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Abstract

Introduction Metabolomics provides a view of endoge-

nous metabolic patterns not only during plant growth,

development and senescence but also in response to genetic

events, environment and disease. The effects of the field

environment on plant hormone-specific metabolite profiles

are largely unknown. Few studies have analyzed useful

phenotypes generated by introducing single or multiple

gene events alongside the non-engineered wild type control

at field scale to determine the robustness of the genetic trait

and its modulation in the metabolome as a function of

specific agroecosystem environments.

Objectives We evaluated the influence of genetic back-

ground (high polyamine lines; low methyl jasmonate line;

low ethylene line; and isogenic genotypes carrying double

transgenic events) and environments (hairy vetch, rye,

plastic black mulch and bare soil mulching systems) on the

metabolomic profile of isogenic reverse genetic mutations

and selected mulch based cropping systems in tomato fruit.

Net photosynthesis and fruit yield were also determined.

Methods NMR spectroscopy was used for quantifying

metabolites that are central to primary metabolism. We

analyzed both the first moment (means) of metabolic

response to genotypes and agroecosystems by traditional

univariate/multivariate methods, and the second moment

(covariances) of responses by creating networks that

depicted changes in correlations of paired metabolites. This

particular approach is novel and was necessary because our

experimental material yielded highly variable metabolic

responses that could not be easily understood using the

traditional analytical approaches for first moment statistics.

Results High endogenous spermidine and spermine con-

tent exhibited strong effects on amino acids, Krebs cycle

intermediates and energy molecules (ADP ? ATP) in

ripening fruits of plants grown under different agroe-

cosystem environments. The metabolic response to high

polyamine genotypes was similar to the response to hairy

vetch cover crop mulch; supported by the pattern of

changes in correlation between metabolites. Changes in

primary metabolites of genotypes mutated for the defi-

ciency of ethylene or methyl jasmonate were unique under

all growth conditions and opposite of high polyamine

genotype results. The high polyamine trait was found to

dominate the low ethylene and low jasmonate mutations

under field conditions. For several metabolites low
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ethylene and low methyl jasmonate genotypes had an

inverse relationship. Collectively, these results affirm that

interactions between metabolite pathways and growth

environments are affected by genotype, and influence the

metabolite quality of a crop.

Conclusion This study portrays how metabolite relation-

ships change, both in mean and in correlation, under dif-

ferent genotypic and environmental conditions. Although

these networks are surprisingly dynamic, we also find

examples of selectively conserved associations.

Keywords Agro-environment and metabolomics �
Ethylene � Metabolite networks � Methyl jasmonate �
Polyamines � S-adenosylmethionine decarboxylase

Abbreviations

ADEN Adenosine

ANOVA Analysis of variance

BP Black polyethylene

BS Bare soil

C Carbon

CCA Canonical correlation analysis

CO2 Carbon dioxide

G 9 E Genetic background 9 ecosystem

environment

GH Greenhouse

HV Hairy vetch

meJAS Methyl jasmonate

mNAM Methyl nicotinamide

N Nitrogen

NMR Nuclear magnetic resonance

PCA Principal components analysis

Put Putrescine

Q-PCR Quantitative polymerase chain reaction

RY Rye

SlE8 Tomato E8 gene

SlLOX Tomato lipoxygenase gene

Spd Spermidine

Spm Spermine

WCNA Weighted correlation network analysis

ySAMDC Yeast SAM decarboxylase

1 Introduction

Metabolomics provides a view of endogenous metabolic

patterns not only during plant growth, development and

senescence but also in response to genetic events, biodi-

versity, environment and disease. Thus, to mention a few

examples, metabolomics has contributed to mapping plant

cell types (Moussaieff et al. 2013), modeling plant

metabolic fluxes (Ratcliffe and Shachar-Hill 2006;

Colombie et al. 2015), hormonal regulation of cellular

metabolism (Carrari et al. 2006; Mattoo et al. 2006; Kausch

et al. 2012; Lee et al. 2012; Aizat et al. 2014; Sobolev et al.

2014), and studies linking food composition to human

(Hall et al. 2008) and veterinary health (Zicker et al. 2006).

The application of the ‘omics’ technologies, including

transcriptomics and metabolomics, is generating novel

information on regulatory steps in metabolic pathways and

how these metabolic networks behave during growth and

development in plants (Carrari et al. 2006; Centeno et al.

2011; Brady et al. 2013; Moussaieff et al. 2013; Aizat et al.

2014).

Transgenic technology has resulted in unique crops,

with more in the making (Cohen et al. 1973; Mattoo 2014).

Transgenic research has enabled unambiguous confirma-

tion of gene function in plants and characterization of novel

genotypes that produce global changes in macro- and

micro-molecules. Previously, we developed transgenic

tomatoes homozygous for the genetic traits, fruit texture

and metabolic/nutrient activity of tomato fruit, that mod-

ulate fruit shelf-life (Mehta et al. 2002; Kausch et al. 2012;

Sobolev et al. 2014). One genotype was engineered with

the yeast S-adenosylmethionine decarboxylase (SAMDC)

gene under the ripening-specific E8 promoter, accumulat-

ing the polyamines spermidine (SPD) and spermine (SPM)

in a fruit ripening-specific manner (Mehta et al. 2002). This

genotype produces fruit which have higher processing

quality, longer vine life and higher lycopene content

(Mehta et al. 2002). A second genotype was developed

with antisense-RNA to 1-aminocyclopropane-1-carboxy-

late synthase 2 (ACS2) gene under the CaMV 35S pro-

moter. It constitutively suppresses the production of

ripening hormone ethylene, producing half the ethylene of

the control line, and has considerably longer shelf-life

(Sobolev et al. 2014). Both polyamines and ethylene

impact plant responses to abiotic stresses (Capell et al.

2004; Cramer et al. 2011). A third genotype was developed

with co-suppression of the tomato lipoxygenase gene

under the constitutive CaMV 35S promoter (Kausch

et al. 2012). It is deficient in the stress hormone methyl

jasmonate (meJAS) and has better texture than the

control line (Kausch et al. 2012). Jasmonates have been

recently implicated in temporal inhibition of ethylene

biosynthesis and prevention of stamen desiccation

during floral development in tomato (Dobritzsch et al.

2015).

We have described changes in the primary fruit meta-

bolome of these tomato lines grown in a temperature and

light controlled greenhouse (Mattoo et al. 2006; Kausch

et al. 2012; Sobolev et al. 2014). Significantly up-regulated

accumulation of amino acids such as glutamine (GLN),

aspartate (ASP), threonine (THR), asparagine (ASN),
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glutamate (GLU), c-aminobutyrate (GABA), and histidine

(HIS), of ATP ? AMP, and Krebs cycle intermediates,

citrate and fumarate, in both high polyamine lines was

observed (Mattoo et al. 2006). As expected, metabolomes

of ethylene- and methyl jasmonate-deficient fruits were

noticeably different from that of high polyamine fruit.

Ethylene deficiency resulted in decreasing levels of most

amino acids except ASP and GLU compared to the control

line, and had higher PHE levels compared to high poly-

amine fruits. Methyl jasmonate-deficient fruits were

remarkably different from high polyamine fruits when

grown in the greenhouse, with levels of many amino acids

decreased (Mattoo et al. 2006; Kausch et al. 2012).

The effects of the field environment on plant hormone-

specific metabolite profiles are largely unknown. Few

studies have analyzed useful phenotypes generated by

introduction of single or multiple gene events alongside the

non-engineered wild type control at field scale to determine

the robustness of the genetic trait and modulation in the

metabolome as a function of specific agroecosystem envi-

ronments (Neelam et al. 2008; Kogel et al. 2010; Mattoo

and Teasdale 2010). Sustainable agroecosystem manage-

ment practices that protect the environment, minimize

chemical inputs, and lower the costs of production while

meeting the demand of a growing world population have

become a priority in the past two decades. One such sus-

tainable farming practice for tomato production is a

reduced-tillage, cover crop based system that maximizes

production while enhancing environmental services (Lu

et al. 2000; Abdul-Baki and Teasdale 2007). The use of

leguminous and non-leguminous cover crops grown prior

to planting the cash crop in combination with the absence

of tillage creates an agroecosystem which positively

impacts soil microbial community structure, other soil

environmental parameters, and crop performance in many

traditionally bred crop plants including tomatoes (Abdul-

Baki et al. 1996; Buyer et al. 2010). Growth of tomato

plants on leguminous hairy vetch versus conventional

black polyethylene mulch revealed differential regulation

of select signaling pathways and likely crosstalk among

plant organs affecting longevity and disease tolerance

(Kumar et al. 2004; Neelam et al. 2008; Mattoo and

Teasdale 2010).

Given this profound influence of the agroecosystem

environment on the gene expression and physiology of

traditionally bred tomato cultivars, we sought to determine

the metabolomic profile of our transgenic tomato lines

grown under a range of field growing conditions from

conventional tillage and surface mulching with synthetic

polyethylene sheets to the sustainable alternative system

without tillage and mulching with residue of cover crop

vegetation. We used NMR spectroscopy for quantifying

metabolites, focusing on those that are central to primary

metabolism. We analyzed both the first moment (means) of

metabolic response to genotypes and agroecosystems by

traditional univariate/multivariate methods, as well as the

second moment (covariances) of response by creating

networks that depicting changes in correlations of paired

metabolites.

Previous research investigating metabolomic patterns

have focused on the first (statistical) moment, i.e. changes

in mean values, whereby observed metabolic mean values

and differences between mean values are presented to

describe the metabolomic state or change in state of the

organism under study in response to an exogenous or

genetic manipulation. We also investigated changes in the

second (statistical) moment, covariances of metabolites;

how the covariances responded to experimental treatment

(Fukushima et al. 2011). Specifically, we characterized

changes in the correlations between metabolite pairs

among experimental treatments using both formal statistics

and graphics for visualizing second moment changes in

networks. These changes in the network of metabolites that

occur with changing genetic/experimental conditions are

implicitly assumed to be absent in traditional univariate

and multivariate techniques. This approach is novel and

was necessary because our experimental material, derived

from field grown transgenic germplasm grown under con-

trasting agro-environmental conditions, resulted in highly

variable metabolic responses that could not be easily

understood using the traditional analytical approaches that

look only at first moment statistics. We show here that the

network defined by metabolite relationships in the tomato

fruit metabolome are hormone and environment specific,

demonstrating the highly plastic nature of the fruit primary

metabolome.

2 Materials and methods

2.1 Field operations and experimental design

Field trials were conducted on the North Farm of Beltsville

Agricultural Research Center, Beltsville, Maryland, USA,

in 2006 and 2007. Field operations were conducted in areas

adjacent to those used for tomato experiments as previ-

ously described (Buyer et al. 2010) and were conducted

according to similar methods and timings as were used in

those experiments. In contrast to (Buyer et al. 2010),

however, only four mulching system management treat-

ments were employed in these experiments, (1) black

polyethylene (BP) mulch laid on beds prepared by spring

tillage, (2) hairy vetch (HV) cover crop mulch on untilled

beds, (3) rye (RY) cover crop mulch on untilled beds, and

(4) untilled beds with no cover crop mulch, hereafter

designated as bare soil (BS) (included in the 2007
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experiment only). In the September before the tomato

cropping season, lime and nutrients other than nitrogen

were applied to fields according to Maryland soil test-based

recommendations and beds, 1.5 m center to center, were

formed. In late September, hairy vetch was planted at

45 kg ha-1 and rye was planted at 101 kg ha-1 on the

surface of designated beds. The beds to receive black

polyethylene or to remain bare soil were maintained free of

vegetation by applying 0.6 kg ha-1 of paraquat in late

October and again in early spring. The black polyethylene

mulch treatment was prepared by rototilling the designated

bed area, shaping a new bed, installing drip irrigation lines

5 cm deep within the bed, and laying 1.2 m wide black

polyethylene sheets over the surface of the beds. HV and

RY cover crops were mowed such that residue was dropped

in place to leave a mulch on the surface of the beds (Abdul-

Baki and Teasdale 2007). The beds were left undisturbed

with no surface mulch in the bare soil treatment. Drip

irrigation lines were laid on top of the mulch and soil in the

undisturbed HV, RY, and bare soil treatments.

Tomato genotypes were transplanted along the center of

beds in early June. The experiment was designed as a split-

plot design with mulch treatment as the whole plot and

genotype as the subplot. Five plants of each genotype were

planted in each mulch treatment in each of four replications

with 56 cm between plants. A spacing of 112 cm was left

between each genotype along the bed. Beds were irrigated

at least weekly using drip irrigation. Nitrogen was applied

through the drip irrigation system at four times approxi-

mately corresponding to transplant establishment, flower-

ing, fruit initiation, and initial fruit ripening stages of

development. A total of 224 kg ha-1 of N was applied to

all treatments without hairy vetch and a total of

112 kg ha-1 of N was applied to the hairy vetch treatment

based on previous research that defined the requirements

for achieving optimum yields (Abdul-Baki and Teasdale

2007).

2.2 Genotypes and construction of transgenic lines

Transgenic tomatoes (in Ohio 8245 background) homozy-

gous for the indicated genetic event(s) were tested along-

side the azygous control line (556AZ): Five genotypes

(556HO, 579HO, 650-12HO, LS-4 HO and 102AS-1HO)

in 2006, and an additional line 2AS-2HO was added to the

field trial in 2007. The codes used for each tomato line

(genotypes) are summarized in Supplementary Table 1.

These included three types of engineered genotypes of

tomato with the modulated fruit shelf-life, fruit texture and

metabolic/nutrient activity of tomato fruit. Thus, individual

genetic events included tomato lines engineered with yeast

SAM decarboxylase gene under ripening-specific E8 pro-

moter (Spe2, accession # M38434; ySAMdc) in a fruit

specific manner for enhanced metabolic activity and

accumulate polyamines spermidine and spermine in a fruit

ripening-specific manner (556HO and 579HO, lines 8 and

10 (Supplementary Table 1), which have higher processing

quality, longer vine life and higher lycopene content

(Mehta et al. 2002); antisense-RNA to 1-aminocyclo-

propane-1-carboxylate synthase 2 (ACS2) gene under

CaMV 35S promoter to constitutively suppress the pro-

duction of ripening hormone ethylene (2AS-2HO, line 2),

which produces half the ethylene than the control 556AZ

line and has considerably longer shelf-life (Sobolev et al.

2014); co-suppression of tomato lipoxygenase gene under

the constitutive CaMV 35S promoter [650-12HO, line 12,

which is deficient in the stress hormone methyl jasmonate

(meJAS) and has better texture than the control line (LOX;

SlLoxB, accession # U13681) (Kausch et al. 2012). Addi-

tional tomato lines were developed with double genetic

events by making backcrosses between one high polyamine

line (line 10) and ethylene-suppressed line 2 (102AS-1HO,

line 4), as well as another high polyamine line (line 8) and

meJAS-deficient line 12 (LS-4HO, line 20) with an azy-

gous line as a control (description in Supplementary

Table 1). These lines offered a resource to study interac-

tions between polyamines and indicated hormones in a

unique germplasm and determining differences when

grown in fields with different agroecosystem environments.

2.3 Whole plant measurements

Single leaf CO2 and H2O vapor exchange measurements

were made on clear days in 2006 and 2007 using a CIRAS-

1 portable photosynthesis system (PP Systems, Amesbury,

MA) under ambient mid-day conditions of light, tempera-

ture, humidity and CO2 concentration, using a broad-leaf

cuvette. Measurements were made on July 18, Aug 01, Aug

17 and Sep 07 in 2006 and on Aug 02, Aug 14, Aug 27, and

Sep 12 in 2007. Leaf temperatures ranged from 26 to 30 �C
across all measurement dates. Mean values of the leaf to air

difference in water vapor pressure ranged from 1.2 to

1.8 kPa for the different measurement dates. Photosyn-

thetic photon flux density exceeded 1200 lmol m-2 s-1

for all measurements, and the CO2 concentration external

to the leaves was controlled at 370 lmol mol-1. Leaves

selected for measurement were recently fully expanded

upper canopy leaves fully exposed to light, and were found

to have the highest rates of any leaves on the plants. On

each date, gas exchange was measured on one leaf of each

genotype in each replicate plot. The order of measurements

of genotypes within mulch treatments was random, and the

mulch treatments were measured such that the mean time

of day was equalized. Measurements were completed in

about 2 h on each date.
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2.4 Determination of fruit yield

In 2006, pink and red fruit (the range of fruit develop-

mental stage normally harvested commercially) were har-

vested from the five-plant subplots from each replication

on two dates, the first harvest took place on Sep 12, and the

final harvest on Sep 22. In 2007, the five-plant subplots

were harvested from three replicates at two times. For the

first harvest, all the pink and red fruits were harvested Sep

6 to 9. The same plants were harvested for a second time on

Sep 25 to 28. The number and weight of fruit per plant and

average fruit weight were calculated both for the early

harvest and for the total of the two harvests.

2.5 Metabolite analysis

The levels of biogenic amines—putrescine, spermidine and

spermine—in pericarps of fruit from transgenic and azy-

gous lines grown on HV, BP, RY and Bare were deter-

mined as described previously (Minocha et al. 1990).

Pericarp tissue was powdered in liquid nitrogen and lyo-

philized, and 100 mg (dry weight) of each sample was

mixed with 800 ll of 5 % perchloric acid and stored at

-20 �C. The frozen samples were thawed at room tem-

perature and the freeze and thaw cycles repeated three

times. Finally, the samples were centrifuged at

12,0009g for 15 min and the supernatants assayed (Min-

ocha et al. 1990; Mehta et al. 2002).

NMR spectroscopy was employed to profile 30

metabolites classified into simple sugars, organic acids,

amino acids, energy molecules, choline and nucleic acid

related. The names and their abbreviations used in the text

are listed in Supplementary Table 2. Prior to analysis,

pericarp tissues from pink and red fruit of all transgenic

genotypes and non-transgenic azygous line collected from

field grown plants were chilled in liquid nitrogen imme-

diately after slicing and stored at -80 �C. The frozen tissue
was powdered in liquid nitrogen and lyophilized. Samples

of the dry powder were then analyzed by NMR spec-

trometry as previously described (Sobolev et al. 2003;

Mattoo et al. 2006).

2.6 Quantitative PCR analysis

Fruits were harvested from the genotypes 556HO, 579HO,

650-12HO and LS-4 HO. Total RNA was isolated from

lyophilized pericarp samples using the RNeasy Plant Mini

Kit (Qiagen). RNA quantification and quality were deter-

mined using a spectrophotometer and native agarose gel

electrophoresis, respectively. First strand cDNA synthesis

was performed using the SuperScript� cDNA Synthesis Kit

(Invitrogen) following the manufacturer’s instructions, in a

final volume of 20 ll. The final cDNA products were

diluted tenfold prior to use in real-time RT. Quantitative

RT-PCR (Q-PCR) was performed with gene-specific pri-

mers (Supplementary Table 3), which were designed using

Primer3 software. The Q-PCR conditions were the same as

before (Mattoo et al. 2006; Fatima et al. 2012). Tomato

actin gene was used as reference for normalization and

transcripts were quantified in BP and HV treated samples

by the comparative CT method using the 2�DDCT formula as

described (Livak and Schmittgen 2001). Gene transcripts

of E8, S-adenosylmethionine decarboxylase (SAMDC),

lipoxygenase (LOX) were quantified.

2.7 Statistical analyses

Univariate analyses were performed with analysis of vari-

ance (ANOVA) using the mixed model procedure of SAS

version 9.2 (SAS Institute, Cary, NC). The model for

analyzing fruit yield variables, photosynthesis variables,

polyamines and metabolites had mulch, genotype and

mulch by genotype interaction treatments as fixed effects.

Year and field block nested within year were random

effects for the fruit yield analyses, year and block within

year and sampling date within year were random effects for

the photosynthesis analyses, and year and fruit stage were

random effects for the polyamine and metabolite analyses.

Principal components analysis (PCA) was performed on

the metabolite data set after standardization to mean zero

and standard deviation one. Two ANOVA’s were per-

formed, one for each of the first two components using

mulch, genotype and mulch by genotype interaction treat-

ments as fixed effects.

Metabolites were organized into groupings of amino

acids, organic acids, sugars, and energy metabolites in

order to facilitate analysis of overall trends within groups.

Each metabolite was standardized to mean = 0 and stan-

dard deviation = 1 to give equal weighting to each

metabolite. An ANOVA was then performed on the stan-

dardized metabolic data by group with genotype or mulch

treatment as a fixed effect.

Canonical correlation analysis (CCA) was performed to

explore multivariate correlations between whole plant

variables (early fruit number, early fruit weight, early

weight per fruit, total fruit number, total fruit weight, total

weight per fruit, net photosynthesis, stomatal conductance,

and internal CO2 concentration) and metabolite variables.

Univariate Pearson correlations between these variables

were also calculated.

A single network analysis for metabolites (Langfelder

and Horvath 2008; DiLeo et al. 2011), assuming an

unvarying correlation structure among variables over the

whole data set, was found not adequate to describe our

metabolite networks and their dynamics under the
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genotype and mulching conditions we observed. We

introduce a new approach based on characterizing changes

in simple correlations between metabolite pairs among

subsets of data. We partitioned the data into subsets of

interest, e.g., genotypes representing low versus high

polyamine plants, in order to obtain sufficient sample sizes

for calculating correlations. This approach is analogous to

an ANOVA with only crossed main effects (indeed, few

interactions were found in univariate analyses), where

statistical testing of main effects is done averaging over

other data partitions.

To determine which changes in correlations were the

important ones to depict in our networks, we established a

confidence interval for the hypothesis of no change in

correlation (P\ 0.05, two-tailed) for individual metabo-

lite pairs, following the Fisher r-to-z transformation, and

show only large changes in correlation (for P\ 0.05).

Pearson correlations were calculated using the R statisti-

cal software (R Core Team 2014), and tests for significant

differences between correlations using the psych package

(Revelle 2014). Data sets with the information necessary

for visualizing changes in metabolic networks in Cytos-

cape (v. 3.1.1, Shannon et al. 2003) were exported as csv

files (these included the metabolite names and z value

differences). We did not include correlation changes

involving the uncharacterized ‘‘B’’ metabolite. We color-

coded the networks, with blue representing increases in

correlation (a smaller positive correlation becoming a

larger positive correlation) and red representing decreases

in correlation (a larger positive correlation becoming a

smaller positive correlation). The thickness of the lines

joining the metabolites was used to represent the magni-

tude of the change (on the z scale), with the thinnest line

representing a change of about 0.1 in correlation and the

thickest a change of about 0.7 in correlation. An impor-

tant point to remember when looking at the figures is that

they do not represent the correlations themselves, rather

they represent changes in correlation. Thus, two

metabolites that are highly correlated in both subsets of

data would not be linked in the figure because their

correlation did not change.

We are aware that analyses repeated in different ways

on the same data set leads to correlated test statistics. The

P values can be adjusted for this accurately if the nature of

the correlation among tests is known (not true for our case)

or more generally, using approaches such as false discov-

ery rate (Benjamini and Hochberg 1995). Since the inter-

ests in this paper are primarily exploratory, we have

retained the traditional P\ 0.05 standard for significance

throughout, accepting that this is liberal and does not

control the experiment-wise error rate (still an active

research area in statistics).

3 Results

3.1 Confirmation of system function under field

grown conditions

We first ascertained the stability of the introduced genes in

tomato plants in the field and/or their biochemical pheno-

type. In addition to the engineered lines mentioned above,

we developed and tested additional tomato lines with

double genetic events by making backcrosses between one

high polyamine line (line 10) and ethylene-suppressed line

2 (102AS-1HO, line 4), as well as another high polyamine

line (line 8) and meJAS-deficient line 12 (LS-4HO, line 20)

with an azygous line as a control (description in Supple-

mentary Table 1). Q-PCR data of three genes—yeast SAM

decarboxylase (ySAMDC), tomato E8 (SlE8) and tomato

lipoxygenase (SlLOX) in different tomato genotypes grown

in BP (black plastic mulch) and HV (hairy vetch mulch) are

shown in Supplementary Fig. 1. As expected, lines 8 and

10, carrying the ySAMDC transgene, expressed ySAMDC

transcripts. However, line 20 had higher expression of

ySAMDC transcripts than its parent line 8. Specific effects

of the BP versus HV were evident: ySAMDC transcript

expression in line 20 (G20) was several-fold enhanced

under BP (Supplementary Fig. 1, ySAMDC). To ascertain

if this BP effect was due to an effect on the SlE8 promoter

used to drive the expression of the chimeric ySAMDC

construct, the accumulation of SlE8 transcripts was also

quantified under BP and HV. The pattern of SlE8 transcript

accumulation in BP-grown lines 8 and 10 was similar to the

pattern of ySAMDC transcripts (Supplemental Fig. 1,

compare E8 with ySAMDC under BP). In fact, BP-grown

line 12 had higher expression of SlE8 transcripts than when

grown under HV (Supplementary Fig. 1, E8), and in con-

trast these transcripts in control azygous line 5 accumulated

maximally under HV. SlLOX transcripts were suppressed

in both line 12 and its sibling, genotype 20, as expected

while mulch systems had little differential effect. HV

mulch had a more enhancing effect on SlLOX expression in

line 5 (G5) and line 8 (G8). In general, the relative accu-

mulation levels of SlE8 transcripts were considerably lower

than ySAMDC and SlLOX transcripts.

We introduced SAMDC into tomato (Mehta et al. 2002)

because we anticipated that among the main polyamines

present in tomato—putrescine (Put), spermidine (Spd) and

spermine (Spm)—Spd and Spm should accumulate and Put

should decline in lines 8 and 10, and their siblings 4 and 20.

The values for the three polyamines (Supplementary

Table 4) showed the expected pattern of polyamines for the

indicated genotypes. The siblings (lines 4 and 20) behaved

like their high polyamine parents qualitatively and quan-

titatively, with line 20 having elevated spermine levels
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compared to all other tested genotypes and consistent with

the elevated SAMDC expression in this genotype (Sup-

plementary Fig. 1). In terms of polyamine content, the

methyl jasmonate (meJAS) deficient (line 12) and ethylene

deficient (line 2) genotypes behaved similar to the azygous

control line 5. This analysis also indicated no significant

mulching system main effects or genotype*mulch interac-

tions in the pattern of polyamine accumulation.

3.2 Net photosynthesis and fruit yield as a function

of genotypes and mulching system

Constitutive suppression of ethylene was found to result in

higher net photosynthesis and stomatal conductance in line

2 than in the azygous control (Supplementary Table 5).

This was true also for its sibling line 4 (crossed with high

polyamine line 10), which behaved like parent 2 for all

variables. In contrast, line 10 with fruit-specific high

polyamine content had the lowest net photosynthesis,

stomatal conductance and fruit yield. This phenotypic trait

was, as expected, absent from line 4, likely because of the

differential regulation of the genetic events introduced,

suggesting that this fruit-specific event was not transferred

to vegetative parts of the tomato plant. In all genotypes, the

differences in net photosynthesis were found unrelated to

internal CO2 levels (Supplementary Table 5). There were

no significant effects for any of these variables among

genotypes 5, 8, 12, and 20.

Tomato fruit yield was higher in plants grown in hairy

vetch or black polyethylene mulch than in rye mulch or

bare soil (Fig. 1), in line with previous reports (Buyer et al.

2010). However, there were no significant effects of

mulching system on photosynthetic variables.

3.3 Principal components analysis of metabolites

Principal components analysis (PCA) was performed on

the metabolite data set after standardization to zero mean

and unit standard deviation. PCA decomposed the meta-

bolome data set to two principal components with 36 % of

the explainable variation described by the first component

and 20 % of the explainable variation described by the

second component. Other components each described less

than 10 % of this variation. The first principal components

axis was most positively correlated with the metabolites

histidine (HIS), asparagine (ASN), phenylalanine (PHE),

and threonine (THR) (eigenvectors[?0.25) and most

negatively correlated with glucose (bGLC) and fructose

(FRU) (eigenvectors\-0.08) (Fig. 2). The second prin-

cipal components axes was most positively correlated with

the metabolites adenosine (ADEN), NU1, and NU2

(eigenvectors\?0.25) and negatively with citrate (CIT),

and succinate (SUCC) (eigenvectors[-0.25) (Fig. 2).

Our PCA analysis was followed by an ANOVA on the first

two components as dependent variables. We used mulching

system and genotype as the independent variables (with

and without interaction) and found that none of these

independent variables were significant (all P values[0.05,

results not shown). Although this analysis did not ade-

quately resolve genotype and mulch system treatments, we

further explored the data set, looking at the variables

independently using univariate ANOVA, and then with

metabolite networks.

3.4 Univariate ANOVA of metabolite profiles

The univariate ANOVA for each metabolite separately

showed several significant genotype and mulching system

main effects, and very few significant interactions between

these effects. The lack of significant mulch*genotype

interactions implies that the pattern of metabolite responses

to mulching system are consistent across genotypes and

that the pattern of genotype responses are consistent across

mulches. Therefore, we report on the main effects.

The high polyamine genotypes 8 and 10 had generally

higher levels of the amino acids alanine and asparagine,

organic acids citrate and succinate, and ATP ? ADP levels

than the meJAS deficient line 12 and the ethylene deficient

line 2 (Supplementary Table 6). In contrast genotype 2 had

higher levels of inositol and adenosine than either geno-

types 8 and 10. Genotype 10 had higher levels of choline

and mNAM than all other genotypes. Sibling 20 was more

similar to its parent genotype 8 for valine, citrate, succi-

nate, and adenosine, but more similar to genotype 12 for

asparagine. Sibling 4 was more like its parent genotype 10

for valine, inositol, and adenosine, but more like its parent

genotype 2 for choline and mNAM.

Significant univariate effects due to agroecosystem

environment, created by different mulches, on amino acids,

organic acids, sugars, and energy fruit metabolites are

summarized in Supplementary Table 7. The hairy vetch

(HV) mulching system led to higher levels of selected

amino acids (glutamate, threonine, GABA), and organic

acids (citrate, malate, succinate) and mNAM, and lower

levels of the sugars (glucose and fructose). Like HV, rye

mulch (Rye) also increased glutamate and threonine but its

effect on aspartate was greater than HV, the black poly-

ethylene (BP) mulching system, and bare soil (BS) (Sup-

plemental Table 2). In contrast to HV and Rye systems,

both glucose and fructose, and NUC2, were higher under

BP and BS environments.

The univariate analyses suggested that there were

common metabolic patterns of response for selected

genotypes and mulching systems, particularly among

amino acids and organic acids. Consequently, each

metabolite was standardized to mean zero and unit standard
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deviation and analyzed by ANOVA across all metabolites

for each metabolic grouping. There were significant dif-

ferences (P\ 0.05) among standardized amino acid and

organic acid means for both mulch and genotype, but not

for means of standardized sugar or energy metabolites

(Supplementary Tables 6 and 7). Plants grown in the HV

mulch system had higher overall amino acid and organic

acid levels, whereas plants grown in the BP mulch system

had the lowest levels (Fig. 3). The high polyamine

genotypes 8 and 10 also had the highest overall amino acid

and organic acid levels, whereas the ethylene-deficient and/

or meJAS-deficient genotypes had the lowest levels

(Fig. 3). A summary of this analysis and the univariate

analyses showed that agroecosystem environment created

by HV mulch system induced a metabolic profile similar to

that induced by high polyamine genotypes (lines 8 and 10).

3.5 Correlation analysis of whole plant

versus metabolite data sets

A number of plant photosynthesis/yield variables, in

addition to the fruit metabolite variables, were collected. A

dimension reduction technique, canonical correlation, was

used to examine the multivariate relationship between plant

and fruit metabolite variables, but was not significant

(Wilks’ Lambda = 0.4658). Univariate correlations

between plant and fruit metabolite variables were generally

low (the average absolute value of all 297 correlations of

the 9 plant by 33 metabolite variables was 0.213). Thus,

there was little linkage between plant performance and fruit

metabolism in these genotypes and mulching systems.

3.6 Metabolic networks in tomato fruit change

with genotype and ecosystem environment

When we used PCA and WCNA (Langfelder and Horvath

2008) for discerning the patterns of eigenmetabolites over

treatments, we found that these approaches did not ade-

quately capture how metabolites responded to genotype

and treatment changes. The WCNA approach is based on

the assumption that the correlation structure of the data

does not vary across treatment effects, though means may

be affected by treatments. Instead, we found that the

observed relationships among the metabolite pairs often

changed substantially across the different genotypes and

mulching systems in our experiments. To discern how the

networks of metabolites changed as conditions varied, we

used an approach based on characterizing changes in cor-

relations between metabolite pairs among subsets of data.

A listing of the correlation between all pairs of metabolites

for each data subset is presented in Supplementary Table 8.

The data were partitioned into subsets of interest for this

study, namely, (a) genotypes whose fruit have low (lines 2,

5 and 12) versus high polyamine content (Spd and Spm)

(lines 4, 8, 10 and 20), (b) normal (lines 2, 4, 5, 8 and 10)

versus deficient (lines 12 and 20) meJAS content, and

(c) mulch system in which the plants were grown (two

categories: bare and black polyethylene versus hairy vetch

and rye cover mulches).

Figure 4 summarizes data on the least and most

stable metabolite pairs across all treatments based on the

variability of correlations following Fisher’s

Fig. 1 Effect of mulch treatments on tomato fruit yield. Least square

means of 2006 and 2007 growing seasons. Bars with the same letter

are not significantly different (P\ 0.05)

Fig. 2 Eigenvectors of metabolite variables plotted on the first two

axes of a principal components decomposition. Variables were first

standardized to mean zero and standard deviation one. Dotted lines

delineate the four quadrants
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Z transformation. Stability was calculated as the standard

deviation of transformed correlations of metabolite pairs

across all partitions of the data described above (e.g. one

partition is high versus low polyamine). The least

stablemetabolite pairs are colored darkest red (mean standard

deviation[0.35 on the Z scale) in the heatmapwhile themost

stable are yellow (mean standard deviation \0.19 on the

Z scale). The most stable was the pair, TRP-SUCR, with the

smallest standard deviation of 0.109, and the least stable was

AMP-Nucl2, with the highest standard deviation of 0.518.

Metabolites that had the most stable associations with other

metabolites were citrate and formate (14 and 13 associations

with standard deviations\0.19, respectively, primarily with

amino acids and organic acids) and sucrose (12 associations

\0.19, primarily with amino acids). Correlational relation-

ships amongst these metabolite pairs with low standard

deviations were least disturbed by perturbations caused by

differences in genotype or mulching system and represent the

most stable linkages between metabolites in this experiment.

In contrast, metabolite pairs with large standard deviations

illustrate pairs whose linkage changed most in contrasting

treatments; analyzed in more detail below.

Cytoscape (v. 3.1.1) (Shannon et al. 2003) was used for

creating figures that defined networks of metabolic corre-

lations in the contrasting treatment subsets described above

(Supplementary Figs. 2–4). In the low Spd and Spm

polyamine fruit, lines 2, 5 and 12 (Supplementary Table 1),

high correlations between metabolites are visually evident

for nodes NU1, ILE, VAL, THR, GLU, GLN, GABA, CIT,

CHOL, INOS and SUCC followed by TYR, HIS, PHE and

TRP (Supplemental Fig. 2A). Correlations were even

stronger for NU1, ILE, THR, GLU, GLN, GABA, CHOL

and TYR, and lower for VAL, CIT, INOS, mNAM in the

high Spd and Spm polyamine fruit (represented by lines 4,

8, 10 and 20) (Supplementary Fig. 2B). In addition,

metabolites with high correlations in the high polyamine

lines include ADEN, AMP, NU1, NU2, ASP, ASN, HIS,

MAL and FOR (Supplemental Fig. 2B), suggesting that

positive interactions between these metabolites were

enhanced, some of these being unique. Many high corre-

lations were found between metabolites in tomatoes with

normal content of meJAS, though correlations tended to be

lower for nodes of SUCR, FUM, TRP and mNAM (Sup-

plementary Fig. 3A, B). In comparison, the tomato lines

Fig. 3 Amino acid and organic

acid response to mulch

treatment (A) or genotype (B).
Bars are the mean of all amino

acids or organic acids analyzed

in this experiment after data for

each metabolite was

standardized to mean = 0 and

standard deviation = 1. Bars

within each metabolite group

followed by the same letter are

not significantly different

(P\ 0.05). Genotype codes are

defined in Supplementary

Table 1
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deficient in the content of meJAS had a somewhat different

pattern of correlations, with a weakening of some corre-

lations, such as the nodes represented by ADEN, mNAM,

GLN, ASN, TYR, TRP, GABA, SUCC, MAL and FUM

(Supplementary Fig. 2B).

Because it was difficult to discern differences between

contrasting treatments in these complex correlation

networks, the most significant changes in the correlation

between metabolites shown in these supplementary fig-

ures were determined using a cut-off of P\ 0.05 and

aligned into networks using Cytoscape as shown in

Fig. 5a–c. Blue colored lines represent significant

strengthening in correlation (a smaller positive correlation

becoming a larger positive correlation) and red represents

Fig. 4 Five color heat map of stability of pairs of metabolites across

all treatments, based on the variability (as standard deviations) of

correlations, following Fisher’s Z transformation. The least

stable pairs, those responding most to changes across treatments,

are the darkest red, the most stable are yellow. The upper right

triangle gives the average correlation of each pair, the lower left

triangle gives the standard deviations used to create the heat map
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significant weakening in correlation (a larger positive

correlation becoming a smaller positive correlation).

Again, note that these do not represent the correlations

themselves, rather they represent changes in correlation

between two contrasting treatment groupings.

The changes in metabolite networks, shown in Fig. 5a,

depict significant changes in correlation between high

polyamine and low polyamine lines, blue lines representing

pairs of metabolites that become significantly more

strongly coupled in high polyamine lines, while the red

lines represent pairs of metabolites that are strongly cou-

pled in high polyamine lines but become significantly less

coupled in low polyamine lines. Many of the same

metabolites that differed between high or low polyamine

genotypes in the univariate analyses are also important

nodes in the network exhibited in Fig. 5a. These metabo-

lites clearly define the shift in metabolic activity in high

versus low polyamine fruit.

Few significant changes in correlation between low and

normal meJAS were observed as shown in Fig. 5b. Four

unique and unlinked correlation networks were seen: MAL

and FUM, ALA and FOR, ASP, ADEN, GLU and CHOL,

along with a larger composite network. Most significant

changes, going from low to normal meJAS, were a weak-

ening of the correlations (red lines), only the GLU-CHOL

and ALA-FOR pairs became more tightly coupled.

3.6.1 Metabolic network correlations as a function

of agroecosystem environment

The univariate analysis described above showed that the HV

mulching system induced a similar metabolic profile as the

high polyamine genotypes 8 and 10 (Fig. 3), andwe looked to

the metabolic network correlations for additional evidence.

For this, we examined correlations of metabolites between

black polyethylene (BP) versus HV mulch; these two

mulching systems had the most contrasting metabolic

responses in previous analyses (Fig. 3). The significant

changes in network correlations between BP and HV were

identified for each of the two polyamine genotypes, high or

low (Fig. 5c). Since the figures represent changes in correla-

tion, we expected fewer changes between BP and HV mulch

systems in high polyamine genotypes than for the low poly-

amine genotypes because the former genotypeswould already

have achieved the distinct metabolite profiles closer to those

generated by HV mulch. Our network data supports this

hypothesis showing that, within the high polyamine geno-

types, the network density of metabolic changes between BP

and HV (Fig. 6a) was substantially reduced compared to the

more dense network of metabolic changes between BP and

HV within the low polyamine genotypes (Fig. 6b).

Fig. 5 Changes in metabolic networks. (a) Polyamine-specific net-

work changes, comparing metabolite pairs in low (genotypes 2, 5, 12)

to high (genotypes 4, 8, 10, 20) polyamine content fruits (Supple-

mentary Fig. 2); only significant changes (P\ 0.05) in the correla-

tions are shown. Decreases in correlation from low to high genotypes

ranged from -0.688 to -0.214, shown in blue, the width of the line

indicating the amount of decrease. Correlations that significantly

increased from low to high polyamine genotypes, are shown in red,

ranging from 0.614 to 0.122, the width of the line indicating the

amount of increase. Mulch types were pooled for these calculations.

(b) Methyl jasmonate (me-JAS)-specific network changes comparing

metabolite pairs in low (genotypes 12, 20) to normal (genotypes 2, 4,

5, 8, 10) me-JAS fruits (Supplementary Fig. 3); only significant

changes (p\ 0.05) in the correlations are shown. Decreases in

correlation from low to normal genotypes ranged from -0.432 to

-0.476, shown in red; the width of the line indicating the amount of

decrease. Correlations that significantly increased from low to normal

me-JAS genotypes, are shown in blue, ranging from 0.217 to 0.461,

the width of the line indicating the amount of increase. Mulch types

were pooled for these calculations. (c) Cover crop mulch based

changes in metabolite networks (Supplementary Fig. 4). Plants grown

with mulches B (bare) and BP (black plastic) were compared to those

grown with HV (hairy vetch) and RY (rye grass); only significant

changes (P\ 0.05) in the correlations are shown. Decreases in

correlation from B, BP to HV, RY ranged from -0.242 to -0.416,

shown in blue; the width of the line indicating the amount of decrease.

Correlations that significantly increased from B, BP to HV, RY are

shown in red, ranging from 0.232 to 0.534, the width of the line

indicating the amount of increase. All genotypes were pooled for

these calculations
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4 Discussion

We demonstrate distinct effects on fruit metabolome as

affected by the abundance and deficiency of plant growth

regulators such as ethylene, methyl jasmonate and

polyamines (spermidine and spermine) generated via

transgenic intervention, and by the agroecosystem envi-

ronment. Our data on metabolic changes reinforce the need

to account for agroecosystem effects on ‘novel’ and other

engineered genotypes for variables like fruit yield,

metabolite/nutrient content and longevity. Studies like ours

contribute information necessary for agricultural sustain-

ability by identifying genotypes that have robust agro-

nomic and other desirable traits under different

agroecosystems (Grobkinsky et al. 2015). Further, the

analyses presented here on metabolic networks across

genotypes and agroecosystems highlight differences in the

structure of primary metabolic networks, and reveals the

fluidity of plant metabolic networks. These findings concur

with the recent discussion on differential metabolic net-

works of plant metabolism (Omranian et al. 2015).

Little information is available on the flexibility of

metabolite profiles in specific genotypes when grown under

environment-controlled greenhouse (GH) versus under

different agroecosystems in the field. Such a comparison

proved quite revealing, when data generated in the present

study were compared to those using GH-grown tomatoes

(Mattoo et al. 2006; Kausch et al. 2012; Sobolev et al.

2014). First, under field conditions high polyamine lines

(lines 8 and 10) were richer in amino acids (GLN, ASP,

THR, ASN, GLU, GABA and HIS) and energy metabolites

than was found previously under GH conditions (Mattoo

et al. 2006); however, organic acid levels (citrate and

fumarate) in the field and greenhouse were not different.

Second, fruit with the ethylene deficiency trait more

severely limited the accumulation of Krebs cycle inter-

mediates under field conditions than in the GH (Sobolev

et al. 2014). Methyl jasmonate-deficient fruits were

remarkably different from high polyamine fruits when

grown in the greenhouse, since levels of many amino acids

were decreased (Mattoo et al. 2006; Kausch et al. 2012),

but, conversely, methyl jasmonate-deficient fruit accumu-

lated higher levels of several amino acids (ALA, VAL,

ASP and GLU) under field conditions. Interestingly, under

field conditions, although the energy metabolites

(ATP ? ADP) were higher in both ethylene- and methyl

jasmonate-deficient fruits, fruit from both these lines

accumulated lower amounts of Krebs cycle intermediates,

compared to GH conditions.

Comparative analysis of the double transgenic fruit pro-

vided additional insights on the cross-talk between high

polyamine trait and that of ethylene deficiency or methyl

jasmonate deficiency. The ethylene deficient trait was

dominant over the high polyamine trait in decreasing the

Fig. 6 Significant changes in correlation for fruits grown with black

plastic mulch versus hairy vetch mulch for high polyamine content

genotypes (a) or low polyamine content genotypes (b). Significant
increases from black plastic to hairy vetch in correlation are depicted

as blue lines, significant decreases as red lines, width of the line

indicating the magnitude of change. Note that there are more changes

for low than high polyamine content genotypes, suggesting that

effects of mulch are more pronounced for low polyamine content

genotypes; see text for further explanation
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levels of amino acids, except ASN, under field conditions. In

contrast, the high polyamine (Spd/Spm) trait was dominant

in the background of methyl jasmonate deficiency in

maintaining higher levels of several amino acids (GLN,

ALA, TYR and GABA) under field conditions. Similarly,

the high polyamine trait was found to be dominant for Krebs

cycle intermediates—citrate, succinate and fumarate—and

energy-related metabolites (ATP ? ADP) under field con-

ditions but not under greenhouse conditions. Collectively,

these results affirm that specific interactions which exist

between a particular metabolite pathway and growth envi-

ronment are affected by the genotype being tested, and will

therefore influence the metabolite quality of a crop.

Two other facts to note are: (1) the precursors of poly-

amine biosynthesis are themselves amino acids—arginine

(ARG) and ornithine (ORN)—whose decarboxylation

reactions form putrescine (Put), which is subsequently

converted step-wise to spermidine (Spd), spermine (Spm)

and thermo-spermine (T-Spm); (2) studies with Ara-

bidopsis mutants and transgenic crops have shown

involvement of polyamines in plant resistance to drought,

salinity and heat (Alcázar et al. 2010; Mattoo et al. 2015).

With this in mind, it is interesting that Put is also a source

for another signalling and stress-related molecule GABA,

which is central to the GABA shunt (Flores and Filner

1985; Shelp et al. 2012; Yang et al. 2013; Michaeli and

Fromm 2015). GABA can be synthesized from GLU and

its catabolism can generate GLU and ASP (Takayama and

Ezura 2015). GABA also metabolizes to succinate con-

tributing to the Krebs cycle, thus becoming an energy

source. In addition, GABA can be transaminated with

pyruvate to yield alanine (or with 2-oxoglutarate to yield

glutamate), generating succinic semialdehyde, which can

then be metabolized to succinate (Vandewalle and Olsson

1983; Patterson and Graham 1987; Shelp et al. 1999;

Michaeli and Fromm 2015; Takayama and Ezura 2015).

The conversion of glutamate to succinate via the action of

glutamate decarboxylase, GABA transaminase, and suc-

cinic semialdehyde dehydrogenase forms the GABA shunt

(see reviews, Michaeli and Fromm 2015; Takayama and

Ezura 2015), affording an alternative pathway for gluta-

mate entry into the Krebs cycle. Whether the polyamine-

induced GABA shunt is a means for polyamines to pro-

mote resistance against abiotic stress is an intriguing

question and needs to be further explored.

Many of these metabolites were affected by genotype in

our analyses. Univariate analyses showed alanine and

succinate levels were increased in high polyamine geno-

types, suggesting an accelerated movement of carbon

through polyamines into Krebs cycle along with generation

of ATP ? ADP, which were also increased in high poly-

amine genotypes. Network analysis also showed alanine

and succinate as hubs of metabolic changes as genotype

changes from low to high polyamine accumulation

(Fig. 5a). Although inferring changes in metabolic rate

kinetics for specific metabolic reactions is not currently

possible from network correlation data (Steuer et al. 2003;

Kügler and Yang 2014), it is reasonable to assume a net-

work of positive and negative changes in metabolic

kinetics as seen in Fig. 5a in response to altered activity of

SAMDC in these genotypes.

Finally, our data analysis highlights the distinctive flu-

idity of metabolite networks associated with agroecosys-

tem environment. Not only were metabolic profiles

different in the field (this experiment) versus greenhouse

(previous experiments) environments, but modification of

the field agroecosystem had a profound effect on metabo-

lites. The traditional culture of tomatoes in black poly-

ethylene mulch increases soil temperature, and accelerates

vegetative growth and the advent of reproductive devel-

opment leading to higher relative growth rates of fruit

(Teasdale and Abdul-Baki 1997). In contrast, tomatoes

grown in hairy vetch cover crop residue are exposed to a

soil environment with cooler temperatures, higher nitrogen

mineralization, and an altered microbial community (Buyer

et al. 2010), leading to a higher ratio of vegetative to fruit

growth rate and a longer growth and fruiting period than

tomatoes grown with black polyethylene (Teasdale and

Abdul-Baki 1997). Metabolic profiles depicted in univari-

ate analyses in this paper show differential metabolic pat-

terns in fruit grown in these two distinct agroecosystem

mulching environments. Higher levels of selected amino

and organic acids and lower sugar levels reflect the more

vigorous vegetative growth of HV-grown compared to BP-

grown tomatoes, as well as changes in the covariances

among metabolites, shown in the network analysis. Previ-

ous research has shown positive correlations between

amino acids and carboxylic acids, and negative correlations

with sugars, in tomato seed and fruit tissues (Toubiana

et al. 2012). These authors suggest that these associations

are evidence of cross-talk between C and N networks in

response to changes in resource competition between plant

vegetative and reproductive growth. It is intriguing that

these metabolic shifts in response to mulching environment

are similar to shifts in response to high polyamine geno-

types. This similarity is highlighted by the distinct loss in

density of metabolic correlation changes between HV and

BP when compared within high-polyamine genotypes than

within low-polyamine genotypes (Fig. 6).

5 Conclusions

This study portrays how metabolite relationships change

under different genotypic and environmental conditions.

Although these networks are surprisingly dynamic,
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examples of selectively conserved associations were evi-

dent. The importance of the specific agroecosystem envi-

ronment in metabolomics research is highlighted;

metabolic profiles are highly sensitive to the nature of the

growing conditions under which tomato plants are grown

and fruit is ripened. The development of transgenic

germplasm will be subject to the same genotype by envi-

ronment interactions that traditional breeders have

addressed for centuries. Future research is needed to

identify other specific traits that modulate metabolomic

profiles in fruit and better define how expressions of these

traits are modified by agroecosystem environment.

Acknowledgments We thank numerous students and postdoctoral

associates for their help during harvesting/processing of the fruits, and

Tatsiana Datsenka for assistance in developing the ‘methyl jasmonate

deficient X high polyamine’ double transgenic genotype. Mention of

trade names or commercial products is solely for the purpose of

providing specific information and does not imply recommendation or

endorsement by the U.S. Department of Agriculture (USDA). USDA

is an Equal Opportunity Provider.

Compliance with ethical standards

Conflict of interest None.

Open Access This article is distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://crea

tivecommons.org/licenses/by/4.0/), which permits unrestricted use,

distribution, and reproduction in any medium, provided you give

appropriate credit to the original author(s) and the source, provide a

link to the Creative Commons license, and indicate if changes were

made.

References

Abdul-Baki, A. A., & Teasdale, J. R. (2007). Sustainable production

of fresh-market tomatoes and other vegetables with cover crop

mulches. USDA-ARS Farmers’ Bulletin No. 2280. Beltsville,

MD.

Abdul-Baki, A. A., Teasdale, J. R., Korcak, R. F., Chitwood, D. J., &

Huettel, R. N. (1996). Freshmarket tomato production in a low-

input alternative system using cover-crop mulch. Journal of the

American Society for Horticultural Science, 31, 65–69.

Aizat, W. M., Dias, D. A., Stangoulis, J. C. R., Able, J. A., Roessner,

U., & Able, A. J. (2014). Metabolomics of capsicum ripening

reveals modification of the ethylene related-pathway and carbon

metabolism. Postharvest Biology and Technology, 89, 19–31.
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