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Abstract The early mechanisms regulating progression

towards beta cell failure in type 1 diabetes (T1D) are poorly

understood, but it is generally acknowledged that genetic

and environmental components are involved. The metabo-

lomic phenotype is sensitive to minor variations in both, and

accordingly reflects changes that may lead to the develop-

ment of T1D. We used two different extraction methods in

combination with both liquid- and gas chromatographic

techniques coupled to mass spectrometry to profile the

metabolites in a transgenic non-diabetes prone C57BL/6

mouse expressing CD154 under the control of the rat insulin

promoter (RIP) crossed into the immuno-deficient recom-

bination-activating gene (RAG) knockout (-/-) C57BL/6

mouse, resembling the early stages of human T1D. We

hypothesized that alterations in the metabolomic phenotype

would characterize the early pathogenesis of T1D, thus

metabolomic profiling could provide new insight to the

development of T1D. Comparison of the metabolome of the

RIP CD154 9 RAG-/- mice to RAG-/- mice and C57BL/

6 mice revealed alterations of [100 different lipids and

metabolites in serum. Low lysophosphatidylcholine levels,

accumulation of ceramides as well as methionine deficits

were detected in the pre-type 1 diabetic mice. Additionally

higher lysophosphatidylinositol levels and low phos-

phatidylglycerol levels where novel findings in the pre-type

1 diabetic mice. These observations suggest that metabo-

lomic disturbances precede the onset of T1D.
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1 Introduction

Type 1 diabetes (T1D) is a common chronic illness with

increasing prevalence that has serious economic conse-

quences to health care systems (Hex et al. 2012; ADA 2013;

IDF 2013). T1D is a complex, multifactorial autoimmune

disease in which the insulin-producing pancreatic beta cells

are destroyed, leaving the patient dependent on insulin

injections for sustaining life, and in risk of premature death

due to acute- and late complications (Daneman 2006). The

exact mechanisms triggering and regulating progression

towards beta cell failure in T1D development are not fully

understood. It is generally acknowledged, however, that

both genetic and environmental components are involved.

The metabolomic phenotype is sensitive to minor variations

in both, and may thus reflect changes that lead to the

development of T1D. A detailed understanding of the

pathogenesis of T1D is a prerequisite for the development

of preventive strategies. In particular, the identification of

early metabolic modifications is promising in the study of

etiological pathways and can potentially lead to the devel-

opment of biomarkers for beta cell health before clinical

symptoms appear, so that preventive strategies to save beta-

cells can be initiated. Previous studies have linked
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metabolomic disturbances to the development of T1D both

in humans and in non-obese diabetic (NOD) mice, revealing

associations between the immune system, metabolism and

the development of T1D (Orešič et al. 2008; Sysi-Aho et al.

2011). However, it remains unclear how the immune system

interacts with the metabolome and vice versa in the T1D

disease pathogenesis.

In this study, we used a murine transgenic model that

was originally designed for the study of the initial events

leading to T1D (Haase et al. 2004; Haase and Markholst

2007). The transgenic mice express CD154 (CD40 ligand)

under the control of the rat insulin promoter (RIP) to

confine the expression to the pancreatic beta cells. In this

model, ligation of CD154 with CD40 converts an immature

and tolerogenic dendritic cell (DC) to a mature and

immunogenic DC (Bennett et al. 1998; Ridge et al. 1998;

Schoenberger et al. 1998; Grohmann et al. 2001) leading to

insulitis and diabetes development. The mice were crossed

into a recombination activating gene (RAG)-deficient

background (RAG KO). The RAG genes encodes enzymes

crucial for the generation of mature B and T cells (Nishana

and Raghavan 2012), and by introducing this genetic

modification, the authors showed that T1D development

was T- and B cell dependent, based on the observations

that the RIPCD154 9 RAG-/- mice did not develop dia-

betes as opposed to their transgene positive litter mates

RIPCD154 9 RAG-/?. Histological examinations of the

pancreas of the RIPCD154 9 RAG-/- (from here on

referred to as RIPCD154 9 RAG KO) revealed less

destructive cellular infiltrates mainly dominated by

CD11c? cells indicating that the infiltrating cells were

local DCs (Haase et al. 2004). Thus, this mouse model was

used to study the early phases of the T1D pathogenesis

defined as the non-lymphocyte-dependent initial phase

(Nerup et al. 1994) characterized by unspecific inflamma-

tion of the pancreatic islets (Eisenbarth 1986). In the pre-

sent study we used this model to characterize the

metabolomic changes preceding T1D, without the influ-

ence of the adaptive immune system. We compared the

RIP CD154 9 RAG KO mice to RAG KO mice and

C57BL/6 control mice to reveal early metabolomic alter-

ations without the immune component, to elucidate the

mechanisms leading to T1D. With the recent advances in

high throughput mass spectrometry based technologies, it

is now possible to achieve thorough metabolomics inves-

tigation of fluids, such as serum, and tissue (Zhang et al.

2014a). We aimed at investigating differences in the serum

metabolome using a single phase extraction method com-

bined with a targeted lipidomic approach by liquid chro-

matography electrospray ionization tandem mass

spectrometry (LC ESI–MS/MS) and furthermore, a polar

metabolite profiling through gas chromatography mass

spectrometry (GC–MS), where the resultant data was

analysed using targeted and untargeted data processing

methodologies. Using two different mass spectrometry

based strategies for in-depth characterization of this murine

model revealed metabolomic insight into the disease

pathogenesis in the early stages leading to T1D, and

identified metabolites with the potential to be developed

into future biomarkers of beta cell health.

2 Materials and methods

2.1 Animals

Both transgenic (RIP-CD154 9 RAG KO (n = 6) and

RAG KO (n = 3) on a C57BL/6 background) and control

mice (C57BL/6) (n = 10) were bred at Taconic M&B, Ry,

Denmark, and genotyped by PCR as previously described

(Haase et al. 2004; Haase and Markholst 2007). The ani-

mals, all female and 12 weeks old, were housed in poly-

ethylene cages in a temperature, humidity and 12 h day–

night rhythm controlled room receiving standard chow.

After weighing of the animals, blood samples were col-

lected retro-orbital, without anesthesia, into eppendorf

tubes and the animals sacrificed immediately afterwards.

The blood samples were left for coagulation and hereafter

centrifuged (15 min at 20009g at RT) for the collection of

serum. Blood glucose was measured in serum using the

Accu-Chek Aviva system by Roche. All animal experi-

ments were conducted according to Danish legislation and

approved by the Danish Animal Inspectorate.

2.2 Lipidomics

Samples were randomized and lipids extracted from serum

(10 lL) using a single phase chloroform methanol (2:1)

method following addition of 15 internal standards (sup-

plementary Table 3), as described in detail previously (Weir

et al. 2013). Lipid analysis was performed using an Agilent

1200 liquid chromatography system coupled to an Applied

Biosystem API 4000 Q/TRAP mass spectrometer with a

turbo-ionspray source and Analyst 1.5 data system. Over

300 species of lipid were analysed including species of:

dihydroceramide (dhCer), ceramide (Cer), monohexosylce-

ramide (MHC), dihexosylceramide (DHC), trihexosylce-

ramide (THC), GM3 ganglioside (GM3), sphingomyelin

(SM), phosphatidylcholine (PC), alkylphosphatidylcholine

(PC(O)), alkenylphosphatidylcholine (plasmalogen, PC(P)),

lysophosphatidylcholine (LPC), lysoalkylphosphatidyl-

choline (lysoplatelet activating factor, LPC(O)), phos-

phatidylethanolamine (PE), alkylphosphatidylethanolamine

(PE(O)), alkenylphosphatidylethanolamine (plasmalogen

(PE(P)), phosphatidylinositol (PI), lysophosphatidylinositol

(LPI), phosphatidylserine (PS), phosphatidylglycerol (PG),
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free cholesterol (COH), cholesteryl ester (CE), diacylglycerol

(DG) and triacylglycerol (TG) using multiple reaction mon-

itoring (MRM) experiments, described previously (Meikle

et al. 2013; Weir et al. 2013). The abbreviations listed here

refer to the lipid classes and subclasses, the number of carbons

and double bonds will be listed when referring to individual

lipid species, such as LPC 22:6 which define a lysophos-

phatidylcholine containing a fatty acid comprising 22 carbon

atoms and six double bonds. Lipids composed of two fatty

acids are determined as the sum of the carbons and the double

bonds across both fatty acids, e.g. PC 36:4 as described pre-

viously (Meikle et al. 2013). Relative concentrations of lipid

classes and subclasses were calculated from the sum of the

individual lipid species within each class.

2.3 Polar metabolomics

Serum samples and nine pooled (an aliquot of all the

samples) quality control samples incorporated into the

analysis sequence, were extracted in a 1:3:1 (v/v/v) ratio of

chloroform:methanol:water, where 20 lL serum was

regarded as the water phase. Briefly, 20 lL chloroform was

added to the serum and vortexed to mix, followed by the

addition of 60 lL methanol [containing internal standards;
13C-sorbitol (16.6 lM) and 13C,15N-valine (166 lM),

Sigma], vortexed, then allowed to incubate on ice for

10 min. Samples were then centrifuged for 5 min at

14000 rpm at 4 �C to pellet precipitated proteins and the

supernatant transferred to a fresh tube. Next 40 lL Milli-Q

water was added to the supernatant to bring the solvent

ratio to 1:3:3 (v/v/v) chloroform:methanol:water, thereby

enabling biphasic partitioning of the extract. After vor-

texing, samples were centrifuged to clearly separate the

aqueous (methanol/water) and organic layers (chloroform).

60 lL of the upper aqueous layer containing polar

metabolites was taken and evaporated to complete dryness

in vacuo. The extraction protocol was modified from the

Bligh-Dyer protocol from 1957 (Bligh and Dyer 1959).

Polar metabolites were derivatised online using a Ger-

stel MPS2 XL autosampler robot (Gerstel, Germany).

Samples were first methoxyaminated by the addition of 20

lL methoxyamine (30 mg/mL in pyridine, 2 h, 37 �C,
750 rpm), followed by trimethylsilylation with 20 lL
BSTFA ? 1 % TMCS (1 h, 37 �C, 750 rpm). Metabolite

profiles were acquired on an Agilent 7890A Gas Chro-

matograph coupled to a 5975C Mass Selective Detector,

where 1 lL of derivatised sample was injected into a split/

splitless inlet set at 250 �C. Chromatographic separation

was achieved using a J&W scientific VF-5 ms capillary

column (30 m 9 0.25 mm 9 0.25 lM ? 10 m dura-

guard). Oven conditions were set at 35 �C starting tem-

perature, held for 2 min, then ramped at 25 �C/min to

325 �C and held for 5 min. Helium was used as the carrier

gas at a flow rate of 1 mL/min. Compoundswere fragmented

by electron impact (EI) ionization and detected across a m/z

range of 50–600 amu, with a scan speed of 9.2 scans/s. The

metabolomics data was analysed using a targeted and an

untargeted approach. For the untargeted profiling, chro-

matograms were processed using PyMS (O’Callaghan et al.

2012) to align metabolites and quantify a representative

target ion, and subsequently generate a data matrix. For

targeted profiling, chromatograms were processed using

Agilent’s Mass Hunter Quantitative Analysis software,

where target ion areas for polar metabolites contained within

the in-house Metabolomics Australia (MA_25C) metabolite

library were integrated and output as a data matrix for

downstream data analysis. Each detected metabolite was

visually inspected and manually integrated if required. This

resulted in a highly curated matrix representing the detected

metabolites in each sample.

2.4 Data analysis

Animals weight and blood glucose was compared between

groups using Kruskal–Wallis analysis using MatLab,

MathWorks.

2.4.1 Lipidomics

Peak integration of both internal standards and serum

samples was performed using the MultiQuantTM, Sciex,

software with manual inspection as required. Relative

concentrations of the lipids were calculated automatically

based on the internal standards. Lipids with relative con-

centrations not exceeding three times the background noise

in five or more of the analyzed samples were excluded for

further analysis.

2.4.2 Normalization of lipid data

Serum lipids were normalized to total content of PC (rel-

ative concentration of individual lipid specie/relative con-

centration of total PC) within the sample to allow for

differences in hydration level of individual mice. This

resulted in decreased variance within mouse groups and

improved statistical power. We use phosphatidylcholine

(the most abundant phospholipid class) as an internal ref-

erence to assess the relative differences in plasma com-

position between mouse strains.

2.4.3 Statistical analysis

Serum lipid relative quantities were analyzed, individually

and divided into lipid classes, using Kruskal–Wallis anal-

ysis. p values were corrected for multiple comparisons

using the Benjamini–Hochberg method. p values were
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considered significant \0.05 and all statistical analysis

were performed in SPSS from IBM, MatLab or R.

2.4.4 Polar metabolomics

After median normalization of the targeted metabolomics

data, the serum samples from the three groups were ana-

lyzed by Kruskal–Wallis test using the Benjamini–Hoch-

berg method to correct for multiple testing. Post-hoc, pair

wise analyses were performed using the Mann–Whitney U

test, and the resultant pair wise p values were corrected by

the Dunn–Sidak approach using MatLab. The untargeted

data was statistically analysed similarly.

3 Results and discussion

3.1 Characteristics of the animals

The three different groups of animals were well matched

regarding age (all were 12 weeks), but varied in weight and

blood glucose (Table 1). The RIP CD154 9 RAG KO

mice had higher blood glucose levels compared to the RAG

KO and control mice. This is in agreement with previous

reports, where significant fluctuations in blood glucose

over a time period of 40 weeks was recorded in this model

(Haase et al. 2004; Haase and Markholst 2007). The

authors explained this by insufficient ability of the beta-

cells to produce the required insulin amounts to preserve

blood glucose homeostasis, because of the local DC infil-

tration of the islets.

3.2 Lipid measurements

3.2.1 Reproducibility of the assay

To assess the assay performance of the entire procedure six

quality control (QC) human plasma pool samples were

evenly integrated in the extraction process amongst the

serum samples from the animals, and were analyzed

accordingly with the MRM method. The median intra-run

coefficient of variation (% CV) was 5.88 % (supplemen-

tary Table 1).

3.2.2 Identification and quantification of lipids in serum

A total of 351 lipids from 21 different lipid classes and

subclasses were identified in the serum of the murine

models and relative quantities of these were compared

between the RIP CD 154 9 RAG KO, RAG KO and

control mice (supplementary Table 1). We compared the

RIP CD154 9 RAG KO mice to RAG KO mice also to

identify early metabolomic alterations, without the immune

component, as we anticipated that the RAG KO model

would be the best suited control in regards to the transgene

element of the model.

Among the most striking differences in the overall lipid

classes and subclasses were the LPCs, DHCs, LPI, PG and

CEs (compared by ANOVA, p\ 0.05 after Benjamini–

Hochberg correction, Table 1). The LPCs were present in

lower amounts in the RIP CD154 9 RAG KO and RAG

KO mice compared to control with the lowest levels found

in the RIP CD154 9 RAG KO. The shorter chain LPC’s

(\18 C) were significantly reduced in the RIP

CD154 9 RAG KO mice compared to the control mice,

but not RAG KO mice (sup Table 1). LPC differences in

relation to progression to T1D have previously been

identified in NOD mice (Sysi-Aho et al. 2011). In a subset

of NOD mice negative for insulin antibodies (IAA) but

later developing T1D, marginal higher levels of LPC were

found as compared to NOD IAA negative animals that did

not progress to T1D (Sysi-Aho et al. 2011). The latter

group is comparable to our model in terms of lack of

antibodies and non-progression to T1D and accordingly our

results follows these prior observations (Sysi-Aho et al.

2011). Clinical research has also revealed changes in LPCs

according to T1D progression. Oresic and coworkers

identified transiently elevated overall serum LPC levels in

children who later developed T1D (Orešič et al. 2008) and

a 1.3–1.5 fold increase in the LPC (18:0/0:0) prior to

seroconversion. Our results revealed higher levels of the

LPC 18:0 (sup Table 1) in the RIP CD154 9 RAG KO

mice compared to the RAG KO mice and control. A recent

study indicates that the LPCs have dual functions; they are

capable of activating TLR4 and TLR2-1 mediated proin-

flammatory signaling, but in the presence of classical TLR

ligands, the LPCs counteract some of the TLR mediated

responses and overall induce an anti inflammatory envi-

ronment (Carneiro et al. 2013). Overall it seems reasonable

to speculate that LPCs might have different roles in each

stage of the T1D disease pathogenesis. Low levels of LPCs

in childhood have been linked to the transport of choline to

tissues (Croset et al. 2000), and choline deficiencies have

been associated to the development of T1D (Orešič et al.

2008). Later in the disease process, LPC may act as

immune modulators through the lysophosphatidylcholine

receptor an immunoregulatory G protein-coupled receptor

named G2A whose genetic ablation resulted in the devel-

opment of inflammatory autoimmune disease (Kabarowski

et al. 2002).

Total serum CE levels differed between the groups of

mice, with the lowest level found in the RIPC-

D154 9 RAG KO mice. Previous research in the esterifi-

cation of cholesterol in type 1 diabetic patients has

revealed a lower esterification percentage of cholesterol in

the very low density lipoprotein (VLDL) and intermediate
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density lipoprotein (IDL) compared to that of control

subjects and a general increase in cholesterol absorption

(Gylling et al. 2004). The RIP CD154 9 RAG KO mice

had borderline significant higher free cholesterol (COH)

levels compared to control, but the overall difference

between groups were not significant after correction for

multiple comparison. Previous research on CE synthesis in

relation to atherosclerosis in T1D in humans revealed an

accumulation of CE in macrophages incubated with low

density lipoproteins (LDL) from T1D patients compared to

LDL from control, and a parallel higher accumulation of

CE in the T1D patients. The authors also found that the

non-enzymatic glycosylation of LDL in the T1D patients

were higher and correlated with the CE synthesis. The

glycosylation is possibly explained by the higher blood

glucose in T1D patients, and this may in general contribute

to the acceleration of atherosclerosis seen in diabetic

patients (Lyons et al. 1987). This is in contradiction to our

results, but may be a consequence of the transgenic mice

not being able to produce mature macrophages because of

the knock out of the RAG genes.

Total levels of DHC varied considerably (p\ 0.05)

among the three different types of mice (Table 1) with

lower levels detected in control mice. DHC as well as

MHC and THC are metabolites of Cer and the precursor

dhCer. The two transgenic models had generally higher

levels of the three metabolites compared to control mice. In

the RIP CD154 9 RAG KO mice the dhCer and Cer levels

were in general higher in comparison to the RAG KO mice

but the metabolites of the ceramides were lower, except for

DHC. This particular expression pattern of the ceramides

and its metabolites has been observed previously in two

cohorts of pre-type 2 diabetic patients, where up regulation

of de novo ceramide synthesis were not reflected in the

downstream metabolites of ceramide (Meikle et al. 2013).

Studies on streptozotocin induced T1D mice also showed

Table 1 Percentage change of weight, blood glucose and lipids by class from control C57BL/6

RIP CD 154 9 RAG KO

(n = 6) change in % from control

RAG KO (n = 3)

change in % from control

Weight* 3.5 11.8

BG serum* 102.67 6.69

Dihydroceramide (dhCer)*,# 77.78 77.78

Ceramide (Cer)*,# 29.22 22.73

Monohexosylceramide (MHC) 20.84 38.41

Dihexosylceramide (DHC)**,# 50 37.5

Trihexosylceramide (THC) 0 50

GM3 ganglioside (GM3) -18.18 9.09

Alkylphosphatidylcholine (PC(O)) -8.15 -7.45

Sphingomyelin (SM) -0.32 16.53

Alkenylphosphatidylcholine (plasmalogen, PC(P)) 0.19 14.53

Lysophosphatidylcholine (LPC)**,# -15.39 -4.16

Lysoalkylphosphatidylcholine (lysoplatelet activating factor, LPC(O)) -12.35 8.64

Phosphatidylethanolamine (PE) 9.02 -11.22

Alkylphosphatidylethanolamine (PE(O))*,# 28.42 40.7

Alkenylphosphatidylethanolamine (plasmalogen PE(P))* 16.77 35.98

Lysophosphatidylethanolamine (LPE)# 13.72 21.27

Phosphatidylinositol (PI) 2.43 16.79

Lysophosphatidylinositol (LPI)**,# 26.02 58.86

Phosphatidylserine (PS) -28.89 -6.11

Phosphatidylglycerol (PG)**,#,$ -33.33 -50

Free cholesterol (COH)* 12.11 28.38

Cholesteryl ester (CE)**,# -19.73 -9.5

Diacylglycerol (DG) 22.98 -13.13

Triacylglycerol (TG) -7.45 -49.6

* p\ 0.05 in the KW comparison

** p\ 0.05 after Benjamini–Hochberg correction
# p\ 0.05 in RIP CD154 9 RAG KO versus control
$ p\ 0.05 in RAG KO versus control
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accumulations of ceramides in the muscles of the animals

after one week of insulin deprivation (Zabielski et al.

2014). Ceramides are found in high concentrations within

the cell membranes and the membranes of the organelles,

and the composition of the ceramides has been suspected to

affect the function of the organelles. Recent advances in

technology has facilitated investigating the role of cer-

amides in beta-cell dysfunction, and the current debate on

ceramides role in T1D focuses on whether ceramides can

mimic the effects of IL-1b in promoting beta-cell death and

in repressing insulin production, reviewed in the paper by

Boslem et al. (Boslem et al. 2012).

Interestingly, we also detected differing levels of LPI

and PG in the comparison of all three groups of mice.

Significant higher levels of LPI and lower levels of PG

were seen in RIP CD154 9 RAG KO compared to control

mice. LPI affects numerous functions such as cell growth,

differentiation and motility in a number of different cell-

types through the orphan G protein-coupled receptor

GPR55 specific receptor for LPI (Piñeiro and Falasca

2012). The LPIs and their receptors have been implicated

in both physiological and pathophysiological processes

such as autoimmune diseases and inflammation (Kihara

et al. 2015). PGs are primarily confined to the mitochondria

where they support membrane structure and functions as a

substrate for the synthesis of cardiolipin (Zhang et al.

2014b). Cardiolipin is an important component of the inner

mitochondrial membrane, and is particularly susceptible to

attacks of reactive oxygen species (ROS) leading to the

formation of cardiolipin peroxidation that can activate

apoptosis (Paradies et al. 2009). To our knowledge no

previous studies have addressed the role of these lipids in

diabetes; consequently future studies are needed to inves-

tigate their potential role in the early stages of T1D.

3.3 Polar metabolomics

3.3.1 Reproducibility of the metabolomic analysis

The reproducibility of the method was assessed by incor-

porating nine pooled quality control samples throughout

the analysis sequence. The median % CV was 17.85 of the

analytes (Table 2). All metabolites with CV[20 % were

inspected manually, and were identified as compounds

found in very low abundance.

3.3.2 Identification and relative quantification

of metabolites in serum

To determine if there were metabolic differences between

these sample groups, a broad profiling metabolomics

analysis was undertaken using the GC–MS to detect polar

metabolites. Statistical analysis (PCA) of the 213

metabolites detected showed separation between the sam-

ple groups (not shown) and univariate analysis revealed

that 78 of the 213 metabolites were significantly different

between the group (p\ 0.05 after Benjamini–Hochberg

correction, supplementary Table 2). To explore the meta-

bolomics data further, metabolites were subjected to data-

base searches using in-house standards and NIST libraries

which resulted in the identification of 56 metabolites of

which 18 metabolites varied significantly p\ 0.05 (after

Benjamini–Hochberg correction) (Table 2), and were

dominated by amino acids and their derivates and simple

carbohydrates. 13 out of 23 amino acids and their deriva-

tives varied significantly between the groups, with the

lowest levels seen in the RIP CD154 9 RAG KO mice,

except for L-isoleucine, L-ornithine an L-tyrosine, where the

lowest levels were observed in the RAG KO model

(Table 2). Differences in the amino acid metabolites have

been observed previously in children at risk for developing

T1D, especially lower methionine levels were seen in

children who developed autoantibodies at two years old

compared to children who developed autoantibodies later

in childhood or remained autoantibody negative (Pflueger

et al. 2011). L-Methionine relative concentration was

decreased in the RIP CD154 9 RAG KO mice compared

to RAG KO and control (Table 2). It is known that

methionine is involved in numerous metabolic processes

including the catabolic pathway of choline and serves as a

precursor for other sulfur containing amino acids such as

taurine (Pflueger et al. 2011). Taurine levels were

decreased in RIP CD 154 9 RAG KO and RAG KO

compared to control, however not significantly after cor-

recting for multiple comparisons (Table 2). Lower levels of

taurine in plasma in T1D patients has previously been

shown compared to control individuals (Franconi et al.

1995), and it is generally accepted that taurine has a

cytoprotective function (Ito et al. 2012). Studies in preg-

nant wistar rats revealed that taurine supplementation to a

low protein diet could reverse the effects of the low protein

diet on the fetuses during gestation. The reduction in pro-

tein intake during pregnancy mainly targeted the beta-cells

respiratory capacities in the fetuses, leaving the cells more

vulnerable to high glucose levels and more sensitive to

proapoptotic cytokines. Taurine supplementation of the

maternal diet abolished the effect of the low protein diet in

the fetuses, possibly through mediation of the mitochon-

drial metabolism (Reusens et al. 2008). The formation of

taurine is based on methionine and involves a trans-

methylation. This reaction has previously been suggested

to play a role in the T1D pathogenesis, because the turn-

over of methionine by transmethylation is fourfold higher

than protein degradation and synthesis, and methionine is

essential for lymphocyte proliferation (Pflueger et al.

2011). In our data, the L-methionine levels are lower in the
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Table 2 Percentage change, and coefficient of variation, from control C57BL/6, of polar metabolites in serum

Biochemical pathway Metabolite % CV RIP CD154 9 RAG KO

(n = 6) % change

RAG KO

(n = 3) % change

Amino acids and derivatives L-Alanine*,# 22.97 -47.37 -37.51

L-Valine**,# 2.47 -37.28 -37.06

L-Leucine* 4.6 -35.64 -34.27

L-Isoleucine**,# 8.82 -35.06 -35.98

L-Threonine**,# 3.87 -52.48 -41.79

L-Proline**,# 7.93 -53.44 -43.30

Glycine* 13.03 -23.76 -20.98

L-Serine**,# 5.88 -41.17 -29.30

Beta-alanine* 12.11 -11.24 -16.85

DL-homoserine**,# 22.55 -57.14 -50.00

L-Aspartic acid**,# 15.33 -50.54 -11.83

Trans-4-hydroxyl-L-proline 17.86 -29.37 -27.78

L-Methionine**,# 17.84 -66.9 -49.8

Pyroglutamic acid**,# 17.61 -38.75 -24.78

L-Phenylalanine**,# 23.08 -60.02 -46.77

Taurine* 58.84 -41.34 -74.56

L-Ornithine**,# 30.30 -71.73 -73.25

L-Lysine**,# 21.94 -68.27 -48.48

Adenine 46 -45.45 27.27

L-Tyrosine**,# 10.07 -59.57 -60.80

L-Tryptophan 20 -25.99 -33.55

5-Oxoproline* 17.86 139.36 196.58

Putrescine*,# 40.16 -46.15 -30.77

Citric acid cycle Succinate 13.98 -33.62 -23.28

Fumarate 5.43 -42.64 -27.13

Cis-aconitate 21.22 -41.67 -25.00

Citriate 2.92 -24.87 -24.37

Isocitrate 4.6 -27.59 -26.44

L-Malic acid 1.68 -41.02 -20.68

Carbohydrate D-Erythrose 25.39 14.29 -42.86

Meso-erythritol**,$ 3.83 10.00 -26.67

D-Ribose 15.36 -21.48 46.31

D-Fructose**,# 43.5 287.44 -14.08

D-Talose 138.08 116.54 -55.97

Sucrose 5.55 -50.00 -19.57

D-Maltose**,# 8.21 183.33 8.33

Trehalose**,# 11.47 137.50 -18.75

Glycolysis D-(-)-3-phosphoglyceric acid 43.22 -50.00 -25.00

Fructose-6-phosphate 47.69 27.08 -25.00

Glucose-6-phosphate 44.59 38.24 -30.88

Uridine 21.3 9.76 7.32

Fatty acids Tetradecanoic acid**,# 37.62 129.01 -35.50

Hexadecanoic acid (palmitic acid)* 4.22 -12.85 -46.04

Octadecanoic acid (stearic acid)*,# 47.69 54.15 3.56

Organic acid Benzoic acid 5.24 1.85 -7.41

Glyceric acid 40.22 3.42 -26.50

N-acetyl-L-glutamic acid 29.9 0.00 -25.00

D-Gluconic acid 32.40 15.38 -30.77
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transgene mice compared to control, but since the two

transgenic models don’t produce lymphocytes, this rela-

tionship might not be relevant. In contrast to previous

research, the branched chain amino acids, L-leucine,

L-isoleucine and L-valine, were found in lower levels in the

two genetically modified models, Oresic et al. found the

branched chain amino acids increased before seroconver-

sion in children progressing to T1D (Orešič et al. 2008).

Four out of eight simple carbohydrates differed signifi-

cantly between the groups, with biggest differences seen in

fructose (Table 2). We found the highest level of D-fructose

in the RIP CD154 9 RAG KO mice, and this is in agree-

ment to an older study where higher levels of monosac-

charides were detected in diagnosed T1D patients

(Pitkänen 1996). The intermediates in both the glycolysis

and the citric acid cycle along with several organic acids

did not vary between the groups of mice.

4 Conclusions

This profiling study provides further explanation to the

metabolomic changes seen in the early stages of T1D.

Many of our findings confirm previous results such as low

LPC levels, accumulation of ceramides and methionine

deficits in the development of T1D. Of special interest is

the increased level of LPI and decreased level and PG seen

in the RIP CD154 9 RAK KO mice, both lipid classes

involved in cell signaling and previously linked to

autoimmune diseases. Further mechanistic studies are

needed in these lipids to elucidate their potential role in the

T1D pathogenesis.
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