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Abstract Microalgae produce metabolites that could be

useful for applications in food, biofuel or fine chemical

production. The identification and development of suit-

able strains require analytical methods that are accurate and

allow rapid screening of strains or cultivation conditions.

We demonstrate the use of Fourier transform infrared (FT-

IR) spectroscopy to screen mutant strains of Chlamy-

domonas reinhardtii. These mutants have knockdowns for

one or more nutrient starvation response genes, namely

PSR1, SNRK2.1 and SNRK2.2. Limitation of nutrients

including nitrogen and phosphorus can induce metabolic

changes in microalgae, including the accumulation of

glycerolipids and starch. By performing multivariate sta-

tistical analysis of FT-IR spectra, metabolic variation

between different nutrient limitation and non-stressed

conditions could be differentiated. A number of mutant

strains with similar genetic backgrounds could be distin-

guished from wild type when grown under specific nutrient

limited and replete conditions, demonstrating the sensitiv-

ity of FT-IR spectroscopy to detect specific genetic traits.

Changes in lipid and carbohydrate between strains and

specific nutrient stress treatments were validated by other

analytical methods, including liquid chromatography–mass

spectrometry for lipidomics. These results demonstrate that

the PSR1 gene is an important determinant of lipid and

starch accumulation in response to phosphorus starvation

but not nitrogen starvation. However, the SNRK2.1 and

SNRK2.2 genes are not as important for determining the

metabolic response to either nutrient stress. We conclude

that FT-IR spectroscopy and chemometric approaches

provide a robust method for microalgae screening.

Keywords Metabolite screening � FT-IR spectroscopy �
Microalgae � Lipids � Starch � Chlamydomonas reinhardtii

1 Introduction

Algae have long been recognized as a promising resource

for biotechnological applications, such as a source of

nutritional supplements like omega-3 fatty acids or car-

otenoids, or as a feedstock for biofuel generation (Driver

et al. 2014; Guccione et al. 2014; Guedes et al. 2011;

Larkum et al. 2012). For example, some species of uni-

cellular microalgae are able to synthesise large amounts of

neutral lipids (up to 60 % of cell dry weight in many

cases), which are stored as triacylglycerol (TAG) and can

be easily converted into fatty acid methyl esters to be used

as biodiesel (Chisti 2008; Hu et al. 2008). In contrast, some

species of microalgae are good sources of carbohydrates,
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particularly by producing high quantities of starch, which

could be used as a fermentation feedstock or industrial

product (Branyikova et al. 2011). There is a wide natural

diversity of algae, with over 70,000 species determined

from some recent estimates (Guiry 2012), plus further

potential diversity that can be generated by mutagenesis

(Cagnon et al. 2013); together this provides a large

resource of distinct chemicals and metabolites that could be

screened and identified. However, this tremendous diver-

sity provides the challenge of how to screen efficiently and

rapidly naturally occurring and genetically modified algae

in order to provide accurate identification and quantifica-

tion of these chemicals and metabolites.

Several conventional methods of metabolite quantifica-

tion including thin layer chromatography, high-perfor-

mance liquid chromatography (HPLC), and gas

chromatography (GC), often coupled with mass spec-

trometry (MS), are not particularly amenable for high-

throughput screening due to high cost and the requirement

for large amounts of biomass, as well as the need for cell

extraction and preparation, which can be time-consuming

and technically laborious. Fluorescent metabolite reporters,

like the neutral lipid stains Nile Red or Bodipy, can allow

reasonably fast and high-throughput screening, particularly

when coupled to flow cytometry methods (Elliott et al.

2012; Manandhar-Shrestha and Hildebrand 2013), but

these dyes are unfortunately limited to the detection of a

single metabolite at a time and there can be challenges due

to variation in efficiency of dye accumulation or photo-

bleaching (Dean et al. 2010). By contrast, there are alter-

native analytical methods that are more suitable for meta-

bolomic screening of strain collections. One of these is

Fourier transform infrared (FT-IR) spectroscopy, which is

a rapid, high-throughput and non-destructive analytical

method that provides a robust metabolic fingerprint of a

sample (Ellis et al. 2012). FT-IR spectroscopy can reliably

assess the macromolecular composition of algae and pro-

vide an accurate quantification of lipid and starch accu-

mulation (Dean et al. 2010; Laurens and Wolfrum 2011;

Meng et al. 2014; Stehfest et al. 2005). Furthermore, when

coupled with microscopy it can be used to generate

chemical maps of algae to show the cellular distribution of

lipid and starch storage (Patel et al. 2008). The complex

spectral data can be analysed using multivariate statistical

tools to identify metabolic characteristics that are diag-

nostic markers for a particular trait (Dean et al. 2010; Ellis

et al. 2002; Nicolaou and Goodacre 2008) such as oil

production, starch production, or other primary or sec-

ondary metabolites.

FT-IR spectroscopy has been used previously to detect

metabolic changes within individual algae, such as in

response to nitrogen (N) or phosphorus (P) limitation

(Dean et al. 2008, 2010; Stehfest et al. 2005), which are

reliable inducers of storage carbon metabolite biosynthesis,

in particular TAG and starch (Driver et al. 2014; Merchant

et al. 2012). Furthermore, it has been suggested that FT-IR

spectroscopy can be used to differentiate between

microalgal species (Bounphanmy et al. 2010; Driver et al.

2015). However, to our knowledge, this metabolic finger-

printing method has not yet been validated as a tool for

screening microalgal mutants or to discriminate between

mutant lines. In this study, we have demonstrated FT-IR

spectroscopy screening of 10 Chlamydomonas reinhardtii

strains, including a wild type and nine mutant strains,

grown under N and P limitation conditions. Three sets of

mutants were chosen that are mutated for one or more of

the PSR1, SNRK2.1 or SNRK2.2 genes, which are known to

control responses to starvation of different nutrients. PSR1

(P starvation response 1) encodes a transcription factor

that regulates the response to P starvation (Wykoff et al.

1999). SNRK2.1 and SNRK2.2 (SNF1-related protein

kinase 2.1 and 2.2) encode serine/threonine kinases and are

related to SNRK proteins from higher plants and yeast

which are known to regulate aspects of carbon metabolism

(Ghillebert et al. 2011). In addition, SNRK2.1 and SNRK2.2

show some genetic interaction with PSR1 in response to P

starvation (Moseley et al. 2009), but none of these genes

are known to be required for the response to N starvation.

Furthermore, we have recently shown that the psr1 mutant

has impaired lipid and starch biosynthesis under P starva-

tion conditions, demonstrating a role of PSR1 in control-

ling P starvation-specific metabolite regulation (Bajhaiya

et al. unpublished). Thus the psr1 mutant is a good control

strain for which to test the sensitivity of FT-IR spectro-

scopic analysis. We demonstrate here that multivariate

analysis of FT-IR spectra can clearly discriminate between

the tested wild type and mutant lines of C. reinhardtii and

in particular distinguish all lines with a psr1 mutant

background. Moreover, we find that snrk2.1 and snrk2.2

mutations do not cause significant metabolic changes under

any of the cultivation conditions.

2 Materials and methods

2.1 Strains, culture conditions and physiological

analysis

Wild type C. reinhardtii (CC125) and nine previously

generated mutant lines comprising of single, double or

triple mutants of the PSR1, SNRK2.1 and SNRK2.2 genes

were used (Supplementary Table 1). All strains were

grown photo-heterotrophically as sterile axenic batch cul-

tures in standard Tris–acetate-phosphate (TAP) medium

containing 1 mM P (as K2HPO4/KH2PO4) and 7 mM N (as

NH4Cl), and in modified TAP media containing different
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concentrations of N (0.07, 0.3, 0.7, or 3.5), but with P held

constant at 1 mM, and different concentrations of P (1 lM,

0.01, 0.05, or 0.1), but with N held constant at 7 mM,

essentially as described previously (Webster et al. 2011).

When the concentration of N or P was reduced, the con-

centrations of all other components in TAP medium were

also kept constant. Growth of all strains over time was

measured by optical density measurements at 680 nm

(OD680nm) using a Jenway UV–Visible spectrophotometer.

Fresh-weight biomass of the culture samples was deter-

mined by centrifugation at 15009g for 20 min in a pre-

weighed tube. Total chlorophyll (chlorophyll a and b)

measurement of day seven cells was performed by har-

vesting 5 mL of cells by centrifugation (30009g for

10 min), resuspending the pellet in 80 % acetone and

vortexing to extract the pigments with cellular debris

removed by centrifugation. The concentration of chloro-

phyll a and b was determined by measuring absorbance of

the extract as described previously (Porra et al. 1989).

In vivo chlorophyll fluorescence was measured using a

pulse-modulated fluorometer (PAM Walz 101) by taking

1 mL of day seven culture in a suspension cuvette and

Aquire 3.2 software was used to calculate the ratio of

variable fluorescence Fv to maximal fluorescence Fm (Fv/

Fm) (Maxwell and Johnson 2000).

2.2 FT-IR spectroscopy

A 1 mL of sample from each replicate culture was added to

a pre-weighed Eppendorf tube and centrifuged at

14,0009g for 5 min at room temperature and the super-

natant was removed. The biomass was weighed and nor-

malised to 60 mg mL-1 by addition of Milli-Q (Millipore)

water then 30 lL of normalized biomass was deposited

onto a 96-well silicon microplate and oven-dried at 40 �C
overnight. The first well of each plate was left blank for

background measurement. The plate was placed in a HTS-

XT high-throughput microplate extension and spectra were

collected using a FT-IR spectrometer (Bruker Equinox 55

FT-IR spectrometer), equipped with a deuterated triglyc-

erine sulfate (DTGS) detector. The absorbance spectra

were measured over the wavenumber range

4000–600 cm-1. Generated data were imported into

MATLAB v. 2010a (The MathWorks) and spectra were

baseline corrected using extended multiplicative scatter

correction (EMSC) (Martens and Stark 1991). The band

heights for total lipid (1740 cm-1), amide I (1655 cm-1)

and carbohydrate (1160, 1086, 1050 and 1036 cm-1) (see

Supplementary Fig. 1) were measured individually and

lipid:amide I and carbohydrate:amide I ratios of these band

heights were calculated.

2.3 Lipid measurement

For ultra high performance liquid chromatography–mass

spectrometry (UHPLC–MS) analysis of lipids, 30 mg fresh

weight of Milli-Q water-washed algal material was snap

frozen in liquid nitrogen and ground using a Retsche ball

mill with 2 mm stainless steel ball bearings then 1 mL of

methanol:chloroform:water (2.5:1:1) was added. Samples

were shaken at room temperature for 15 min and cen-

trifuged at 14,0009g for 10 min. 1 mL of supernatant was

removed, 0.5 mL of water added and mixed thoroughly

then centrifuged for 10 min. The non-polar lower chloro-

form phase was removed and dried at 40 �C for 1–2 h until

completely dry. UHPLC–MS analysis was carried out on an

Accela UHPLC autosampler system coupled to an electro-

spray LTQ-Orbitrap XL hybrid mass spectrometry system

(ThermoFisher, Bremen, Germany). Analysis was carried

out in positive ESI mode whilst each run was completely

randomised to negate for any bias. A water/methanol gra-

dient type UHPLC method was used during each run as is

previously described (Allwood et al. 2015; Wedge et al.

2011). 10 lL of the extract was injected onto a Hypersil

GOLD UHPLC C18 column (length 100 mm, internal

diameter 2.1 mm, particle size 1.9 lm, Thermo-Fisher Ltd.

Hemel Hempsted, UK) held at a constant temperature of

50 �C whilst a solvent flow rate of 400 lL min-1 was used

to drive the chromatographic separation. Data processing

was initiated by the conversion of the standard MS raw files

to the universal NetCDF format using Xcalibur software

(Thermo-Fisher Ltd. Hemel Hempsted, UK). In house peak

deconvolution software containing the XCMS algorithm

(http://masspec.scripps.edu/xcms/xcms.php) was used for

pick picking (Dunn et al. 2008) generating a data matrix of

mass spectral features with related accurate m/z, retention

time pairs and peak areas. Data from the internally pooled

QC samples were used to align for instrument drift and

quality control via an in house MATLAB LOESS alignment

script. The data matrix was signal corrected to remove

peaks that crossed the 20 % RSD threshold within QC

samples across the analytical run. Data was normalised on

the basis of fresh weight biomass. Identification of lipid

features was performed applying the PUTMEDID-LCMS

set of workflows as previously described (Brown et al.

2011). Neutral lipids were also measured by Nile Red flu-

orescence staining as described previously (Chen et al.

2009; Dean et al. 2010). Day seven cell samples were

normalised to an OD680nm value of 0.5 by dilution then

10 lL of Nile Red (50 lg mL-1) was added to a 1 mL final

volume of diluted cells and incubated for 10 min at room

temperature. Fluorescence of Nile Red-stained neutral lipid

was measured using a Hitachi F-2000 fluorescence spec-

trometer (excitation 530 nm/emission 575 nm). The
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concentration of neutral lipids was determined using a tri-

olein standard.

2.4 Starch and protein measurement

Total protein was quantified by the Bradford assay. A 2 mL

sample of day-seven culture was centrifuged at 15009g for

10 min then resuspended in extraction buffer (30 mM Tris

HCl, pH 7.5, and 1 lL of protease inhibitor cocktail) fol-

lowed by two rounds of freezing/thawing in liquid N2. The

extract was centrifuged at 12,0009g for 15 min and protein

determination of the supernatant was performed using the

Bradford dye assay kit (Bio-Rad) using bovine serum

albumin (BSA) as a standard. For starch determination, a

5 mL sample of day-seven culture was centrifuged at

15009g for 10 min and the pellet was washed with 500 lL
of 80 % ethanol to remove chlorophyll. Cells were incu-

bated at 85 �C for 5 min and centrifuged at 13,0009g for

10 min. Pellets were resuspended in 200 lL of 80 %

ethanol, 500 lL DMSO and incubated at 90 �C for 1 h in a

Thermo shaker to break cells and solubilize the starch.

Total starch was quantified using a Total Starch Assay kit

(Megazyme) using the manufacturer’s specifications.

Starch concentration was determined using a D-glucose

standard curve and values were multiplied by 162/180

(adjustment for free D-glucose to anhydro D-glucose) to

calculate total starch.

2.5 Multivariate data analysis

Principal component analysis (PCA) and principal com-

ponent-discriminant function analysis (PC-DFA) was per-

formed using an in-house MATLAB algorithm to identify

any differences between the FT-IR spectra, essentially as

described previously (Allwood et al. 2006). Further anal-

ysis of spectral data was performed by partial least squares-

discriminant analysis (PLS-DA) using Unscrambler v.10.1

(CAMO Software AS) in order to model the classification

of nutrient stressed and mutant-derived spectra. For the

generation of classification models, replicate spectra from

non-stressed and stressed strains, and wild type and mutant

strains were used as training data sets then independent

replicate spectra from all strains were used to validate the

models. Data sets were assigned into training and testing

sets, using a random number generator. The training set

was used to generate the PLS model, and the validation set

was used to assess the PLS model’s ability to assign

samples from these sets into the correct group. Initially, a

PLS regression was performed on the training set using a

cut down (1800–950 cm-1) spectra. Samples were

assigned to specific category variables according to their

identity (e.g. high P/N, low N, low P or wild type, psr1

background, snrk background) and these variables were

split to generate numerical assignments. These categories

were used as predictors in the running of the PLS regres-

sion. The PLS regression was performed with a maximum

of seven components, constant X and Y weights, and using

a full cross-validation. This PLS regression was then used

as a model for the PLS-DA predictive analysis of the

validation data set with seven components, using full pre-

diction settings. The resulting predictive Y values and

95 % confidence intervals for each predictive measure

were plotted. For statistical analysis of physiological and

biochemical data, differences between treatments and cell

lines were assessed using one-way ANOVA performed

using IBM SPSS Statistics version 20. When significant

differences were detected at a P value\0.01, the Tukey

post hoc test was applied.

3 Results and discussion

3.1 Discrimination of nutrient limitation responses

Initial baseline screening was performed on wild type C.

reinhardtii to examine and compare the metabolic respon-

ses to five decreasing concentrations of P (from 1 mM to

1 lM) or N (from 7 mM to 0.07 mM) at late exponential

phase (day seven). As seen previously, reduced nutrient

availability led to a reduction in biomass production, with a

consistent step-by-step decrease in cell biomass as N con-

centration decreased until there was very little cell growth at

0.07 mM N (a 92 % decrease) (Fig. 1a). The exception was

the 3.5 mM N treatment, which stimulated biomass pro-

duction. A reduction in P concentration to 0.1 mM P did not

cause any significant change in growth, while a reduction to

0.05 mM P started to inhibit growth slightly, although not

significantly, suggesting mild-to-moderate P limitation, but

biomass production was very significantly reduced follow-

ing 10 lM and 1 lM P treatment (a 56 and 87 % decrease,

respectively) (Fig. 1e). Chlorophyll fluorescence (Fv/Fm

ratio) was measured as an indicator of stress and physio-

logical status of the cell. The Fv/Fm ratio profile for both P

and N limitation treatment was equivalent to the biomass

production profile, with a significant reduction in Fv/Fm

ratio in response to severe P or N limitation but severe N

limitation appeared to be more stressful to the cells (Fig. 1b,

f). Following analysis by FT-IR spectroscopy over the

wavenumber range of 1780–950 cm-1, clear variation was

apparent in the baseline-corrected spectra from cells

exposed to the different P and N treatments (Supplementary

Fig. 1). The strong peak at *1740 cm-1 visible in spectra

from both P and N limited cells is indicative of an increase

in total lipid whereas overlapped bands between *1160
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and 1036 cm-1 are indicative of carbohydrate increases

(Dean et al. 2010; Stehfest et al. 2005). These spectral

changes indicated that total lipid and carbohydrate

responses were the most pronounced following severe N

and P limitation. Quantification of total lipid, and carbo-

hydrate band heights, were normalised by expressing these

as a ratio to the amide I band (1655 cm-1). There was

increasing accumulation of lipid and carbohydrate in

response to 0.7, 0.3 and 0.07 N (Fig. 1c, d) and in response

to 1 and 10 lM P (Fig. 1g–h) but the N-limited cells clearly

accumulated more lipid and carbohydrate than any of the

P-limited cells. For example, the carbohydrate:amide I ratio

value increased from 0.19 in 1 mM P/7 mM N cells to 2.76

in 1 lM P cells (14.5-fold increase) but increased to 9.14 in

0.07 mM N cells (48.1-fold increase), while the lipid:amide

I ratio value increased from 0.16 in 1 mM P/7 mM N cells

to 0.83 in 1 lM P cells (5.2-fold increase) but increased to

3.87 in 0.07 mM N cells (24.2-fold increase).

While the lowest concentrations of P and N induced the

most marked metabolic changes in the cells, with respect to

high lipid and carbohydrate accumulation, the fresh weight

biomass yields from these treatments were extremely low;

0.91 and 0.54 mg mL-1 for the P and N starved cultures,

respectively. In contrast, significant increases in lipid and

carbohydrate were still observed in the 10 lM P and

0.7 mM N treated cells, but with sufficient biomass. These

two nutrient stress conditions (referred to as low P and low

N) were then used to examine whether cells exposed to

specific stress conditions could be predicted and identified

from control (non-stressed) strains using the FT-IR spectral

data. To classify stressed and non-stressed strains, a PLS-

DA statistical analysis was used to develop predictive

models of variation between the strains. The model was

generated using a training set of replicate spectra derived

from nine control and low P samples and five low N

samples (Supplementary Fig. 2). These models used three

factors for prediction which accounted for 97 % of the total

explained variance. An equal number of test spectra were

then evaluated using the PLS-DA model. The Y values of 1

or 0 were set as a yes or no decision as to whether or not a

sample belongs to the assigned class with a value of 0.5 as

a decision borderline. The model was able to predict

accurately strains grown in nutrient replete medium and

distinguish them from low P and low N strains (Fig. 2a).

Furthermore, despite both nutrient stresses being equiva-

lent in ability to induce lipid and carbohydrate induction,

the model was able to accurately distinguish low P strains

(Fig. 2b) and low N strains (Fig. 2c) from the rest of the

strains. There appears to be differences in the amount of

lipid and starch synthesized in response to 0.7 mM N

compared to 10 lM P (Fig. 1), which may partly explain

the ability of the model to differentiate the N and P stressed

cells. However, this might also suggest that other metabolic

responses differ between the two nutrient treatments in

addition to just lipid and carbohydrate. This has been

indicated in previous C. reinhardtii metabolomic studies.

Fig. 1 Screening nutrient limitation conditions. Fresh weight bio-

mass (a, e), chlorophyll fluorescence (Fv/Fm ratio) (b, f), lipid:amide I

ratio (c, g) and carbohydrate:amide I ratio (d, h) values derived from

FT-IR spectra, of wild type Chlamydomonas reinhardtii grown under

different concentrations of N (a–d) and P (e–g) for 7 days. All data

are mean ± SE of 3 biological replicates. Asterisks denote significant

difference compared to control (7 mM P or 1 mM N) treatments
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For example, a GC–MS analysis demonstrated that N

limited cells are metabolically distinct from P limited cells

and each treatment gives rise to specific changes in distinct

amino acids, organic acids and sugars (Bolling and Fiehn

2005). Notably, the lysine biosynthesis metabolite

2-amino-adipic acid increased 9-fold in N limited cells,

while tryptophan increased nearly 5-fold, but many

metabolites decreased significantly following N limitation

including a number of amino acids, fumarate, glucose and

malate. In contrast, P limitation induced a 25-fold increase

in cysteine concentration, and 4-fold increases in citrate

and glycerate, while there were relatively few decreases of

amino acids. Likewise, there are clear transcriptional dis-

tinctions between P and N limitation, with just a *5 %

similarity in transcriptional response observed between the

two stress treatments (Schmollinger et al. 2014). For

example, there were no transcript changes related to pho-

tosynthetic function that were common between the P and

N limitation conditions.

3.2 Screening of C. reinhardtii mutants by FT-IR

spectroscopy

Wild type C. reinhardtii and nine mutant strains were

grown until day seven under identical conditions of either

sufficient nutrient concentrations (1 mM P, high P or

7 mM N, high N) or limited nutrient concentrations

(10 lM P, low P or 0.7 mM N, low N). The mutant lines

(Supplementary Table 1) comprised four single gene

mutants, including psr1, snrk2.1, and two alleles of snrk2.2

(referred to here as snrk2.2-1 and snrk2.2-2), four double

gene mutants (psr1 snrk2.1, psr1 snrk2.2-1, psr1 snrk2.2-2

and snrk2.1 snrk2.2-2) and one triple mutant (psr1 snrk2.1

snrk2.2-1). Growth responses were determined by mea-

suring wet biomass, total chlorophyll concentration and Fv/

Fm ratio (Supplementary Fig. 3). All mutant strains

responded to N limitation in the same manner as wild type,

as seen by significant reduction in biomass, down from

*5–6 to *2 mg mL-1; specifically a 65 % decrease for

wild type and ranging from a 59 to 79 % decrease in the

mutant strains. In low P conditions, the 68 % biomass

reduction in wild type was consistent with each of the snrk

single and double mutant strains, while all of the strains

with a mutation in PSR1 showed a 77–92 % reduction in

biomass, down to 0.45 mg mL-1 in the psr1 snrk2.1

snrk2.2 triple mutant. A significant reduction in total

chlorophyll concentration ([90 % decrease) and Fv/Fm

ratio (a 45–91 % decrease) was also consistent in each of

the N-limited strains, as expected for a nutrient limitation

treatment which is known to cause significant chlorosis. A

reduction in total chlorophyll in response to P limitation

was consistent in most of the strains (a decrease ranging

from 48 to 80 %) apart from snrk2.1 snrk2.2-1 and psr1

snrk2.1 where there was no significant difference compared

to wild type (Supplementary Fig. 3b). However, a change

Fig. 2 Partial least squares discriminant analysis (PLS-DA) predic-

tion results of non-stressed (high P and high N) grown wild type in

comparison to cells cultured in response to P limitation (low P) and N

limitation (low N) at day-7 of growth. Ability of PLS-DA linear

regression models trained using replicate spectra to predict the

identification of high P/N spectra (a), low P spectra (b) and low N

spectra (c). The predicted Y values represent a yes (1) or no (0)

classification decision for each replicate sample (an average of three

technical replicates) in the validation set. Error bars indicate 95 %

confidence interval around each predicted Y value. Training and

validation data consisted of independent biological replicates, and

each dataset contained 9 control TAP replicates, 9 low P replicates

and 5 low N replicates
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in Fv/Fm ratio in response to P limitation was inconsistent

between the strains and all mutants with a psr1 genotype

showed greatly reduced Fv/Fm ratio, down to 0.07 from a

value of *0.7 under high P conditions, and thus had

reduced photosynthetic efficiency (Supplementary Fig. 3c),

suggesting that the cells were experiencing stress in

response to P limitation more than the wild type and the

snrk2.1 and snrk2.2 mutants.

FT-IR spectra were collected from triplicates of all

strains under all three growth conditions and analysed by

PCA separately for P and N limitation. For clarity in the

presented PCA plots, all of the snrk2.1 and snrk2.2 mutants

are categorised together and indicated by identical symbols

(e.g. all nine snrk2.1, snrk2.2-1 and snrk2.2-2 single mutant

samples are indicated by crosses; snrk single mutants,

while all nine psr1 snrk2.1, psr1 snrk2.2-1 and psr1

snrk2.2-2 double mutant samples are indicated by circles;

psr1 snrk double mutants). Under high P conditions (blue

symbols) the spectra from most of the mutants clustered

close with the wild type, although the psr1 single mutant

was slightly separated along PC1 (blue triangles) (Fig. 3a).

However, under low P conditions many of the different

mutant backgrounds were clearly separated. The spectra

from the low P wild type (red squares) were clearly sepa-

rated from high P wild type (blue squares) along PC1, with

this PC determined in part by increased peaks particularly

at wavenumbers *1050 and 1036 cm-1, and the snrk2.1

and snrk2.2 single mutants showed an equivalent low-P

response and were grouped with low P wild type. The

snrk2.1 snrk2.2-1 double mutant strains also separated

from the high P strains along PC1 but were also clustered

away from wild type and snrk2.1 and snrk2.2 single

mutants. All of the strains with a psr1 mutant background

under low P conditions clustered very differently to low P

wild type and were identical to the high P strains on the

basis of PC1, but could still be distinguished from high P

strains on the basis of PC2, determined partly by an

increase in the peak at wavenumber *1740 cm-1 and no

increase in peaks at *1160–1036 cm-1 (Fig. 3a). The

single psr1 mutant (red triangles) was again separated from

the other strains. However, the ability to discriminate the

wild type and mutant strains was markedly reduced under

N limitation conditions. All low N strains showed a clear

separation with the high N strains on the basis of PC1

(partly determined by increases at wavenumbers *1740,

1050 and 1036 cm-1, and decreases at wavenumbers

*1655 and 1545 cm-1) but there was less clear-cut sep-

aration amongst the low N strains (green symbols) along

PC2 (Fig. 3b). Interestingly, the psr1 snrk2.2-1 double

mutant (green circles) could be distinguished from wild

type and other mutant strains.

3.3 Supervised statistical methods allow

differentiation and prediction of mutants

from FT-IR spectra

Further evaluation of the vibrational spectroscopic data

was performed using the supervised statistical clustering

method, PC-DFA to assess whether additional discrimina-

tion of the mutant strains could be achieved. A similar

trend seen by PCA was observed by PC-DFA but with

better clustering and separation amongst the mutants. PC-

DFA is a powerful technique and was able to discriminate

the mutants clearly from wild type in non-stressed nutrient

replete conditions, but also distinguish the psr1 single

mutant from psr1 snrk mutants and from snrk single or

double mutants (Fig. 3c, d). In the case of the low P

treatment (red symbols), the wild type could not be dis-

tinguished from the mutants but clustered together with the

snrk single and double mutant, whereas the psr1 snrk

double and triple mutants clustered close to the psr1 single

mutant (Fig. 3c). The separation between the mutant

strains was reduced in low N treatment and only the psr1

snrk2.2-1 double mutant was clearly separated (Fig. 3d).

PLS-DA modeling was successful at discriminating

between wild type grown under different nutrient condi-

tions (Fig. 2) therefore the same approach was examined to

attempt to classify the mutant strains and to develop pre-

dictive models of variation between the mutants. This was

to examine whether genotypic groupings such as the

presence or absence of the psr1 mutation or a snrk mutation

(either snrk2.1 or snrk2.2) could be predicted from the FT-

IR spectra. Strains were divided into three types; wild type,

those containing the psr1 mutation (psr1 type) and those

containing the snrk2.1 and/or the snrk2.2 mutation but not

the psr1 mutation (snrk type). The model was generated

using a training set of replicate spectra derived from six

wild type, six snrk and eight psr1 samples grown under

either P replete or P limited conditions (Supplementary

Fig. 4). The quality of these models is shown in Fig. 4,

showing predicted versus measured plots of the calibration

and cross-validation based on FT-IR. These models used

three factors for prediction which accounted for 99 % of

the total explained variance. Initially the FT-IR data were

split into two sets of replicate spectra, a calibration set and

an external validation set both containing all strains (wild

type and all mutants). The high P model was able to clearly

predict and differentiate wild type from the mutant strains,

and psr1 from wild type and snrk strains, although less

robustly compared to the wild type classification. In con-

trast, the snrk prediction was weak under this condition.

The low P prediction models found that all psr1 mutation-

containing strains could be clearly differentiated from wild
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Fig. 3 FT-IR spectroscopy screening of wild type and mutant strains

in response to P and N limitation. Principal component analysis

(PCA) (a, b) and PC-discriminant function analysis (PC-DFA) (c,
d) of FT-IR spectra (1780–950 cm-1) derived from strains cultured in

replete or limited concentrations of P (high or low P), indicated by

blue symbols and red symbols, respectively (a, c), and in replete or

limited concentrations of N (high or low N), indicated by blue

symbols and green symbols, respectively (b, d). Each symbol

represents the average of 3 technical replicates per biological sample.

Different symbols each represent 3 biological replicates of each wild

type and mutant strain. For this plot snrk2.1 and snrk2.2 have been

categorized together as ‘snrk’. PCA loading plots of PC1 (bold) and

PC2 (dashed) corresponding to high and low P (a) and high and low N

(b) data are shown below the PCA scores plots (Color figure online)
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type and snrk mutants, and there was also reasonable

classification of wild type strains and snrk strains (Fig. 4).

The use of FT-IR spectroscopy for discriminating

microorganisms has been previously demonstrated,

particularly for identification and discrimination between

species of bacteria, cyanobacteria or fungal species

(Bounphanmy et al. 2010; Timmins et al. 1998; Winder

et al. 2004). However, discrimination between eukaryotic

Fig. 4 Partial least squares discriminant analysis (PLS-DA) predic-

tion results of wild type (wild type strains) in comparison to mutant

strains containing the snrk2.1 and/or snrk2.2 mutation but not the psr1

mutation (snrk type strains), or the psr1 mutation either alone or in

combination with snrk2.1/snrk2.2 mutation (psr1 type strains). Ability

of PLS-DA linear regression models trained using replicate spectra to

predict the identification of wild type, snrk and psr1 strains either

under high P (a) or low P (b) conditions. The predicted Y values

represent a yes (1) or no (0) classification decision for each replicate

sample (an average of three technical replicates) in the validation set.

Error bars indicate the 95 % confidence interval around each

predicted Y value. Training and validation data consisted of

independent biological replicates, and each dataset contained 6 wild

type replicates, 6 snrk strain replicates and 7 psr1 strain replicates
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microalgae species has been more challenging compared to

non-photosynthetic microorganisms like yeast

(Domenighini and Giordano 2009; Driver et al. 2015).

Possibly this is because microalgae are metabolically

complex organisms that can utilize both photo-autotrophic

and photo-heterotrophic lifestyles, can synthesise a diverse

array of metabolites but can also show considerable phe-

notypic plasticity in their metabolic responses to environ-

mental changes. As a result the same microalgal species

can produce very different FT-IR spectra under different

cultivation or stress conditions (e.g. Supplementary Fig. 1).

It is probably this subtle metabolic variation between single

mutations that allows the ability to discriminate, as long as

the strains are grown under equivalent, controlled condi-

tions. We have shown here that single mutants can be

clearly differentiated and classified using FT-IR spectral

information and multivariate statistical methods. However,

mutants of some genes that appear to play a significant role

in metabolic regulation, such as psr1, clearly are more

distinct and show a more pronounced FT-IR phenotype

than other mutants, like a single snrk2.1 or snrk2.2 mutant.

These have a much more subtle phenotype and are less

easily distinguished, even when using supervised chemo-

metric analysis methods.

3.4 Lipid profiling of mutants by UHPLC–MS

To compare the high-throughput FT-IR spectroscopy pro-

filing of the strains with an alternative analytical method,

UHPLC–MS was performed on a non-polar lipophilic

fraction isolated from wild type and mutant strains grown

under high P and low P conditions until day seven. PCA of

the UHPLC–MS data showed some similarity with the

profile seen by PCA of the FT-IR spectra. There was clear

separation of the high P and low P treated strains on the

basis of PC1 (determined largely by increases in peaks

classified as diglycerides and triglycerides), but for either

treatment group, further clear separation on the basis of

genetic background was lacking (Fig. 5). Even treatment of

the data by PC-DFA was unable to distinguish many of the

mutant lines apart from discrimination of snrk2.1 and psr1

snrk2.2-2 from the other strains on the basis of DF2,

determined in part by changes in peaks classified as

triglycerides (Supplementary Fig. 5). In particular, it was

not possible to distinguish psr1 mutants from wild type

under P limitation conditions, which was very different

from the outcome using FT-IR data. The explanation for

this is likely to be due to the more limited metabolic

information gained from the UHPLC–MS analysis of the

non-polar fractions in contrast to the macromolecular

quantification of whole cells by FT-IR spectroscopy, which

identified significant changes in carbohydrates (Fig. 6b),

particularly starch (Supplementary Fig. 6). This difference

in the information content between different metabolomics

methods has been recently illustrated for a set of bacteria

that displayed different metabolic diversities and virulence

factors (AlRabiah et al. 2014). Furthermore, the majority of

the metabolites determined by UHPLC–MS are lipids

(Supplementary Fig. 7; Supplementary Table 2), and while

Fig. 5 LC–MS analysis ofwild type andmutant strains in response to P

limitation. Principal component analysis (PCA) ofUHPLC–MS spectra

derived from wild type and mutant strains cultured in replete

concentrations of P (1 mM), indicated by blue symbols, and in limited

concentrations of P (10 lM), indicated by red symbols. Different

symbols represent the different wild type and mutant strains. For this

plot all snrk2.1 and snrk2.2 have been categorized together as ‘snrk’.

PCA loading plots of PC1 and PC2 are shown below the scores plot.

Peaks have been categorized into one of five lipid classes as indicated by

peak colour, and within each class are arranged in ascendingm/z value.

Multiple phospholipid types (described in Supplementary Fig. 7) are

grouped together as phospholipids. Peaks with a PC loading value

greater than 0.2 are highlighted and m/z value indicated. Lipid peak

definitions are shown in Supplementary Table 2 (Color figure online)

9 Page 10 of 14 A. K. Bajhaiya et al.

123



there were some fairly subtle differences in total lipid

accumulation between wild type and psr1 in response to P

limitation, the most marked change was for the accumu-

lation of starch (see below).

A number of methods have been developed for screen-

ing and examination of microalgae strains for metabolite

phenotypes, particularly for high lipid-yielding strains.

These have often included the use of chromatography or

lipid stains such as Nile red combined with fluorescent

sorting. Whilst these methods have been shown to be

successful for fairly rapid screening of novel lipid meta-

bolism mutants (Cagnon et al. 2013; Terashima et al.

2015), a limitation is that only one metabolic parameter at a

time is being determined. These results demonstrate one of

the clear benefits of the FT-IR spectroscopy-based

screening method over other approaches in that it provides

the ability to screen multiple metabolic characteristics

simultaneously. Furthermore, the more complex metabolic

fingerprint generated by the FT-IR spectra allows better

discrimination of mutations (e.g. Figs. 3 vs 5). However,

for a subsequent detailed characterization of a particular

metabolite class, such as TAG fatty acid composition in a

lipid fraction, a more focused method such as LC–MS is

then necessary to obtain a level of information that FT-IR

or fluorescent lipid stain analysis would not alone provide.

Nevertheless, we show that the FT-IR methodology

described provides a suitable first-pass analysis and pre-

screening of strains before more detailed and time-con-

suming characterization is performed.

3.5 Metabolic changes underlying the mutant

discrimination

Metabolic differences from the FT-IR spectra were exam-

ined further in order to attempt to explain some of the

distinctions observed between the mutants. As seen in the

Fig. 6 Lipid and carbohydrate quantification from FT-IR spectroscopy

screening of wild type and mutant strains in response to P and N

limitation. Mean lipid:amide I ratio (a, c) and carbohydrate:amide I ratio

(b,d) values (±SE)derived from3FT-IR spectra (1780–950 cm-1) from

eachwild type andmutant strain under high and lowP (a,b) and high and
low N (c, d) conditions. Each spectrum is an average of three technical

replicates.Asterisks denote significant difference compared to the control

(high P or N) treatment (Color figure online)
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initial experiments, the loading plots of the low P and low

N treatments indicated that the differences between nutri-

ent sufficiency and limitation for the wild type and wild

type-clustered strains was due largely to increased accu-

mulation of lipids and carbohydrates (Fig. 3). This was

particularly clear in all of the low N treated strains where a

consistent increase in lipid:amide I and carbohydrate:amide

I ratio values compared to the high-N treated strains were

seen, ranging from 6.1- to 9.5-fold increases in lipid:amide

I ratio and 6.2- to 13.2-fold increases in carbohy-

drate:amide I ratio (Fig. 6c, d). Likewise, in the low P

experiments a significant increase in lipid and carbohydrate

was indicated in the wild type and snrk2.1 and snrk2.2

single and double mutants in response to P limitation,

ranging from 2.3- to 4.0-fold increases in lipid:amide I

ratio and 3.8- to 8.6-fold increases in carbohydrate:amide I

ratio (Fig. 6a, b). However, for the mutants possessing a

psr1 genotype (psr1, psr1 snrk2.1, psr1 snrk2.2, and psr1

snrk2.1 snrk2.2), the distinction from the wild type and

snrk2.1/snrk2.2 strains appeared to be due to a lack of

carbohydrate accumulation in response to P limitation (no

significant increase in carbohydrate:amide I ratio in any

low P grown psr1 genotype cells), and thus having a car-

bohydrate phenotype that was identical to the high P

treated cells (Fig. 6b). The lipid:amide I ratio values in

these psr1-containing mutants in low P was inhibited rel-

ative to wild type (ranging from 1.4- to 2.5-fold increases

in lipid:amide I ratio), but the increase relative to high P

cells was not completely abolished (Fig. 6a), thus the low P

psr1 mutants were still distinct from the high P cells in the

PCA scores plot (Fig. 3a).

As well as providing a demonstration of the ability to

screen and profile mutants by FT-IR spectroscopy effi-

ciently, this analysis has provided some more insight into

the functions of PSR1, SNRK2.1 and SNRK2.2. Mutation

of PSR1 clearly impacts on starch metabolism and to a

lesser extent on lipid metabolism, as we have observed

previously (Bajhaiya et al. unpublished), but specifically

under P limitation, with no significant metabolic change

under N limitation conditions. In contrast, there was no

evidence of major metabolic regulation by SNRK2.1 or

SNRK2.2 under P or N limitation, or under nutrient replete

conditions. SNRK2.1 and SNRK2.2 both play important

roles to control the cell’s responses to S limitation (Davies

et al. 1999; Gonzalez-Ballester et al. 2008). Although there

is no evidence of a direct role for these proteins in P lim-

itation response, there is evidence that S metabolism is

altered by P limitation, and in a psr1 mutant background,

more extreme internal P limitation induces greater S lim-

itation, which in turn induces expression of the positive

regulator SNRK2.1 (Moseley et al. 2009). Furthermore, an

epistatic relationship between PSR1 and SNRK2.2 has been

observed such that a psr1 snrk2.2 mutant is more sensitive

to P limitation compared to psr1 (Moseley et al. 2009).

However, we did not observe significant metabolic differ-

ences between psr1 single mutants and psr1 snrk2.1 or psr1

snrk2.2 double mutants during P limitation in our analysis.

If anything, there were more obvious metabolic differences

between these single and double mutants during nutrient

replete and N limitation treatments (Fig. 3d). There is some

evidence of the snrk2.1 mutant exhibiting specific tran-

scriptional and metabolic phenotypes during nutrient

replete conditions, including alteration in H2 biosynthesis

and anoxia (Gonzalez-Ballester et al. 2010). However, we

suggest that not just snrk2.1 but all of the mutants studied

here cause some metabolic alteration under nutrient replete

conditions. Indeed one of the interesting outcomes from

this study was the clear distinction observed between wild

type strains and all of the mutant strains under nutrient

replete conditions, as determined by the specific metabolic

profiles discerned by PC-DFA (Fig. 3b, c). A detailed

examination of these data sets and further metabolite

quantification will be able to explain these phenotypes

more clearly in the future.

The changes in total lipid and carbohydrate in the

nutrient-limited cells measured by the FT-IR spectra were

validated by biochemical methods and confirmed to be due

to increased biosynthesis of neutral lipids and starch (Sup-

plementary Figs. 6, 7). For example, in low N conditions,

starch accumulated to concentrations between *40 and

70 lg mg-1 fresh weight biomass in all strains compared to

a concentration of *2–4 lg mg-1 in nutrient replete con-

ditions. There was a similar increase in starch concentration

in low P media for the wild type and snrk genotype strains,

but starch concentration was very low for all of the strain

possessing the psr1 mutation (15.4 lg mg-1 for psr1;

6.3 lg mg-1 for psr1 snrk2.1; 2.6 lg mg-1 for psr1

snrk2.2-1; 27.4 lg mg-1 for psr1 snrk2.2-2; 2.9 lg mg-1

for psr1 snrk2.1 snrk2.2-1). Total protein was also quanti-

fied and its concentration was relatively constant under all

treatments across all of the lines, ranging from 1.3 to

2.3 lg mg-1 fresh weight biomass (mean of

1.9 ± 0.1 lg mg-1) for high P/N, from 0.9 to 2.6 lg mg-1

(mean of 1.7 ± 0.2 lg mg-1) for low P, and from 1.3 to

2.4 lg mg-1 (mean of 1.7 ± 0.1 lg mg-1) for low N

(Supplementary Fig. 6c, f), indicating the suitability of

using amide I for normalisation of the FT-IR spectra bands.

Accumulation of neutral lipid was indicated by Nile red

staining and gave a profile that was equivalent to that

determined by FT-IR spectroscopy. In low N treatments,

all strains displayed concentrations of neutral lipid ranging

from *35 to 80 lg mg-1 fresh weight biomass compared

to a concentration of *1.5–2.5 lg mg-1 in high nutrient

medium. In low P treatments neutral lipid accumulated to

*18–30 lg mg-1 in wild type and most mutant strains,

but this was inhibited slightly, up to 5–13 lg mg-1 in psr1
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snrk2.2-1, psr1 snrk 2.2-2 and psr1 snrk2.1 snrk2.2-1.

UHPLC–MS analysis confirmed that primarily, putatively

identified triglycerides increased on average by 2.2-fold in

low P treatment, while most classes of phospholipids

decreased in low P, notably phosphatidylcholines (an

average 1.8-fold decrease), phosphatidylethanolamines (an

average 1.6-fold decrease) and phosphatidylserines (an

average 1.7-fold decrease), as well as sphingomyelins (an

average 1.8-fold decrease) (Supplementary Fig. 7).

Although P limitation induced total lipid accumulation in

all strains with significant reduction relative to wild type in

some of the mutants, at the level of individual lipid classes,

most of the mutants showed only subtle differences com-

pared to wild type (Supplementary Fig. 7). Finally, the

reliability of the FT-IR spectroscopy-based prediction of

lipid and carbohydrate content was indicated by strong

linear correlation between lipid:amide I ratio and total

lipid, and between carbohydrate:amide I ratio and starch

content, with R2 values[0.8 in both cases (Supplementary

Fig. 8).

4 Concluding remarks

In conclusion, this study has demonstrated the use of FT-IR

spectroscopy for robust but simple and fast metabolite

screening of mutants, which could easily be expanded to

allow rapid screening of genome-scale mutant collections.

Although validated here with Chlamydomonas, it will be

applicable for any algae species, but also any plant species.

It would be appropriate for bioprospecting for novel strains

or the identification of novel mutants with metabolic

characteristics that may be suitable for a variety of

biotechnological applications, both related to biofuel use

and other high-value metabolites. It will also provide a

suitable first-pass analysis and pre-screen of microalgae

mutants before more detailed ‘omics characterisation is

performed.
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