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Abstract

Introduction Mass spectrometry is the current technique of

choice in studying drug metabolism. High-resolution mass

spectrometry in combination with MS/MS gas-phase

experiments has the potential to contribute to rapid

advances in this field. However, the data emerging from

such fragmentation spectral files pose challenges to

downstream analysis, given their complexity and size.

Objectives This study aims to detect and visualize anti-

hypertensive drug metabolites in untargeted metabolomics

experiments based on the spectral similarity of their frag-

mentation spectra. Furthermore, spectral clusters of

endogenous metabolites were also examined.

Methods Here we apply a molecular networking approach

to seek drugs and their metabolites, in fragmentation

spectra from urine derived from a cohort of 26 patients on

antihypertensive therapy. The mass spectrometry data was

collected on a Thermo Q-Exactive coupled to pHILIC

chromatography using data dependent analysis (DDA) MS/

MS gas-phase experiments.

Results In total, 165 separate drug metabolites were found

and structurally annotated (17 by spectral matching and

122 by classification based on a clustered fragmentation

pattern). The clusters could be traced to 13 drugs including

the known antihypertensives verapamil, losartan and

amlodipine. The molecular networking approach also

generated clusters of endogenous metabolites, including

carnitine derivatives, and conjugates containing glutamine,

glutamate and trigonelline.

Conclusions The approach offers unprecedented capability

in the untargeted identification of drugs and their metabo-

lites at the population level and has great potential to

contribute to understanding stratified responses to drugs

where differences in drug metabolism may determine

treatment outcome.

Keywords Antihypertensive drugs � Drug adherence �
Drug metabolism � Fragmentation � High-resolution mass

spectrometry � Metabolomics � Urine

1 Introduction

Mass spectrometry is pre-eminent in the analysis of drug

metabolism. The enhanced sensitivity of new generation

mass spectrometers including the high-resolution Orbitrap

series of instruments (Zubarev and Makarov 2013) pro-

vides ever more capability to understand how drugs are

metabolised by the human body. Mass spectrometry frag-

mentation (MS/MS or MS2) is widely used to find drug

specific fragments (Levsen et al. 2005; Zhang et al. 2009;

Gao et al. 2015) but the complexity of the data offers

significant analytical challenges (Garg et al. 2015) and

tools enabling advanced spectral analysis offer great utility

in deriving new knowledge from this data (Hufsky et al.
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2014; Ridder et al. 2014; Misra and van der Hooft 2016).

Some of these tools will be discussed in the next

paragraphs.

The mass defect filtering (MDF) approach is one

example used to target drug derived metabolites within a

complex extract (Zhu et al. 2006). The MDF approach uses

drugs and core template filters and a set of commonly

found transformations in drug metabolism such as

hydroxylation, methylation, and decarboxylation and their

calculated ‘mass defect shifts’, i.e., the fractional differ-

ence of the reactant and the product. With these filters and

mass defects, potential drug metabolites can be found

within a larger set of detected compounds in high-resolu-

tion mass spectrometry (HR-MS) data combined with data-

dependent analysis (DDA) fragmenting the most abundant

ions (i.e., the TopN ions) entering the mass spectrometer.

More recently, the MS2Analyzer tool was developed to

screen for specific product ions (mass fragments), neutral

losses (difference between precursor ion and a product

ion), and mass differences (difference between two product

ions) in (HR-MS) fragmentation data (Ma et al. 2014). In

principle, MS2Analyzer can be used to screen for spectra

that contain pre-determined drug product ions, as well as

commonly found losses caused by biotransformation of

drugs, such as glucuronidation (i.e., 176.0321 Da) and

sulfation (i.e., 79.9568 Da), which can be added into the

search to aid in metabolite annotation.

Both of the above tools require specific user input to get

meaningful results, including: (i) a list of expected drugs

with their elemental formulas to determine their theoretical

masses in the relevant ionization mode or (ii) mass spectral

fragmentation data of drugs, whether experimental or in

silico, to determine their specific product ions or neutral

losses. This structural information is usually obtained from

spectral libraries or previously characterised compounds.

Currently, mass spectral libraries contain only a small

fraction of the metabolites whose existence is known; for

example, mzCloud (www.mzCloud.org) and MassBank

(www.massbank.jp) contain fragmentation spectra of

thousands of compounds, whereas PubChem (http://www.

ncbi.nlm.nih.gov/pccompound) contains tens of millions of

chemical structures (da Silva et al. 2015; Vinaixa et al.

2015) and many other compounds have yet to be cata-

logued in any database. Several computational tools that

predict metabolite structures and fragmentation patterns in

silico are in development (Hufsky et al. 2014; Ridder et al.

2014), but most are currently not capable of global anal-

yses or comparison of large numbers of fragmentation

spectra.

There is generally no a priori knowledge of all

metabolite classes that will appear in untargeted metabo-

lomics experiments, and in an era of precision and stratified

medicine, comparing metabolic potential between

individuals is of increasing importance. Therefore, tools

that can compare and visualize large amounts of spectral

data in an unbiased manner, i.e., without prior structural

information, are needed. For example, molecular net-

working performs clustering of similar MS2 spectra from

natural product extracts (Watrous et al. 2012; Yang et al.

2013). The tool compares MS2 fragmentation spectra in an

unsupervised manner using cosine scoring on vectorised

MS2 spectra. As a result, similar spectra are combined in a

network node represented by a consensus spectrum. Nodes

showing a degree of cross-node similarity are then con-

nected by edges again based on cosine similarity scoring. If

one or a few of the nodes in the network have a match to

spectral databases present within the GNPS environment

(http://gnps.ucsd.edu), such as MassBank (Horai et al.

2010), this can aid the structural annotation of closely

associated nodes based on spectral similarity (Yang et al.

2013).

Few metabolomics studies have yet reported on the use

of molecular networking combined with high-resolution

metabolomics data to aid in spectral analysis of the large

amount of spectral information resulting from data-de-

pendent fragmentation. In this study, we used human urine

extracts from a clinical cohort that encompassed patients

who were receiving combinations of antihypertensive

drugs comprised of different drug classes, including cal-

cium channel blockers, ACE inhibitors, and beta blockers.

The available meta-data was used to select urine extracts of

26 patients taking two or more different antihypertensive

drug classes. The aim of this study was to examine if the

combination of the molecular networking approach with

(HR-MS) metabolomics fragmentation data would enable

detection and visualization of clusters of antihypertensive

and other drug related metabolites from human urine

extracts.

The data shows that multiple drugs and a range of

associated metabolites can be found in urine with no a

priori knowledge of their presence. In addition, endogenous

urine metabolites also form several clusters. The combined

analysis offers new ways to assess the presence and

metabolism of drugs in individual patients, and the influ-

ence of the patient’s metabolome on drug metabolism and

the drug treatment outcome.

2 Materials and methods

2.1 Materials

2.1.1 Urine samples

Urine samples from anonymized human volunteers were

used from a clinical sample set in the Glasgow Polyomics
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archive. These samples were obtained as part of a trial for

which ethical approval was applied for through the Multi-

centre Research and Ethics Committee (MREC), which

was granted by the Scottish MREC and (with MREC N�06/
MRE00/106). Informed consent was obtained from all

individual study participants. Spot urine samples were

obtained from the cohort of elderly hypertensive patients

upon their first admission in the clinic. Urine extracts of 26

patients were selected as follows: diagnosed with hyper-

tension, taking in a variety of different antihypertensive

drugs (i.e., different drug classes), and availability of the

sample extract in the Glasgow Polyomics archive. The

resulting subject’s age range spanned from 42 to 87; 15

were male, 11 female; 4 were smokers; 5 were reported to

have diabetes; and each reportedly took from 2 to 7 dif-

ferent classes of antihypertensive drugs. All recorded

details of the patients can be found in the Supplementary

Information (Supplementary Table S1).

2.1.2 Chemicals

HPLC-grade methanol, acetonitrile, isopropanol, and ana-

lytical reagent grade chloroform were acquired from Fisher

Scientific, Loughborough, UK. HPLC grade H2O was

purchased from VWR Chemicals, Fountenay-sous-Bois,

France. Formic acid (for mass spectrometry) and ammo-

nium carbonate were acquired from Fluka Analytical

(Sigma Aldrich), Steinheim, Germany.

2.2 Methods

2.2.1 Urine sample preparations

A general metabolome extraction procedure was per-

formed (Creek et al. 2011): (i) 5 lL urine was extracted

in 200 lL chloroform/methanol/water (1:3:1) at 4 �C; (ii)
then vortexed for 5 min at 4 �C; (iii) then centrifuged for

3 min (13,000 g) at 4 �C. The resulting supernatant was

stored at -80 �C until analysis. A pooled aliquot of the

26 selected urine samples was prepared prior to the LC–

MS runs with DDA applying higher collision dissociation

(HCD)

2.2.2 Analytical platform

A Thermo Scientific Ultimate 3000 RSLCnano liquid

chromatography system (Thermo Scientific, CA, USA) was

used. That system was coupled to a Thermo Scientific

Q-Exactive Orbitrap mass spectrometer equipped with a

HESI II interface (Thermo Scientific, Hemel Hempstead,

UK). Thermo Xcalibur Tune software (version 2.5) was

used for instrument control and data acquisition.

2.2.3 LC settings

The HILIC separation was performed with a SeQuant ZIC-

pHILIC column (150 9 4.6 mm, 5 lm) equipped with the

corresponding pre-column (Merck KGaA, Darmstadt,

Germany). A linear biphasic LC gradient was conducted

from 80 % B to 20 % B over 15 min, followed by a 2 min

wash with 5 % B, and 7 min re-equilibration with 80 % B,

where solvent B is acetonitrile and solvent A is 20 mM

ammonium carbonate in water. The flow rate was 300 lL/
min, column temperature was maintained at 25 �C, injec-
tion volume was 10 lL, and samples were maintained at

4 �C in the autosampler (Creek et al. 2011).

2.2.4 MS and MS/MS settings

Positive negative ionization combined fragmentation mode

a duty cycle consisted of a full scan in positive ionization

mode, followed by a TopN MS/MS (MS2) data dependent

fragmentation event, taking the 10 most abundant ion

species not on the dynamic exclusion list, followed by the

same two scan events in negative ionization mode. Data

acquisition was carried out in positive (?) and negative (-)

switching ionization mode, using m/z 74.0964 (?) (ACN

cluster), 88.07569 (?) (contaminant), and m/z 112.98563

(-) (Formic Acid cluster) as lock masses. The set up was

calibrated [Thermo calmix (PierceTM calibration solutions

from Thermo Scientific), with additional masses at lower

m/z; 74.0964 m/z (?) and 89.0244 (-)] in both ionization

modes before analysis and a tune file targeted towards the

lower m/z range was used.

Unless specified differently, full scan (MS1) data was

acquired in both ionization modes in profile mode at 35,000

resolution (at m/z 200) using 1 microscan, an AGC target of

106 cts, a maximum injection time of 120 ms, with spray

voltages ?3.8 and -3.0 kV, capillary temperature 320 �C,
sheath gas flow rate 40, auxiliary gas flow rate 15 a.u., sweep

gas flow rate 1 a.u, and a full scan mass window of

70–1050 m/z.

MS/MS (MS2) data was acquired in profile mode at

35,000 resolution using 1 microscan, an AGC target of

1 9 105 cts, a maximum injection time of 120 ms, a loop

count of 10, a MSX count of 1, a TopN of 10, an isolation

window of 1.0 Da, an isolation offset of 0.0 Da, a stepped

normalized collision energy (NCE) (HCD) mode combin-

ing 25.2, 60.0, and 94.8 NCEs into one fragmentation scan,

an underfill ratio of 20 %, an intensity threshold of

1.7 9 105 cts, and the dynamic exclusion was set to 15 s.

Further settings were: no apex trigger, no charge exclusion,

peptide match was off, exclude isotopes was on, and if idle,

the setting ‘the machine does not pick up other ions’ was

chosen.
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Positive or negative ionization separate fragmentation

modes as for the combined experiments, with the following

modifications: full scan (MS1) resolution (at m/z 200) was

set to 70,000, MS/MS (MS2) resolution (at m/z 200) was

set to 17,500, MS/MS maximum injection time was set to

80 ms and the underfill ratio set to 10 %, with a resulting

intensity threshold of 1.3 9 105 cts. The duty cycle con-

sisted of one full scan (MS1) event and one Top10 MS/MS

(MS2) fragmentation event.

Positive negative ionization combined full scan mode as

for the combined experiments, with the following modifi-

cations: full scan (MS1) resolution (at m/z 200) was set to

70,000. The duty cycle consisted of two full scan (MS1)

events.

2.3 Data acquisition and processing

2.3.1 Data acquisition

Blank runs, quality control samples (beer and serum

extracts in accordance with standard procedures at

Glasgow Polyomics) to assess the performance of the

mass spectrometer in terms of chromatography and mass

intensities, and three standard mixes containing 150

reference compounds were run to assess the quality of

the mass spectrometer and to aid in metabolite annota-

tion and identification (Creek et al. 2011). The pooled

sample was run prior to and across the batch every 6th

sample to monitor the stability and quality of the LC–

MS run, whereas the samples were run in a randomized

order.

Immediately after acquisition, all raw files were con-

verted into mzXML format, thereby centroiding the mass

spectra and separating positive and negative ionization

mode spectra into two different mzXML files using the

command line version of MSconvert (ProteoWizard).

Accurate masses of standards were obtained well within

3 ppm accuracy and intensities of the quality control

samples (a beer extract and a serum extract) were within

specifications.

All 26 urine extracts were run in the combined frag-

mentation mode, a subset of 12 urine extracts underwent

the separate fragmentation modes collecting fragmentation

data for both modes in two separate files, and a subset of 6

urine extracts were run in combined full scan mode using

three replicate injections. A number of separate fragmen-

tation mode files were run as part of another batch; how-

ever, only small retention time drifts were observed (within

0.15 min) and the comparison does not use retention time

information, as it is based on MS2 spectral similarity. See

Supplementary Table 1 for detailed information where it is

specified for each urine extract which modes were

recorded.

2.3.2 Data processing

The data processing and data analysis steps are summa-

rized in a flowchart (see Fig. 1).The mzXML files were

uploaded into the Global Natural Products Social Molec-

ular Networking (GNPS) environment (http://gnps.ucsd.

edu—a free account is needed to log in) using an FTP

server (FileZilla, version 3.10.1.1). Parameter optimization

for molecular network generation for the (HR-MS) data

sets resulted in the following settings. All MS2 spectra

present in the data were clustered with MS-Cluster with a

so-called ‘parent mass tolerance’ of 0.25 Da and a MS/MS

fragment ion tolerance of 0.005 Da to create consensus

spectra. Then, consensus spectra that contained less than 2

spectra were discarded. A network was created where

edges were filtered to have a cosine score above 0.55 and 2

or more matched peaks. Further edges between two nodes

were kept in the network only if each of the nodes appeared

in each others respective top 10 most similar nodes. The

spectra in the network were then searched against the

GNPS spectral libraries. The library spectra were filtered in

the same manner as the input data. All matches kept

between network spectra and library spectra were required

to have a cosine score above 0.6 and at least 4 matched

peaks. Analog search was enabled against the library with a

maximum mass shift of 100.0 Da. All parameters and their

values used can be found in Supplementary Table S2.

Running times were under 15 min for both combined and

Extracted urine samples

Orbitrap
Mass Spectrometry

Raw files are directly 
converted into 
mzXML format

mzXML files are 
uploaded to GNPS –
where spectral 
clustering, molecular 
network formation, 
and spectral matching 
take place

Drug cluster nodes 
are validated and 
annotated 

Cytoscape input files are 
downloaded to visualize and 
inspect molecular network

Fig. 1 Flowchart explaining the different steps in data generation,

processing, and analysis to enable the annotation of drug clusters and

drug metabolites from a molecular network obtained from urine

extracts
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single mode fragmentation files. Cytoscape, network

visualization software (http://www.cytoscape.org/), was

then used to further process and visualize the downloaded

molecular network data. The recommended graphical lay-

out style is FM3 which is available for Cytoscape versions

2.8.1 and below. Thus, the molecular network was uploa-

ded into Cytoscape (version 2.8.1) following the docu-

mentation available on the GNPS website. After applying

the FM3 layout plugin, the molecular network was saved

in.cys format (Cytoscape Session File) and reopened in

Cytoscape version 3.2.0, where labelling and colouring of

nodes and edges was conducted. Most importantly, the

nodes were labelled with precursor masses, and coloured

such that two nodes have the same colour when they are

present in the same set of files (using the rainbow pallet),

and accordingly, two nodes having similar colours means

that they are present in a similar set of files, often differing

in one or two files). Finally, the size of the nodes was made

proportional to the number of unique files from where the

node spectra originated, i.e., the larger the node, the more

unique files its spectra originated from. The edges were

labelled with the mass differences between the two nodes

they connect. The resulting molecular networks for the

combined and separate fragmentation modes were then

inspected in the Cytoscape environment.

2.4 Data analysis

2.4.1 Molecular network inspection

The first step of the molecular network analysis was to

identify drug related clusters, which we define as subsets of

connected nodes in the molecular network that all relate to

one parent drug (or endogenous compound class in case of

non-drug compounds). The resulting molecular network

was checked by initial library matches to the spectral ref-

erence data present in the databases within the GNPS

environment. Clusters containing drug annotations were

then selected and the individual nodes and edges were

inspected, as well as the cluster topology.

2.4.2 Cluster annotation

These drug related clusters were annotated using the library

matching of GNPS to MassBank and the FDA_library as a

starting point, resulting in so-called ‘seed nodes’ (Yang

et al. 2013). If a drug related metabolite was matched from

any of the libraries present in the GNPS environment, the

cluster was further inspected. Clusters with a topology

similar to the seven ‘GNPS-annotated drug clusters’ were

annotated using spectral search in MzCloud of the most

abundant MS2 spectrum belonging to the node represented

in the highest number of different urine extracts. In

addition, MAGMa was used to generate potential candi-

dates if no successful spectral match was found. Endoge-

nous urinary metabolite networks were annotated based on

‘seed node annotations’ or spectral matching of node

spectra to MzCloud. Since the primary aim of this manu-

script was to examine drug metabolites in the urine

extracts, no further individual annotations on endogenous

clusters were conducted.

2.4.3 Validation of molecular nodes

A node in the molecular network is a set of MS2 spectra

each with a cosine similarity score of 0.95 or higher to each

other (Yang et al. 2013) hence, this means that spectra of

several isomers or very related compounds could be com-

bined in one node. If such a situation occurs, the retention

time associated with the node will become the average RT

of the different MS2 spectra associated and as a result will

have a relatively large retention time deviation recorded for

it. In addition, nodes can represent isotopes, in-source

fragments, or adducts of ‘real metabolites’, as no feature

grouping is currently performed during the molecular net-

working. Thus, the nodes in the cluster need to be validated

in the raw data by checking the number of metabolites

represented by the node. Additionally, the most likely

elemental formula was assigned and a theoretical mass was

determined. Then, based on the validated metabolite

spectra, recurring product ions were noted (see Supple-

mentary Table 4) and used to mine the urine extracts by

extracted ion chromatograms of those fragment masses. If

they co-occurred in the spectrum, the precursor ion mass

was checked against the list of already annotated metabo-

lites–and added if it was absent. All drug related clusters

prior to validation are presented in the Supplementary

Information (see Sect. 2 in Supplementary Materials,

Supplementary Figs. S2, S3, S4, S5, S6, S7, S8, S9, S10,

S11, S12, S13, S14, and S15); in the other figures the nodes

representing non-drug metabolites (e.g. isotopes or frag-

ments of other nodes) were omitted from the cluster and

colours and labelling were adapted to improve readability.

2.4.4 Metabolite annotation

The drug metabolites were annotated using the library

matching, MzCloud database, and by searching for existing

drug spectra in Massbank of North America (MoNa, http://

mona.fiehnlab.ucdavis.edu/#/). Metabolite annotations are

reported according to the Metabolomics Standards Initia-

tive (MSI) metabolite identification (MI) levels: (1) for

unambiguously identified, (2) for a spectral or literature

match, (3) for a metabolite classification, (4) for metabo-

lites that can be characterized by a retention time, mass,

and fragmentation spectra if available (Sumner et al. 2007).
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Thus, if a reliable spectral match was found, the identifi-

cation level was recorded as 2, if no match was found but a

plausible elemental formula, drug specific product ions,

and a likely annotation could be assigned, e.g., hydroxy-

lated form of parent drug, the identification level was put to

3. MSI MI level 4 was given to those metabolites where the

drug specific product ions were present, but no likely ele-

mental formula or annotation could be assigned, or where

the recurring product ions could not be assigned to a unique

drug-related core structure metabolized by the human

body. All structural information obtained was recorded in

Supplementary Table S3.

3 Results

3.1 Molecular networking to discover drug related

metabolite clusters

Unsupervised large-scale comparison of (HR-MS) frag-

mentation spectra was conducted on data files from urine

extracts suspected to contain antihypertensive drug

metabolites. The resulting networks were analysed to find

potential drug metabolite clusters using the annotation

based on library matching within the GNPS environment.

Seven clusters contained one or more annotated nodes with

drug related compounds (see Table 1), with some clusters

containing several annotated nodes (indicated in Table 1

with ‘Total annotated nodes’) accumulating to a total of 16

drug related nodes annotated by spectral matching. Six of

those drugs are known antihypertensives. Further inspec-

tion of the annotated nodes revealed that four of them were

correctly matched to a metabolite with the correct mass and

fragmentation spectrum (indicated in Table 1 as ‘correctly

annotated’). The other twelve annotated nodes were partial

matches where the mass of the matched metabolite did not

correspond to the mass of the fragmented metabolite, while

parts of their fragmentation spectra did show high simi-

larity (indicated in Table 1 as ‘related compound’).

Figure 2 shows the example of the ‘verapamil cluster’

that was identified since the GNPS annotation of three of

its nodes included verapamil itself. The fact that this cluster

has fourteen nodes indicates extensive biotransformation in

man. Two previously described C–N–C cleavage metabo-

lites of verapamil (Eichelbaum et al. 1979) could be mat-

ched to spectral data available in MassBank, hence the four

highlighted nodes in Fig. 2 are MSI MI confidence level 2

(see Sect. 2.4.4). The other nodes were annotated using

mass differences to the seed nodes (i.e., the annotated

nodes), which included 176.032 (typical for glucuronida-

tion), 14.015 (typical for methylation), and 16.000 (typical

for hydroxylation), as well as manual inspection of their

fragmentation spectra. Subsequently, key drug-related

fragments were determined based on spectral comparisons

(see Supplementary Table S4). The key fragments were

then used to mine the fragmentation files for more related

drug metabolites omitted by the clustering approach; in

some cases resulting in the additional annotation of drug

metabolites (see Supplementary Table S5).

The verapamil metabolites found by the molecular net-

working show a variety of structures ranging from glu-

curonides, typically larger-sized metabolites, to cleavage

products, typically smaller-sized metabolites, also eluting

at different retention times. Furthermore, it is interesting to

note that seven nodes show high interlinkage in the vera-

pamil cluster, indicating that they share a common sub-

structure causing many edges to interlink the nodes. This

was also observed for the other drug related clusters in

Table 1 (see Sect. 2 in Supplementary Materials, Supple-

mentary Figs. S2–S15 or the Cytoscape session file,

MolecularNetworks_DrugClusters.cys, in the Supplemen-

tary Materials). Furthermore, several different drugs also

Table 1 Number of GNPS annotated nodes in each drug related

cluster, with ‘Parent drug’ representing the annotated parent drug,

‘total annotated nodes’ showing how many nodes had a database hit,

‘correctly annotated’ indicating how many nodes were indeed

matched to the correct drug metabolite (i.e., mass and fragmentation

pattern fitted), and ‘related compound’ means a structurally related

drug metabolite was matched from the in GNPS present fragmenta-

tion libraries such as Massbank

Parent drug Total annotated nodes Correctly annotated Related compound

Clodipogrel 1 1 0

Irbesartan/losartan 3 1 2

Verapamil 3 1 2

Atenolol/bisoprolol 2 1 1

Ranitidine 3 0 3

Metformin 3 0 3

Paracetamol 1 0 1

Total 16 4 12

125 Page 6 of 15 van der Hooft et al.

123



cluster together, for example losartan and irbesartan which

relates to their sharing of the sartan substructure that pro-

duces overlapping fragmentation spectra (Lo et al. 1995;

Chando et al. 1998).

Suspected additional drug related clusters were recog-

nized by their highly interlinked topology, and subse-

quently annotated by spectral matching (i.e., to MzCloud,

www.mzcloud.org; or literature reference tables) or by

using the fragmentation annotation software MAGMa

(Ridder et al. 2013) (see the cluster shown in Fig. 3).

Analysis of the metabolites present in all 11 urine extracts

containing spectra of this cluster (the nodes with m/z

313.086 and 271.079 ([M?H]?)) resulted in the top-

ranked candidate structure of paracetamol-mercapturate

(conjugate of paracetamol and N-acetylcysteine) for m/z

313.086—a metabolite of a non-antihypertensive drug.

Further inspection of the fragment annotation revealed

key fragments of paracetamol-mercapturate-like metabo-

lites as shown for the C8H8NO2S fragment in Fig. 3c, d

where a diverse set of sulphur containing paracetamol

conjugates were annotated. The urines that contain these

metabolites also contained paracetamol-O-sulphate and

paracetamol-O-glucuronide confirming paracetamol use

by these patients.

The molecular networking approach thus allows anno-

tation of numerous antihypertensive drugs (and antidiabetic

and histamine antagonists, see Sect. 3.3) in the urine

extracts. Moreover, we observed a high interlinkage

topology for these drug related clusters.

Fig. 2 Verapamil related

cluster: the cluster in the

molecular network that contains

verapamil metabolites. In total,

2 urine extracts contain one or

more verapamil related

metabolites. The four

metabolites that could be

annotated based on spectral

matching, including verapamil

itself, are highlighted in the

cluster and structures are

presented for each of them
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3.2 Molecular networking to analyse drug

metabolite occurrences

The molecular networking approach also allows for quick

comparison of the relative abundance of drug metabolites.

Spectral occurrences in the amlodipine (AML) cluster

(Fig. 4a) were extracted for detailed analysis. Three

annotations in the cluster could be matched to data from

the literature where standards for those metabolites had

been synthesized (Suchanova et al. 2008). This spectral

occurrence approach offers rapid interrogation of the data

in a manner analogous to spectral counting applied in

quantitative proteomics (Bantscheff et al. 2007). In Fig. 4b,

we present the total number of AML-related MS2 spectra

found in the seven urines in which any AML-related

metabolites were found, and in Fig. 4c, the total MS2

spectra found for each AML-related metabolite are shown.

Differences in abundance of the AML-metabolites were

evident in different patients (Fig. 4c), and particular drug

metabolites appear to be well suited for studies based on

spot urine samples to ascertain patient compliance for

taking the prescription drug given their universal appear-

ance in patients while parent compound is not measured

(AML itself was found in just one patient, and then in trace

amounts) (Fig. 4d). Based on the AML-related MS2

spectra, the 422.1 node, containing the oxidized amlodipine

carboxylic acid metabolite (see Fig. 4a), is the most readily

detected metabolite. In order to check how well this MS2

spectral based analysis represents the actual LC–MS peak

abundances, the accurate masses of the node metabolites

Fig. 3 MagMa screenshot

displaying the annotation of

node 313.066 in highly

interlinked cluster (a); b the

fragmentation pattern matched

paracetamol mercapturate

(conjugate of paracetamol and

N-acetylcysteine), which is the

top ranked hit in the results.

c Fragment annotation by

MagMa, the fragment

C8H8NO2S is also highlighted

in the structure of paracetamol

mercapturate (d), encompassing

the paracetamol part of the

conjugate including the sulphur

atom from N-acetylcysteine
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Fig. 4 Amlodipine (AML)

related clusters. The molecular

networking and subsequent

node validation process resulted

in the AML-related clusters in

(a). The structures for those

metabolites that could be

annotated by matching product

ions to literature data are shown

(solid boxes) and the annotation

of a AML metabolite based on

spectral homology and mass

differences is also presented

(dashed box), where mtb is short

for metabolite, Glc for

glucuronide, and Ox for

oxidized. In total, 7 urine

extracts contained one or more

AML metabolites, here

represented in five clusters

based on the presence/absence

of AML metabolites. Spectral

occurrences were obtained from

the molecular network,

b presents the total number of

AML-related spectra in each

urine extract that was included

in the cluster, c presents the

total number of acquired MS2

spectra for each AML related

metabolite, d total over 1 9 106

occurrences for each AML

metabolite, and e shows the

intensities (cts) for each AML

related metabolite extracted

from the LC–MS full scans

using accurate mass and

retention time information

obtained during the node

validation process, including the

accurate mass for the parent

drug amlodipine. An arrow is

drawn to connect the annotated

oxidized amlodipine (AML-

OX) COOH metabolite with the

corresponding peak in plot C
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were used to determine LC–MS peak intensities in the

seven urine extracts. Figure 4d, e shows how the MS2

spectral counting does represent the information obtained

from the LC–MS peaks and thus allows for quick interro-

gation of inter-sample differences.

Irbesartan and losartan are both angiotensin II receptor

antagonists. Both of these parent drugs, and their metabo-

lites, were clustered based on their common sartan [(1H-

tetrazol-5-yl)biphenyl-4-yl] backbone (Fig. 4). The meta-

bolism of irbesartan has been extensively studied using

14C-labelled parent drug to trace its metabolites in urine

(Chando et al. 1998) and eight labelled irbesartan

metabolites in addition to the parent drug itself were found.

The authors used fragmentation data as well as 1D and 2D-

NMR spectra to identify structurally those metabolites as

completely as possible. Comparing their reported elemental

formulas and nominal product ions, we could match two

irbesartan metabolites with confidence (MSI MI level 2)

based on the unique product ions for M1 (C11H19N2O3,

nominal mass 227) and M6 (C11H17N2O2, nominal mass

209). The spectral match for three other metabolites was

ambiguous (MSI MI level 3) and complementary structural

information (such as from NMR) or availability of refer-

ence compounds would be necessary to fully identify those

metabolites. Overall, 4 different masses matched between

our analysis and that of Chando et al., where the co-eluting

hydroxylated losartan metabolites underwent extensive

preparative HPLC to separate them.

Losartan was found in five urine extracts. Its metabolites

were easily discriminated from the irbesartan metabolites

since the chlorine atom in their structure generates a

characteristic isotope pattern in full scan mode. A report on

losartan metabolism (Schmidt and Schieffer 2003) did not

report on mass spectra, but we used the assigned elemental

formulas typically containing six nitrogen atoms and one

chloride atom, to allow matching to an active losartan

metabolite EXP3174, and a ketone derivative of losartan

(Fig. 5). Figure5b, c show the MS2 spectral occurrences

and the abundances obtained from the LC–MS peaks. The

parent drug and a hydroxylated derivative are abundant in

all five urine extracts. Manual inspection of the losartan

nodes further revealed two isomers of EXP3174 (a COOH

metabolite, m/z 437.1487, [M?H]?), (Fig. 5d). The MS2

spectra of the two peaks showed differences in abundances

for drug related product ions (see Supplementary Fig. S1).

Thus, manual inspection of the clusters and nodes

remains important to ensure the presence of one or several

metabolites in one node. The drug metabolism information

obtained through metabolite networking also warrants

further investigation on the metabolism of drugs like

losartan to establish the potential role of the structurally

differential isomers. From Fig. 5, it can be observed that

both the parent drug and a hydroxylated form of losartan

can be used in drug adherence studies, as these are the most

abundant and widely present losartan metabolites detected

in this set of patients.

3.3 Unsupervised clustering also reveals other drug

types and endogenous metabolites in urine

The unsupervised clustering approach not only revealed the

presence of eight antihypertensive drug related clusters

including 10 different drugs, it also clustered metabolites of

other drug types and endogenous urinary metabolites.

Metformin, an antidiabetic, was annotated to a cluster

containing a variety of precursor ions in the nodes. Indeed,

the spectra shared the typical nitrogen-rich product ions of

metformin and the urine extracts containing metformin

were derived from four patients of whom three were

reported to have diabetes, thereby identifying metformin in

a male patient (aged 63) not reported to have diabetes.

Many of the clustered nodes could be tentatively annotated

as metformin conjugates with small organic acids.

Metabolites of another drug-like cluster were found in

three of the urine samples with the metformin metabolites,

and could be annotated as a sulfonylurea type of drug,

consistent with gliclazide based on fragment information

also commonly prescribed to diabetes patients. Another

drug-like cluster was annotated by GNPS with ranitidine, a

histamine H2-receptor antagonist (inhibiting stomach acid

production), with 20 separate metabolites present in one

sample, indicating the extensive metabolism to which this

drug is subject. Ranitidine is available in the UK both as

prescription and over-the-counter formulations. No litera-

ture was found describing such extensive ranitidine meta-

bolism. This finding reveals that common, over-the-counter

drugs that might be in use for other medical reasons can

also be identified and if applied to large studies on drug

compliance and action, will offer an objective approach to

seeking possible drug–drug interaction effects. Finally, two

suspected drug metabolite clusters were annotated with

MSI MI level 4 metabolites showing characteristic frag-

mentation patterns but without annotated core structure.

Altogether, a total of 165 different antihypertensive or

other drug related metabolites were annotated in the urine

extracts: 17 by spectral matching (MSI MI level 2) and 122

by classification based on the clustered fragmentation

patterns (MSI MI level 3). This ultimately led to the

detection of metabolite clusters of 13 different drugs in the

studied urine extracts. All drug metabolites that were

annotated in this study are described in Supplementary

Table S3 with their theoretical masses, elemental formulas,

annotation (with details on database or reference), MSI MI

level, parent drug, and the drug class. A simplified Excel

Table without annotation details is also available (Sup-

plementary Table 3B). Although, in line with standard
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procedures, the urine spot tests are analysed in a blinded

fashion, we can monitor that patient 61 was on losartan and

bisoprolol, that patient 66 administered enalapril, bisopro-

lol, metformin, and likely gliclazide (a sulfonylurea class

drug), and also took paracetamol, and that patient 91 was

on losartan, perindopril, and atenolol, and also took

paracetamol.

Molecular networking also clustered endogenous uri-

nary metabolites based on their fragmentation patterns.

Table 2 lists nine annotated clusters that include different

biological compound classes including acylcarnitines

(carnitine based), glutamine-related metabolites, and tri-

gonelline related compounds. Most of these clusters were

found using the combined fragmentation mode (first

column in Table 2) with the betaine based cluster only

found using the separate fragmentation mode (second

column in Table 2). Trigonelline related compounds can

be found in many plants and trigonelline has a vitamin B

related structure; hence those metabolites could be either

food-derived or endogenous break-down products of

Fig. 5 Sartan (irbesartan and

losartan) related cluster. In total,

5 urine extracts contain 1 or

more losartan metabolites and 1

unique urine extract contains

irbesartan related metabolites.

Nodes representing chlorine

isotopes of losartan metabolites

were removed from the cluster.

a Three losartan and three

irbesartan related metabolites

are highlighted, annotated based

on spectral matching or spectral

homology and mass differences,

where mtb is short for

metabolite. b The total number

of acquired MS2 spectra for

each metabolite or metabolite

group is shown. c The

abundance (cts/s) of losartan

metabolites across the different

urine extracts. Note that the two

437.1487 isomers cause a

relative high spectral counting

(total number of MS2 spectra)

for this metabolite group as a

result of being combined in one

node. d Extracted ion

chromatogram for the m/z

437.1487, showing the two

closely eluting isomers. In

Supplementary Fig. 1, their two

MS2 spectra are displayed
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Vitamin B. In-depth metabolite annotation of all the

clustered nodes of these nine clusters was outside the

scope of this study; however, we did compare the masses

detected in the acylcarnitine cluster with those previously

annotated in a study using fragmentation data (van der

Hooft et al. 2015); and substantial overlap between the

masses was clear. The third column in Table 2 also

showed that of four compound classes, at least one

associated metabolite is present in all 26 urine extracts,

illustrating their wide occurrence in humans. A series of

glutamine containing compounds is one of those clusters

and fragmentation spectra are consistent with a family of

acylglutamines, i.e., glutamine-based analogues of acyl-

carnitines with different acyl chains. Very little literature

exists discussing the existence or roles for acyl glutami-

nes, and yet their abundance and diversity indicates they

may represent a family of molecules with important

metabolic functioning. Molecular networking can clearly

assist in classifying urinary metabolites and aid in the

annotation and identification of endogenous metabolites

as well as xenobiotics.

4 Discussion

The combination of high-resolution untargeted mass

spectrometry data-dependent fragmentation spectra and

molecular networking has enabled the identification of a

multitude of drugs and their metabolites in human urine

samples. With over 5000 MS2 fragmentation scans

obtained in each fragmentation measurement, and 26 urine

fragmentation measurements, the number of MS2 spectra

requiring processing and analysis counts in the tens of

thousands. Advanced spectral analysis tools are needed to

fully exploit the structural information present in frag-

mentation data and the molecular networking approach

clearly offers a means to derive important information from

such large and complex datasets.

Our approach was based on an existing HILIC chro-

matography based metabolomics platform (Creek et al.

2011), thereby focusing on polar and charged urinary

metabolites. No single existing liquid chromatography

platform can separate all drug metabolites efficiently in one

run, and in our approach the majority of drug metabolites

eluted between 3.5 and 4.5 min; however, a considerable

number also elute in the period afterwards. Coupling

HILIC-based liquid chromatography to Orbitrap high res-

olution spectrometry allows for the simultaneous detection

of a wide range of polar urinary compounds in both posi-

tive and negative ionization modes. Our analysis focused

on positive ionization mode which was compatible with

most drugs, bearing several nitrogen atoms and thus easily

ionizing in positive mode. Furthermore, with positive

ionization mode generally resulting in more product ions

per metabolite than negative ionization mode, the occur-

rence of drug related clusters was favoured in positive

ionization mode.

Most reported LC–MS based drug methods are either

focused on structural elucidation of one specific drug and

its major pre-ascertained metabolites in biofluids or on the

detection of multiple drugs through one drug related

metabolite (usually the administrated drug or the active

compound in case of pro-drugs). Our approach offers the

ability to screen for many different types of drugs, irre-

spective of any expectation of their presence. Furthermore

up to 20 different metabolites of a single drug were readily

identified in the case of ranitidine which indicates how this

Table 2 Table describing annotated clusters of non-drug metabolites,

with ‘Compound class’ being the annotated core structure for each

cluster, ‘Nodes in cluster’ being the number of nodes in each

annotated cluster from the combined and separate fragmentation

mode, respectively, and ‘MaxUniqueFileCount’ showing the occur-

rence of the most widely distributed nodes for each cluster

Compound class Nodes in cluster combined

fragmentation mode — POS

Nodes in cluster separate

fragmentation mode — POS

MaxUniqueFileCount No. unique

urine files (# nodes)

Carnitine based 52 52 26 (5), 25 (6)

Glutamine based 18 18 26 (3), 25 (2)

Trigonelline based 12 11 26 (1), 11(1)

Betaine based - 11 12 (4), 8 (1) [POS only]

Steriod skeleton 2 ? 2 12 11 (1), 8 (2)

Pyrriline-CO based 16 9 15 (1), 9 (3)

Pipecolic acid based 20 12 26 (4), 25 (2)

Lysine based 9 7 24 (1), 19 (1)

N containing oxygen rich

substructure

10 10 2 (4), 1 (6)

Total 137 142 N/A
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approach can offer the means to initiate comprehensive

studies into drug metabolism with relative ease.

It was encouraging to observe that many edges (con-

nections between the cluster nodes) displayed typical mass

differences of 176.032 (glucuronidation), 14.015 (methy-

lation), and 16.000 Da (hydroxylation) that are commonly

associated to drug (or xenobiotic) metabolism in man.

Indeed, the described workflow is biased towards heavily

metabolized core structures, since they will appear as dis-

tinct highly interlinked clusters in the molecular network.

However, with more reference data becoming available in

the future (i.e., increasing seed node annotation), the

clusters of two or three drug metabolites may be detected

more easily.

The structural identification of detected metabolites

remains a bottleneck in untargeted metabolomics approa-

ches (Creek et al. 2014; van der Hooft et al. 2013; Li et al.

2013; Roux et al. 2012; Dunn et al. 2013; Kind and Fiehn

2010; Wishart 2011). Generic fragmentation pathways for

a number of antihypertensive and other drugs are available

in the literature (Niessen 2011); however, high-resolution

reference data of drug metabolites is still scarce and the

comparison of fragmentation spectra across different plat-

forms is not always straightforward. Moreover, the avail-

able structural information is often scattered across

databases or tabulated within publications. Many databases

generated by the Pharmaceutical industry are proprietary

and thus not accessible. Mass spectral databases thus

remain far from being a comprehensive representation of

the contents of a given biological extract (Vinaixa et al.

2015; da Silva et al. 2015).

The current study shows that spectral clustering and

matching enhances metabolite annotation and classifica-

tion; however, extensive manual interpretation and vali-

dation remain essential for confident assessment of

metabolite structures. For example, the drug clusters of

the paracetamol mercapturates, enalapril and perindopril,

amlodipine, the sulfonylurea class drug, and quinidine

were annotated using amalgamated information from

published literature values for drug product ions, MagMa

(Fig. 3), or MzCloud spectral matching. Moreover, using

the key fragments for each drug or drug family (see

Supplementary Table S4), 45 additional drug metabolites

were annotated that were not directly represented by a

node within the molecular network. Our approach can

map different classes of drugs and with the expected

growth in spectral databases it certainly has the potential

to group other xenobiotics and endogenous urinary

metabolites as well. In fact, we could annotate a number

of endogenous human metabolite clusters. For example,

the acylcarnitine based cluster contained 52 nodes and of

the masses of the 15 most widely distributed nodes (in

[20 urine extracts present) all but 3 were indeed

previously annotated as acylcarnitines (van der Hooft

et al. 2015). The validation process also identified nodes

that represented specific atomic isotopes (in chlorine-

containing drugs like amlopidine) or adducts with co-

eluting abundant metabolites like urea, which were

removed from further analysis and annotation.

The amlodipine and ARB (sartan-based) drug clusters

were analysed in more detail. For amlodipine, selected

product ions could be matched to those reported from rat

urine metabolites (Suchanova et al. 2006, 2008) alongside

fragmentation data for two chemically synthesised oxi-

dized amlodipine metabolites that we also observed in the

human urine extracts (Suchanova et al. 2006). A study on

14C-labelled amlodipine metabolism in two humans

(Beresford et al. 1988), revealed oxidized amlodipine

metabolites that were excreted in the urine and an abundant

COOH-metabolite of oxidized amlodipine, which matches

well with our results. Our findings, which were derived

with no preconception on which drugs or metabolites

present in the samples, shows how the method can make

important contributions to drug metabolism analysis with-

out any need for bespoke reagents. Moreover, the study

shows that the COOH-metabolite of oxidized amlodipine

could be a better marker for amlodipine intake than the

currently used amlodipine parent drug (Lawson et al.

2015). Losartan and hydroxylated losartan were found to

be the most abundant drug metabolites present in the five

urine samples containing metabolites related to this drug.

Indeed, losartan was detected in plasma for up to 24 h after

intake (Lo et al. 1995), indicating that this drug is excreted

into the urine intact in most people. We found two closely

eluting and related, but discernible isomers. One is likely to

be the active EXP3174 metabolite (McCrea et al. 1999),

and the other a ketone derivative (more analytical work

would be required to confirm their structures). Critically we

can identify differences between patients in the presence of

these isomers, which indicates that the technique can be

used to classify patients based on their ability to metabolise

drugs. This in turn can then be linked to patient response

data and offers the potential to predict patient response.

Our approach not only detected clusters of drug

metabolites, but also biochemically relevant clusters of

endogenous urinary compounds, as is illustrated by a

number of different acyl amino acid families. Difference in

levels of specific acyl amino acids has been directly linked

to metabolic diseases (Chace 2009), and their enhanced

annotation might facilitate future correlations between

phenotypes and metabolites. Since it is also possible to

identify other xenobiotics (e.g. non-antihypertensive drugs

or even food related metabolites, note the impact of

grapefruit juice on losartan pharmacokinetics (Zaidenstein

et al. 2001; Bailey et al. 1998)), the potential to contribute

to understanding drug metabolism and patient response
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may extend far beyond the simple identification of drugs

and metabolites, but enable multidimensional correlation

analysis offering predictive precision medicine. Further-

more, non-declared secondary health problems for which

patients are taking drugs can be more easily spotted.

5 Conclusions

Medication nonadherence is a common problem with up to

50 % of patients not adherent to long-term medications.

However, drug adherence phenotype is not a simple trait

and different tools are required to differentiate subtypes as

this has implications on how nonadherence is treated

(Marcum et al. 2013). There are limitations to the currently

used methods of testing drug adherence and newer methods

that can detect not only drug adherence agnostically but

also reveal underlying physiology are essential. This study

reveals the power of combining untargeted urinary meta-

bolomics with molecular networking to guide the inter-

pretation of large numbers of urine metabolite

fragmentation spectra and identify, in an untargeted way,

many drugs and metabolites associated with them. As a

result, we report the key fragments we observed for each

drug cluster based on spectral comparisons as well as an

annotated table of all the validated metabolites in the

clusters. In addition to offering utility in drug compliance

testing (where parent drug or abundant metabolites can

indicate whether patients have been taking the drugs) the

approach also enables discrimination of metabolites in

different people. If combined with large studies where

treatment outcomes are also considered it may be possible

to correlate certain metabolites with patient response to

drug and thus offer novel tests to guide precision patient

centred medicine. Moreover, the approach can also detect

other drugs irrespective of prior knowledge of their pres-

ence which can also offer insights into drug–drug interac-

tions. The expected increase in coverage of spectral

databases and increasingly available in silico tools for

metabolite annotation based on fragmentation data will aid

in identification of drug metabolites not currently present in

mass spectral libraries. Paracetamol-mercaptures were

successfully annotated in our study with the aid of the in

silico fragmenter MAGMa. Since endogenous metabolites

are detected in the same datasets, the approach may detect

roles for these in drug response and metabolism as well.
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