping (Supplemental Table 1). Module 1 
contained the largest number of transcripts (1719 total), but 
only 2 were differentially expressed in the eCeT treatments. 
Module 3 contained 948 transcripts, 84 of which were dif-
ferently expressed in eCeT, and had significantly enrichment 
in regulation of salicylic acid biosynthesis process, defense 
to oomycetes, cell surface receptor signaling, plant-type 
hypersensitive response, protein phosphorylation, defense 
response to bacterium, and oxidation–reduction process. 
In addition, module 3 had a significant negative correla-
tion with melibiose (Supplemental Table 1, Supplemental 
Fig. 4). Module 5 contained 484 transcripts, 35 of which 
were differently expressed in eCeT treatments, with sig-
nificantly enrichment in oxylipin biosynthesis, terpenoid 
biosynthesis, response to wounding, hormone biosynthesis, 
secondary metabolite biosynthesis, defense response, and 
oxidation–reduction process.

Within module 3, four transcripts were strongly correlated 
with melibiose content (r ≥ |0.8|, p < 0.01; Fig. 2). Melibiose 
showed significant negative correlations with the expression 
of two guard cell transcripts. The first, At4g23160, is anno-
tated as cysteine-rich receptor-like protein kinase 8 (CRK8) 
and shows biological activity involved in defense response 
to bacterium and protein phosphorylation. The second was 
At3g48300, a cytochrome P450 (CYP71A23) involved in 
oxidation–reduction processes. The strongest relationship 
was identified for transcript ID, At1g54960, which was 
annotated as a subfamily of mitogen-activated protein kinase 
kinase kinase 2 (MAP3 K) known as Arabidopsis Nucleus- 
and Phragmoplast-Localized Kinase1 (NPK1)—related pro-
tein kinases (ANPs) specifically ANP2, in the Arabidopsis 
genome. The final gene with a negative linear relationship 
with melibiose was identified as transcript ID, At5g54160, 
a caffeic acid/5-hydroxyferulic acid O-methyltransferase 1 
(COMT) with functions in lignin and flavonoid biosynthesis.

3.4 � Integration of metabolite and transcript data—
timepoint B

Several significant relationships were identified within the 
metabolite and transcript datasets, with a r ≥ |0.75| and an 
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adjusted p ≤ 0.01 (Table 2). All significant linear correlations 
between DEG and metabolites are shown in Supplemental 
File 3. Xylose had the most significant linear correlations, 
10 positive and one negative. The strongest relationship was 
between gene ID At5g19440 (r = 0.87) (Fig. 3). The BlastX 

annotation hit for Arabidopsis thaliana identified At5g19440 
as a NAD(P)-binding protein, located in the cytosol, and 
involved in cinnamyl-CoA reductase (CCR) activity in a 
variety of biological processes including lignin biosynthesis 
and response to cold. This sequence was highly similar to the 
annotated CCR1 in the Z. mays genome (LOC100382657) 
and predicated CCR1 in S.italica genome (LOC101786254).

The second strongest relationship between a transcript 
and xylose was transcript At5g56870 (r = 0.84). This tran-
script was annotated as β-galactosidase 4 (BGAL4) in the 
Arabidopsis genome. This gene is localized to the cytoplasm 
and functions in rRNA N-glycosylase activity and defense 
response, also acting as a negative regulator of translation. 
Along with the strong linear correlation to xylose, BGAL4 
was also significantly correlated with α-tocopherol, stig-
masterol, and O-acetylsalicylic acid (r = 0.80, 0.76, 0.75, 
respectively; Supplemental File 3). Two additional tran-
scripts, At5g03840 (r = 0.81) and At1g36160 (r = − 0.81), 
showed significant linear correlations with xylose con-
tent. Transcript ID At5g03840 was annotated as terminal 
flower 1 (TFL1) controlling inflorescence meristem identity 

Fig. 2   Linear correlation between gene expression and melibiose 
content. Significant linear relationships between melibiose and tran-
scripts present within the weighted gene correlation network analysis 
module 3, for time point A (30 days of treatment). Correlations listed 
have |r| ≥ 0.70 and p < 0.01. Normalized expression values for each 
transcript are plotted on the y axis: a At1g54960–mitogen-activated 

protein kinase kinase kinase 2 (MAP3  K); b At4g23160–cysteine-
rich receptor-like protein kinase 8 (CRK8); c At5g54160- O-methyl-
transferase; d At3g48300–cytochrome P450 (CYP71A23). Ambient 
(black, circle), elevated [CO2] (blue, triangle), elevated temperature 
(red, diamond), combination (yellow, square)

Table 2   Number of significant linear correlations between metabolite 
content and gene expression measured at time point B (50 d of treat-
ment)

Correlations have |r| ≥ 0.75 and p < 0.01

Metabolite Positive Negative

1-Benzylglucopyranoside 1 0
α-Tocopherol 2 0
β-Sitosterol 1 0
O-acetylsalicylic acid 2 0
Sinapic acid 4 1
Stigmasterol 1 0
Valine 2 0
Xylose 10 1
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within the Arabidopsis genome and showed 73% homolog 
with the Zea mays ZCN12 (Zea centroradialis (ZCN)) 
(NM_001112779.2). This gene functions in many biological 
roles including acting as a negative regulator of cell aging 
and is expressed during growth and development stages 
from flowering to leaf senescence. ZCN12 was also found to 
have strong correlations with sinapic acid and valine (Sup-
plemental File 3). Unlike the first three gene correlations, 
At1g36160, showed a negative linear correlation with xylose 
and sinapic acid (r = − 0.74). This gene was annotated in the 
Arabidopsis genome as acetyl-CoA carboxylase 1 (ACC1), 

which regulates the initial step in the fatty acid biosynthesis 
pathway of acetyl-CoA to malonyl-CoA.

In addition to the strong associations with xylose 
(Fig. 3e), transcript ID At1g65480 was correlated with 
4 additional metabolites. The BlastX annotation hit for 
Arabidopsis thaliana identified this transcript as flowering 
locus T (FLT) functioning in phosphatidylethanolamine 
binding with biological processes in flower development. 
The Blast annotation for Zea mays had only 52% homol-
ogy with TWIN SISTER of FT (NM_001309850.1) and 
predicted Setaria italica FLT (XM_004960683.3) with 
a homology of 53%. Positive linear correlations were 

Fig. 3   Linear correlation between gene expression and xylose con-
tent. Significant linear relationships between xylose content and tran-
script expression measured at time point B (50 days of treatment). 
Correlations listed have |r| ≥ 0.70 and p < 0.01. Normalized expression 
values for each transcript are plotted on the y axis: a At5g19440–
NAD(P)-binding protein (CCR1); b At5g56870–β-galactosidase 

4 (BGAL4); c At5g03840–terminal flower 1/Zea centroradia-
lis (ZCN12); d At1g36160- acetyl-CoA carboxylase 1(ACC1); e 
At1g65480- flowering locus T (FT). Ambient (black, circle), elevated 
[CO2] (blue, triangle), elevated temperature (red, diamond), combina-
tion (yellow, square)
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identified between FLT and valine, sinapic acid, O-ace-
tylsalicylic acid, β- sitosterol, and xylose (r = 0.84, 0.82, 
0.78, 0.77, 0.75) respectively (Supplemental Fig. 5).

4 � Discussion

This study investigated the transcriptional and metabolite 
response of Guinea grass to growth at eC, eT and the com-
bination of eCeT under open-air field conditions. Previous 
physiological analysis of the plants grown at this FACE 
experiment revealed that growth at eT increased leaf bio-
mass and leaf area, but there was considerable variation 
within each treatment (Supplemental Fig. 6) (Britto de 
Assis Prado et al. 2016). The transcript and metabolite 
data also showed significant variation within each treat-
ment, revealed by MDS (Fig. 1), but different groupings 
were apparent in the transcript and metabolite data. The 
transcriptome showed a clear separation among sampling 
dates (30 or 50 days of treatment), while the metabolome 
data showed a clear separation of treatments, most clearly 
C and eT (Fig. 1). The transcriptome also showed separa-
tion of treatments at the first sampling date (Timepoint A), 
but not the second (Timepoint B) (Fig. 1a). The within-
treatment variability observed in the data may be due to 
environmental and edaphic properties of the field site 
(i.e., soil characteristics and/or slope), which could not 
be accounted for in the analysis, or from the relatively 
low sample size (n = 4). However, the fact that no tran-
scripts were significantly altered in response to eC alone 
is consistent with previous experiments done with other 
C4 grasses, which showed that in the absence of drought 
stress, there is no direct effect of elevated [CO2] on C4 
metabolism (Wall et al. 2001; Leakey et al. 2006). On the 
other hand, eT stimulated the growth of P.maximum in this 
study (Supplemental Fig. 6), yet only a few genes were 
significantly differentially expressed in eT alone. Optimal 
growth for P. maximum is estimated to be at least 21 °C, 
and background temperature in ambient conditions dur-
ing this experiment was only 17.0 ± 0.06 °C, so the eT 
treatment moved the plants closer to optimal growth tem-
peratures (Araujo et al. 2013). In the combination (eCeT) 
treatment, significant changes in the transcriptome were 
observed, most notably transcripts involved in protein 
translation and assembly.

A key aim of this work was to integrate the transcript 
and metabolite data sets. Because of the clear differ-
ences in the transcript data between time points A and B 
(Fig. 1a), integration was done within each time point and 
not across time points. In addition, time point B offered 
the potential to integrate leaf physiological data with the 
transcript and metabolite datasets. Because of the large 
level of variability within individual treatments for all of 

the parameters, linear correlation analysis was used for 
data integration. For time point A WGCNA networks were 
built to group genes responding in similar ways together 
to form a larger network. These networks were then cor-
related with the metabolite data to identify interactions 
of interest. Because there were fewer DEG within time 
point B, WGCNA was not possible, and so for time point 
B, simple linear correlations between the DEG, signifi-
cant metabolites, and leaf physiological data were used to 
identify correlations of interest.

4.1 � Integration of metabolomic and transcript 
data—time point A

Two modules (3 and 5) from the WGCNA analysis con-
tained significant numbers of DEG (Supplemental Table 2). 
The DEG identified within module 3 were enriched in sali-
cylic acid (SA) biosynthesis (p 0.016) and general defense 
response to bacteria, suggesting greater stress in the eCeT 
treatment compared to control. The enrichment of SA bio-
synthesis transcripts has previously been identified to be 
part of the heat-stress response in plants. Salicylic acid 
stabilizes heat shock transcription factors increasing their 
binding to heat shock elements and thus promoting heat 
shock-related genes (Wahid et al. 2007). While the back-
ground temperature during the experiments was low, it is 
possible that the combination of eC and eT increased leaf 
temperatures more than just the eT temperature alone, thus 
triggering some stress-related transcriptional responses. The 
GO-term enrichment analysis of the transcripts associated 
with module 5 are also in agreement with a trend towards 
up-regulation of secondary metabolites involved in defense 
response.

Many amino acids are precursors to secondary metabo-
lites that change in response to various environmental per-
turbations. In this study, the eT and eCeT treatments resulted 
in significantly greater levels of amino acids derived from 
oxaloacetate and pyruvate. Accumulation of such amino 
acids is well known in abiotic stresses and heat (Joshi et al. 
2010; Kaplan et al. 2004; Rizhsky et al. 2004; Guy et al. 
2008; Obata and Fernie 2012; Obata et al. 2015). The role 
of branched chain amino acids and other amino acids in 
improving heat tolerance is complex and not fully under-
stood, but likely provides support for an increase in produc-
tion of secondary metabolites to influence defense response 
during temperature stress (Kaplan et al. 2004; Du et al. 
2011). Additionally, increases in amino acid pools have the 
potential to serve as osmolytes under heat stress (Joshi et al. 
2010) or an alternative electron donor for the mitochondrial 
electron transport chain (Araujo et al. 2013). High levels of 
Ile, Val, and Phe were observed in the leaves of Bermuda 
grass and mature kernels of rice exposed to elevated temper-
ature and were thought to improve heat tolerance (Du et al. 
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2011; Yamakawa and Hakata 2010; Kaplan et al. 2004). 
The buildup of transcripts in the brown and green modules 
involved in defense and secondary metabolite biosynthesis 
in combination with the increase in amino acids suggest up-
regulation of defense metabolism in the eCeT treatment at 
30 days post-treatment exposure.

Plant grown under abiotic stress condition use compatible 
osmolytes, low molecular mass compounds, to provide an 
adaptive mechanism. Accumulation of these soluble sugars 
such as fructose, sucrose, and glucose are documented to sig-
nal stress conditions and improve tolerance to cold, heat, and 
drought stress ((Du et al. 2011; Wahid et al. 2007; Kaplan 
et al. 2004; Rizhsky et al. 2004). The eT plots, regardless of 
[CO2], showed increased soluble sugar content; including 
melibiose. Melibiose is a common osmolyte and a byproduct 
of the hydrolysis of raffinose, via invertase (ElSayed et al. 
2014), and has been identified to accumulate under various 
environmental conditions including drought stress and ele-
vated temperature in both C3 and C4 species (Rizhsky et al. 
2004; Kaplan et al. 2004; Du et al. 2011). Figure 2 shows 
the relationship of four transcripts negatively associated with 
melibiose, the strongest of which was MAP3 K. MAPKs are 
highly conserved signaling modules in eukaryotes involved 
in cellular responses, including response to stimuli. These 
cascades trigger activation of transcription factors, via phos-
phorylation, and other cellular responses to signal a stimulus 
response (Xu and Zhang 2015). This transcript was anno-
tated as ANP2/NPK1; these enzymes activate stress-related 
MAPKs activated by ROS (Kovtun et al., 2000). In this 
study, there was an inverse relationship between MAP3 K 
expression and melibiose content, suggesting that there was 
less stress-related signaling in the eT plots.

The second transcript highly associated with melibiose 
was a caffeic acid/5-hydroxyferulic acid O-methyltransferase 
1 (COMT). Switchgrass and maize mutants have shown that 
downregulation of COMT impacts lignin content of biofuel 
crops specifically decreasing the S-lignin units and improv-
ing ethanol yields (Liu et al. 2017; Guillaumie et al. 2008). 
Downregulation of this transcript could signal a shift from 
lignin biosynthesis to secondary defense metabolism.

The final two transcripts with a strong negative rela-
tionship to melibiose were CRK6 and CYP71A23, anno-
tated as CYP72A26 in the maize genome (Jameson et al. 
2008). Both of these transcripts are expressed in the guard 
cells. CRKs are induced by pathogen infection, and trans-
genic Arabidopsis plants with significantly elevated levels 
of CRK5 had enhanced leaf growth and increased patho-
gen resistance (Chen et al. 2003). CRK6 was found to be 
involved in ROS mediated signal processes with increased 
transcript abundance after exposure to pathogens, SA, and 
ROS (Chen et al. 2003, 2004). The decrease in abundance of 
transcripts involved in guard cell metabolism is interesting 
and could potentially indicate a stomatal response within 

the eT and eTeC plots. The correlation between transcripts 
that are tightly regulated with complex feedback interactions 
between environment and cellular metabolism and melibiose 
lead us to suggest that melibiose functions in osmotic adjust-
ment under eT and eTeC to protect cellular components and 
enhance acclimation to eT.

4.2 � Integration of growth, metabolomic, 
and transcript data—timepoint B

Time Point B (50 d of treatment) allowed us to test the corre-
lation of leaf biomass and area with metabolite and transcript 
levels; however, no significant correlations were observed. 
The low temperatures reported on the day of sampling may 
have greatly affected the metabolite and transcript levels, 
hindering the correlation of these datasets with leaf meas-
urements taken at the end of the season. Field conditions 
are also inherently more variable than controlled environ-
ment conditions, but field experiments better represent the 
variation expected in the future. After 50 d of treatment, we 
did observe significant correlations between transcripts and 
metabolites, with the most notable being xylose (Table 2). 
Xylose is a monosaccharide and a precursor to pyruvate and 
acetyl-CoA.

The use of linear correlation analysis allowed for the 
identification of associations that might not have been pre-
dicted with traditional methods. Three transcripts, shown in 
Fig. 3, had a strong positive correlation with xylose content. 
The strongest correlation was with Z. mays cinnamoyl-CoA 
reductase (CCR1). CCR1 is the entry point into the lignin 
branch of the phenylpropanoid pathway (Piquemal et al. 
1998). The position of CCR in the phenylpropanoid path-
way gives this enzyme direct control over the direction of 
the metabolic flux toward flavonoids or monolignols(Sattler 
et al. 2017). ZmCCR1 mutants with a moderate down-regula-
tion of CCR1 activity increased the digestibility of cell walls 
without severely modifying lignin content (Tamasloukht 
et al. 2011). The overexpression of SbMyb60 transcription 
factor in Sorghum bicolor was found to directly impact the 
monolignol biosynthesis with higher abundance of syrin-
gyl lignin, cell wall composition, with increases in solu-
ble phenolic and aromatic amino acids (Scully et al. 2016, 
2018). The observed increase in abundance of sinapic acid, 
phenylalanine, and α-Tocopherol under the eT treatment, 
regardless of [CO2], point to an impact of eT on lignin com-
position, possibly increased S-type concentrations, although 
that would need to be tested. In addition to components of 
cell wall structure, monolignol polymers have been induced 
under various biotic and abiotic stress conditions (Tronchet 
et al. 2010; Vincent et al. 2005). A similar heating experi-
ment with both C4 and C3 grasses was performed at the prai-
rie heating and CO2 enrichment site located in Wyoming, 
USA. A metabolomic profiling of Bouteloua gracilis, a C4 
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grass, identified similar responses including an increase in 
phenolic and sugar content within the senesced leaves of 
plants grown under elevated temperature and the combina-
tion treatment, along with an increase in amino acid content 
under the elevated temperature with ambient [CO2] (Suseela 
et al. 2014).

Sugars are continuously moving thru the phloem from 
source to sink and convey signaling information along the 
way, including regulation of flowering time (Gibson 2005). 
In several species adding exogenous sucrose and possibly 
other sugars promotes flowering (Cho et al. 2018). Inter-
estingly, xylose was identified to have two significant posi-
tive correlations with flowering time-related genes, FT and 
ZCN12 (AtTFL1, Fig. 3c, d). The Arabidopsis orthologs are 
two closely related genes that are key integrators of flower-
ing transition pathways. These two genes have antagonis-
tic functions in the flower transition pathway; FT promotes 
flowering and TFL1 suppresses the transition (Shannon and 
Meekswagner 1991). Unlike the ortholog gene, ZCN12 
belongs to the FT-like II group, primarily expressed in the 
leaf blades, and is activated after floral transition and is con-
tinually express thru late stages of vegetative development 
(Danilevskaya et al. 2010). FT-like proteins mediate numer-
ous processes including growth, plant architecture, fruiting 
and tuber formation (Pin and Nilsson 2012). Recent evi-
dence has shown FT can act as a cell autonomous regulator 
of stomatal guard cell opening and closure (Kinoshita et al. 
2011). Kinoshita and colleagues showed overexpression of 
FT in Arabidopsis increased H+-ATPases activity within the 
guard cells, suggesting that FT likely influences the stomatal 
opening/closure via regulation of H+-ATPase. The accumu-
lation of FT related transcripts within eT and eCeT could 
offer an additional regulation of stomatal function correlat-
ing with the osmotic adjustment provided from the accu-
mulation of soluble sugars, such as melibiose and xylose.

5 � Conclusion

This study investigated tropical Guinea grass response to 
global atmospheric change and rising temperature in the 
field. Although warming treatments in temperate regions 
often decreased productivity, heating the canopy 1.5 °C 
above ambient in this experiment resulted in increased leaf 
area and biomass. Field transcriptomics and metabolomics 
identified metabolic pathways that were altered by growth at 
elevated [CO2] and temperature. Melibiose and xylose con-
tent were greater in plants exposed to elevated temperature, 
and content of these sugars was significantly correlated to 
the expression of genes involved in secondary metabolism, 
defense response, and stomatal function. We hypothesize 
that the metabolite and transcript responses were associated 

with alleviation of stress and greater growth at elevated 
temperature.
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