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Abstract In omics research often high-dimensional data

is collected according to an experimental design. Typically,

the manipulations involved yield differential effects on

subsets of variables. An effective approach to identify

those effects is ANOVA-simultaneous component analysis

(ASCA), which combines analysis of variance with prin-

cipal component analysis. So far, pre-treatment in ASCA

received hardly any attention, whereas its effects can be

huge. In this paper, we describe various strategies for

scaling, and identify a rational approach. We present the

approaches in matrix algebra terms and illustrate them with

an insightful simulated example. We show that scaling

directly influences which data aspects are stressed in the

analysis, and hence become apparent in the solution.

Therefore, the cornerstone for proper scaling is to use a

scaling factor that is free from the effect of interest. This

implies that proper scaling depends on the effect(s) of in-

terest, and that different types of scaling may be proper for

the different effect matrices. We illustrate that different

scaling approaches can greatly affect the ASCA interpre-

tation with a real-life example from nutritional research.

The principle that scaling factors should be free from the

effect of interest generalizes to other statistical methods

that involve scaling, as classification methods.

Keywords Pre-treatment � Designed experiments �
High-dimensional data

1 Introduction

In metabolomics, transcriptomics, proteomics and next

generation sequencing (NGS), experimental data are ob-

tained on the abundance of (very) large numbers of bio-

molecules in biological material. Typically, the

manipulations involved yield differential effects on subsets

of such biomolecules since they are often obtained under

different conditions (treatment, time,…). In the absence of

specific theoretical guidance, the key challenge is to un-

ravel the nature of the differential effects and the associ-

ated subsets of biomolecules on the basis of the empirical

data. We will focus on metabolomics, but the methods

described also translate to other (omics) data.

A classical and powerful tool to identify such subsets is

principal component analysis (PCA). PCA reveals domi-

nant sources of variance in the observed data. However,

straightforward use of PCA is typically not effective in this

setting, because the thus identified dominant sources will

not necessarily be linked to the experimental manipula-

tions. In particular the between-subject variability within

experimental conditions is often large (Xu et al. 2014),

implying that the effects of the manipulations remain

hidden in PCA results.

An effective exploratory alternative that accounts for the

experimental design, and hence explicitly identifies and

disentangles sources of variation due to the experimental
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manipulations, is ANOVA-simultaneous component ana-

lysis (ASCA) (Jansen et al. 2005; Smilde et al. 2005). The

core idea of ASCA is to decompose the observed data

matrix into a series of additive effect matrices, according to

the experimental design, and subsequently perform a PCA

on the effect matrices of interest. The latter is done to

identify the dominant sources of variation for that par-

ticular effect. The ASCA approach has been fruitfully ap-

plied in a range of application areas (de Noord and

Theobald 2005; Ferreira et al. 2009; Xu et al. 2014).

Although ASCA sheds light on different sources of

variation, its results may still heavily depend on differences

in variances of the metabolites within each of the effect

matrices and thus depend on the pre-treatment applied to

data. Pre-treatment is standard practice in metabolomics in

order to focus on the biologically relevant information

(Goodacre et al. 2007; van den Berg et al. 2006).

The pre-treatment steps in ASCA are the same ones as in

PCA: centering, typically around the mean, and scaling.

Scaling pertains to dividing each variable by a factor, for

example the variable’s standard deviation. The possibly

large effects of the specific pre-treatment applied are well-

known in the context of PCA (e.g., Vandenginste et al.

1998) but received hardly any attention in ASCA so far.

This lack of attention is understandable for centering, be-

cause this type of pre-treatment is implicitly dealt with in

ASCA via the additive effect matrices, which are centered

around the mean. In contrast, scaling is an important issue

in ASCA. The possible effects on the analysis results are as

large as in PCA, while the number of possible scaling

strategies is much larger.

So far, in empirical applications, ASCA is pre-

dominantly applied to unscaled data (Jansen et al. 2005;

Lemanska et al. 2012; Mazerolles et al. 2011; e.g., Smilde

et al. 2005; Wang et al. 2009) and only incidentally to

autoscaled data [i.e., each variable with length one across

all observations (e.g., Ferreira et al. 2009)], or effect scaled

data [i.e., separately scaled effect matrices (e.g., van Vel-

zen et al., 2008)]. However, a rationale for the scaling

applied is consistently lacking. This is a pity, since it

hampers judging whether the solution interpreted optimally

reflects the phenomena of interest.

In this paper, we aim at offering insight in which scaling

strategies are rational in ASCA. We will show that scaling

directly influences which data aspects are stressed in the

analysis, and hence become apparent in the solution. We

will argue that a proper scaling depends on which effects

are of interest, and hence that different types of scaling

may be proper for the different effect matrices. In the ab-

sence of an external objective criterion for judging the

adequacy of the scaling strategies, we base our discussion

of these strategies on theoretical justification and their

impact on the solution.

We start by explaining, in mathematical terms, the

ASCA model, its estimation, the effects of scaling on the

solution and different scaling variants. For ease of expla-

nation, we do so on the basis of a small experimental de-

sign that shows the basic principles relevant for scaling.

The thus shown principles are generalizable to any, more

complicated, experimental design. Next, we use a toy ex-

ample to show the effects of various types of scaling on

different effect matrices with a small simulated data set.

Then, we analyze a real-life metabolomics data set. We end

by discussing the implications when applying ASCA and

related methods to scaled data in practice.

2 Theory: ASCA model and scaling

2.1 Model and estimation

For ease of explanation, we consider a small example: a

nested balanced experimental design, with a between-

subject factor ‘treatment’ and a within-subject factor

‘time’. There are J treatments (j = 1,…,J), with Ij =

I subjects (ij = 1,…,I) in treatment j. This yields N = JI

subjects in total. Each subject is measured at K comparable

time points (k = 1,…,K), implying that the scores at time

point k can be sensibly compared across subjects (Van

Mechelen and Smilde 2011). At each time point k for all

N subjects, L dependent variables (e.g., metabolites)

(l = 1,…,L) are measured. The observed scores can be

collected in a data matrix X (NK 9 L).

The ANOVA model for a single metabolite l, can be

formulated as (cf. Winer 1971)

xjkij ¼ lþ aj þ bk þ abð Þjkþejkij ; ð1Þ

where l indicates an overall offset, aj the effect of ‘treat-

ment’, bk the effect of ‘time’, (ab)kj the interaction of

‘treatment’ and ‘time’, and ejkij the subject specific de-

viation. In ASCA, the data matrix X (NK 9 L) is first de-

composed into a few effect matrices according to the model

in Eq. (1), as:

X ¼ 1mT þ Xa þ Xb þ Xab þ XE ð2Þ

where 1 (NK 9 1) consists of ones, mT (1 9 L) contains

the means of the L variables computed across all NK ob-

servations; Xa and Xb hold the level means for the factors

‘treatment’ and ‘time’, respectively; Xab the interaction

terms for those two factors; and XE the subject-specific

effects. The latter express the variation between subjects at

each time point within each treatment. Note that the effect

matrices are highly structured: all rows related to one level

of the factor in question are equal (e.g., all rows of Xa

pertaining to treatment j). Further, all effect matrices have
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a sum constraint of zero to identify the ANOVA decom-

position (e.g.,
PJ

j¼1 x
T
a;j ¼ 0T;

PK
k¼1 x

T
b;k ¼ 0T, etc., where

xa,j
T indicate the rows of effect matrix Xa pertaining to

treatment j).

To identify the dominant sources of variation for the

effects of interest, PCA is applied to the associated effect

matrices or to an additive combination thereof. We con-

sider two different types of effects that are of interest in

practice, the between and within effects. Note that in most

applications of ASCA only the between effect is consid-

ered, but, for example, Xu et al. (2014) study both.

The between effect expresses the main effect of treat-

ment and its differential effects across time, and is modeled

through a PCA of (Xa 1 Xab) = X(a?ab).

The within effect pertains to the natural variation across

individuals at each time point within each condition, and is

analyzed via a PCA of XE. Herewith, one focuses on

identifying variables with relatively large and similar

residual patterns across time points and treatments. This

may reveal important information on possible differential

effects of a particular treatment condition across indi-

viduals. The size, onset and nature of treatment effects may

substantially differ across individuals, even when they

would be sampled from a (seemingly) single population.

This opens the possibility of subtyping and understanding

personalized treatment effects.

To understand the effects of scaling it is important to

know that the separate PCA’s on the effect matrices are

equivalent to the minimization of a specific least-squares

estimation problem in terms of the observed data matrix

X. For the model described above, the associated ordinary

least-squares (OLS) loss function boils down to

where T(.) (NK 9 Q(.)) and P(.) (L 9 Q(.)) denote the

component score matrix and loading matrix, respectively,

for effect (.), with (a ? ab) the between effect and (E) the

within effect; and subject to the sum constraint of zero for

each effect matrix and each component score matrix (for

details, see the Supplementary Material (SM)).

The fits of the different parts of an ASCA model are

typically expressed as a percentage of variance explained

(VAF). For the ANOVA part, we consider for each effect

matrix the VAF of the total data (yielding the between-

VAF and within-VAF). For the PCA parts, we consider for

each component the VAF of its effect matrix. Regarding

the number of components, we consider, in line with pre-

vious applications, maximally two components per effect

matrix, retaining those components with a proper sub-

stantive interpretation. No formal criterion is available to

indicate the number of components Q(.) needed to

adequately describe the between and within effects. Such a

criterion could be based on principles used in other forms

of component analysis (e.g., CHull (Ceulemans and Kiers

2006) or Parallel analysis (Horn 1965)), but their use in

ASCA context is not straightforward.

In the ASCA model, the mean at each time point is ex-

plicitly modelled. This is possible because all subjects are

measured at the very same time points. Explicit modeling of

themean is denoted as the fixed effects approach tomodeling

longitudinal data (Snijders and Bosker 1999). A more so-

phisticated alternative would be to model the repeated

measures as if they are observations on a population of

curves. Then, one could also model data collected at time

points that vary across subjects and one would take the full

advantage of any functional relationship between the time

points. However, as combining such an approach with PCA

is far from straightforward, this is topic of further research.

2.2 Scaling in ASCA: weighting different parts

Scaling is defined as dividing each variable by a certain

factor before subsequent analysis. Different scaling factors

have been proposed, serving different goals, and with as-

sociated merits and drawbacks. For an overview we refer to

van den Berg et al. (2006). Here, we consider the standard

deviation, as a measure of data dispersion. Note, however,

that the discussed consequences of scaling generalize to

any other scaling factor considered.

Suppose that a scaled version ~X of the input data matrix

X would be analyzed with ASCA. Specifically, assume that

the data matrix was scaled by dividing each variable l by

the corresponding standard deviation sl, l = 1,…,L, across

all rows. This implies that ~X ¼ XW with ~X the scaled

matrix, X the input data and W a diagonal weight matrix

(L 9 L), with the inverse of the standard deviations sl,

l = 1,…,L, on its diagonal. The consequences of this

ð3Þ
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scaling for the estimated component score and loading

matrices become clear by considering the OLS loss func-

tion (3), in terms of ~X ¼ XW. As shown in the context of

PCA and three-way component analysis, an OLS analysis

of thus scaled data is equivalent to a weighted least squares

(WLS) analysis of the input data (Bro and Smilde 2003;

Harshman and Lundy 1984). For ASCA, starting from

Eq. (3), this can be seen as follows:

with ~mT ¼ mTW, ~Xb ¼ XbW, ~X aþabð Þ ¼ X aþabð ÞW aþabð Þ,

~XE ¼ XEWE, ~P aþabð Þ ¼ P aþabð ÞW aþabð Þ, ~PE ¼ PEWE, and

W aþabð Þ ¼ WE ¼ W. Thus, ASCA on the scaled matrix

(i.e., ~X ¼ XW) is equivalent to ASCA on the input data

matrix (i.e., X) using a WLS loss function with weight

matrix W. Note that this equivalence does hold because the

weights are column specific (as, e.g., in autoscaling), and

would not hold when the weights would be element

specific (as in the general WLS definition, using the

Hadamard product).

From Eq. (4), it follows that scaling boils down to dif-

ferently weighting the variables when computing the so-

lution and thus implies a change in the objective function,

except for the trivial case of W = cI, with c an arbitrary

constant. The ASCA solutions based on unscaled and

scaled data will generally differ more with increasing

variability in the diagonal elements of W. Generally,

variables with relative large weights in W contribute to a

larger extent to the loss value, and hence will influence the

solution to a larger extent than in the unscaled analysis. In

the unscaled data such variables will have small standard

deviations, and thus are suppressed by the high-variance

metabolites in the unscaled analysis.

Up to now, we focused on the case where the weight

matrix is constant for each separate effect matrix. Yet, an

obvious, and for ASCA possibly fruitful, alternative strat-

egy is to use different weight matrices for each effect

matrix under consideration. We will denote this type of

scaling as effect scaling. In Eq. (4), effect scaling would

boil down to taking W aþabð Þ 6¼ WE. As a consequence, the

thus obtained solutions are no longer equivalent to OLS-

ASCA solutions of a scaled version of the input data matrix

(i.e., of any ~X ¼ XW). However, for each effect matrix

separately, the OLS solution of the effect matrix (.) scaled

with W(.) is equivalent to a WLS solution of the unscaled

effect matrix, with weight matrix W(.). This is so because

the scaling is still done per variable. This implies that—

analogously to the effect of using a single weight matrix—

the solutions based on unscaled and scaled data will gen-

erally differ more with increasing variability in the

diagonal elements of W(.).

2.3 Scaling in ASCA: choosing the weights

The key question now is how to select properweightmatrices

for ASCA. A weight matrix is proper when the effects of

interest are effectively displayed in the ASCA solution, de-

spite of nuisance effects (i.e., effects that are not of interest).

Thus, weights should be chosen such that the variability in

the data due to nuisance effects is diminished, while leaving

intact the variability due to the effect of interest.

In component analysis, it is rather common practice to use

per variable (l) the observed standard deviation (sdl) as the

scaling factor (i.e., wll = (sdl)
-1). However, in ASCA, dif-

ferent types of standard deviations can be computed, with the

differences pertaining to which conditions are considered

and which effect matrices are used. Hence, the question is

which of these standard deviations would most likely reflect

only nuisance effects, and thus would be useful for scaling.

Though the answer to this question partly depends on the

study and data at hand, a general guideline can be given. The

key is that the scaling factor should be free from the ex-

perimental effect of interest. A main effect of treatment, for

ð4Þ
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example, shows up in variance across treatment levels.Using

a scaling factor that includes the treatment variance thus

results in downweighting variables with large treatment ef-

fects. Those variablesmay hence remain unnoticed. Because

the effect of scaling depends on the mutual ratios in the

weights that are used for the scaling, this undesirable effect

can be expected to occur especially for variables for which

the treatment effect makes up a relatively large part of the

scaling factor. As we will explain, different effect matrices

(i.e., between and within effect matrices) may require dif-

ferent types of scaling.

Between effect In decomposing X aþabð Þ, one aims at iden-

tifying those variables for which the treatment effects and their

differential effects across time are largest. A suitable scaling

factorwould be free from those sources of variance.Wediscuss

three types of scaling factors, which all meet this requirement.

1. Overall residual standard deviation The matrix XE

(NK 9 L) contains the residuals, and expresses the varia-

tion between subjects within each condition (i.e., time

point and treatment combination). Using its columnwise sd

(i.e., sd per column of XE) results in a downweighting of

variables with relative large variation between subjects

within conditions. This makes sense because for those

variables the associated main and interaction effects will be

estimated with less precision.

When the residual variations would differ largely across

conditions for one or more variables, using the overall

residual sd s as the scaling factor seems to be problematic,

however. First, the size of an overall residual sd is

influenced heavily by (some) large within-condition vari-

ances for a given variable. This may yield a disproportional

downweighting of variables with small within-condition

variances across some conditions. This undesirable effect

would be precluded by taking a more robust measure, as

the median of all within-condition variances per variable.

Second, a treatment that induces large effects in means

across time, can very well be accompanied with increasing

variability across subjects (Jansen et al. 2012). Then, the

overall residual variance scaling would put less emphasis

on those variables with large effects in means—which are

to be identified. In this case, scaling with the overall

residual sd is to be discouraged, and a measure expressing

the amount of natural variation is needed.

2. Natural residual variation: pre-intervention/reference

group residual sd In case the experimental design includes

a pre-intervention phase or a reference group, the natural

variation within a condition can be estimated. When pre-

intervention data are available, one could use the residual sd

within all conditions using only the time point(s) before

treatment actually starts (i.e., sd per column of XE;pre, with

XE;pre the part of XE pertaining to the pre-intervention

phase). If one of the treatment groups could be considered a

reference group, pertaining to absence of treatment, or

treatment as usual, one could to use the residual sd in the

reference group (i.e., sd per column of XE;ref , with XE;ref the

part of XE pertaining to the reference group, denoted as

reference residual scaling for short). Indeed, for identifying

a differential treatment effect, variables with relatively large

variability in the reference group are of less interest than

variables with a small variability.

3. Reference group sd If there are variables with a sub-

stantial time effect (e.g., a trend) in the reference group,

one may express this in the measure of natural variation.

This can be done via the sd of the reference group scores on

all time points (i.e., sd per column of Xref, with Xref the

observed scores in the reference group), to be denoted as

reference group scaling for short. In this case one includes

the main effect across time in the reference group in the

scaling factor, implying that variables with a substantial

time effect (e.g., a trend) are downweighted. Obviously,

reference group scaling and reference residual scaling will

only yield different results if a main effect across time is

actually present in the reference group for at least one or

the variables and this main effect differs considerably

across variables.

Within effect Since analyzing the within effect aims at

identifying differential effects of treatments on individuals,

those effects should be excluded from the scaling factor.

Further, a scaling factor including any between effect (e.g.,

a main effect across time in the reference group) appears

strange, since the between effects themselves are of no

influence on the residuals to be analyzed. However, it does

make sense to correct for any differences in residual

variability between variables in a reference condition. This

suggests the use of—analogously to the between case—the

pre-intervention or reference group residual sd. If both a

pretest phase and reference condition are lacking in the

experimental design, there seems no other option than to

resort to no scaling.

The scaling factors based on residuals (i.e., of XE or a

submatrix thereof) requires the computation of XE. This is

easily done by computing the centered version of each data

matrix Xjk (j = 1,…,J; k = 1,…,K), containing the ob-

served scores for treatment j at time point k, and

positioning those matrices below each other.

3 Simulated data example

3.1 Simulated data

To illustrate the effects of suitable and less suitable scaling

variants in ASCA, we use a small simulated data set. The
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data were simulated such that it comprises various effects,

which can be identified with ASCA. The experimental

design pertains to J = 3 treatments, including a reference

condition (e.g., placebo), with per condition 20 individuals,

who are measured at K = 10 non-equidistant time points,

reflecting tk = 0.00001, …,34 h after intake, on L = 7

variables. Details on the simulation model and parameters

are provided in the SM. The simulated data are depicted in

Fig. 1. Regarding between effects, expressing the treat-

ments and their differential effects across time, there are

three types of patterns. First, variables 1–4 (v1–v4 for

short) have a very early treatment effect peak (i.e., at 1 h).

Of those, v3 and v4 have a small and large, respectively,

linear time trend, and v1 and v2 no trend. Second, v5 and

v6 have a medium to late treatment effect peak; v5 has a

linear trend, and v6 has no trend. Third, v7 shows no be-

tween effect. For all variables with a treatment effect (i.e.,

v1–v6), treatment 2 has larger effects than treatment 1,

while the intensity of the effect differs between variables.

Regarding within effects, expressing interindividual

differences across time and treatments, there are three

types. For v1–v3, the variance of the residuals is propor-

tional to the mean per time point and treatment condition.

This property is visible best in Fig. 1 for v3 up to 5 h, since

the associated means are higher than at later time points.

For v5 and v6, two subtypes of individuals can be distin-

guished in the variables, namely those with a medium peak

(around 9 h) and those with a late peak (around 18 h). For

v4 and v7, the residuals are independent, with v4 having

larger variances than v7.

3.2 Between effects: analysis and results

For the between effects (i.e., related to (a ? ab)—see

Eq. 3), we consider the effects of four scaling types. The

types (and between-VAF) are no scaling (11.7 %), refer-

ence residual scaling (45.6 %), reference group scaling

(47.8 %) and autoscaling (39.3 %), suggesting sufficient

between-variability in the data to consider the between-

components. The first three scaling types are suitable, but

they stress different data aspects, though. Autoscaling,

which involves as the scaling factor per variable the sd of

the raw scores on the variable across all treatments, time

points and individuals, is less suitable, since it includes

treatment and differential treatment effects.

For each of the four between solutions, the first com-

ponent is primarily related to v1 to v4, and the second to v5

and v6. Those two components cover the experimental

Fig. 1 Simulated data, of 20

individuals per treatment

condition, at 10 time points, on

7 variables
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effects present in those data. Because the effects of scaling

can already be illustrated with the first component, we only

discuss those results. Plots for the second component are

provided in the SM (Fig. 1).

Figure 2 depicts per scaling type, the scores on the first

component across time per condition (left), and the asso-

ciated loadings (right). As can be seen in the left part of

Fig. 2, the component scores show highly similar patterns

across time for each type of scaling. This implies that the

associated loadings can be mutually compared directly.

The loadings of v1–v4 show clear differences in the rela-

tive importance of the variables. The loadings of no scaling

express the relative effect sizes—which can be seen al-

ready in Fig. 1—with relative large sizes for v3 and v4,

medium for v1 and small for v2.

The loadings of reference residual scaling express the

effect sizes of treatment relative to the residual variance

within the reference condition. The loading for v1 is largest,

followed by v3, v4, and v2. As can be verified in Fig. 1, this

ordering of effects indeed reflect the balance between

(relative larger) treatment effects and (relative smaller)

residual variances. That is, v1 has a low peak, but very low

residual variance in the reference condition; v3 and v4 both

have a high, and about equal, peak, and relatively low, and

about equal reference residual variances. Finally, v2 has a

low peak, with relatively large residual variance.

The loadings of the reference group scaling express the

treatment effect sizes relative to the total variance within

the reference condition. When comparing this scaling type

to reference residual scaling, it is to be expected that v3–v5

will be downweighted, because v3–v5 have a trend across

time, and the other variables have no trend. The trend for

v3 being smaller than for v4 and v5, results in less

downweighting of v3. Comparing the obtained relative

loadings with those after reference residual scaling shows

indeed lower loadings for v3–v5, with the largest decrease

for v4 and v5, as expected.

The loadings of the autoscaling express the treatment

effect sizes relative to a contstant, namely the overall

variance of each variable. For v1–v4 this ratio is about

equal, as indicated by the associated loadings for v1–v4.

This implies that autoscaling fails to reflect the relative

sizes of the treatment effect.

3.3 Within effects: analysis and results

For the within effects (i.e., related to (E)—see Eq. 3), we

consider the effects of three scaling types. The types (and

Fig. 2 Simulated data: between

effect after four scaling types.

Left scores on the first

component across time for each

treatment condition, with the

VAF of the between effect

matrix; right the associated

loadings
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within-VAF) are no scaling (2.4 %), reference residual

scaling (11.6 %), and autoscaling (24.6 %). Only the first

two are suitable scaling types. Figure 3 depicts the scores

on the first within component across time per condition

(left) and the associated loadings (right) per scaling type.

As can be seen in Fig. 3, the pattern in scores for no scaling

and reference residual scaling expresses the interindividual

differences in treatment response across time. The plot

clearly shows two subtypes in responders which are present

for v5 and v6. The key difference is in the estimated

relative size. For v5, the double peaks, and thus the asso-

ciated individual deviations from the mean, are higher than

for v6. The loadings of no scaling express this absolute

difference. In contrast, the loadings of the reference resi-

dual scaling express the balance between (large) individual

deviations and (small) reference residual variance. This

balance apparently is about equal for v5 and v6. Au-

toscaling equalizes the total variance across variables.

Because v7, unlike v1–v6, has no between variance, its

within variance is massive in comparison to the remaining

variables. Therefore, v7 dominates the first within com-

ponent after autoscaling, showing the—uninteresting—in-

dependent residuals across time. The two subtypes in

responders are visible in the second within component after

autoscaling (not shown).

4 Empirical data example: a nutrikinetics study

4.1 Study design

To study the bioavailability of polyphenols, 20 male sub-

jects underwent a treatment with a tea extract, a wine ex-

tract or a placebo extract in a cross-over design. Blood

samples were collected just before (0 h) and at 1, 2, 6, 9,

12, 24 and 36 h after the intake. The chemical identities of

the set of (poly-)phenolics were known prior to the start of

the study (i.e., targeted analysis). Pure standards were used

for the identification and quantification (see Materials and

Methods in van Velzen et al. 2014). The resulting data set

consists of measurements of 11 metabolites. From those 11

metabolites, two are deleted from the data because there

are so many zeroes in the data that the variances of the

different groups could not be determined. We refer to v1–

v9 to indicate the metabolites; their names are listed in the

SM. There is large interindividual variation which is often

the case in nutritional studies. To illustrate the effects of

scaling in ASCA, the data are now subjected to different

types of scaling before the ASCA analysis, among which

scaling with a reference group (i.e., the placebo group).

Note that scaling using the pretest data (i.e., at 0 h) would

be possible as well, but adds little to the illustration, since

Fig. 3 Simulated data: within

effect after three scaling types.

Left scores on the first

component across time per

condition, with the VAF of the

within effect matrix; right the

associated loadings
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the residual variances at pretest are rather similar to the

residual variances in the placebo group.

Of the raw data (depicted in the SM, Fig. 2), the total

variances differ greatly across metabolites. The metabolite

v7 has by far the largest variance (s2 = 682.9), followed by

v3 (s2 = 160.5). The four lowest variance metabolites have

a maximum variance of only s2 = 2.6 (v1, v5, v6 and v8).

After reference residual scaling (depicted in the SM,

Fig. 3), the situation is drastically changed compared to the

unscaled data. In the reference group scaled data, v8 has

the largest variance (s2 = 169.5), followed by v2

(s2 = 73.7). The top two largest variance metabolites of

the raw data (v7 and v3) are at the 3rd and 6th position (with

s2 = 42.3 and 5.8, respectively) after reference residual

scaling. As we verified, but do not show, the reference

group scaled data closely resembles the data after reference

residual scaling due to lack of a time trend of the placebo

treatment for all variables involved.

With respect to the time profiles, v3, v4 and v7 show

high resemblances. In the time profile of these three

metabolites shortly after the start of the experiment the

concentration starts to rise, the most for tea, and the

maximum is reached after approximately 2 h after which

the decrease starts. Further, v8 and v9 have maximum

values at around 10 h, which is much later than the peaks

for v1–v7.

4.2 Between effects: analysis and results

Analogously to the analyses of the simulated data, we

consider the between effects (with between-VAF) after no

scaling (36.7 %), reference residual scaling (32.4 %), ref-

erence group scaling (32.4 %), and autoscaling (33.7 %).

Figure 4 depicts the scores on the first component across

time per condition (left) and the associated loadings (right).

In Fig. 4, the component scores of the no scaling case show

a fast response after the start of the experiment with a

maximum at 2 h, after which a decay starts. As can be seen

from the associated loadings, the first component in no

scaling is primarily determined by v7, and to a somewhat

lesser extent v3 and v4. Their profiles resemble the profile

of v7, albeit at a lower height. This result is in agreement

with the data.

Applying reference residual scaling and reference

group scaling yields very similar data and therefore also

the ASCA results closely resemble one another. As can be

seen in Fig. 4, v8 and to a lesser extent v9 are the im-

portant metabolites. Those two metabolites have their

maximum value around 10 h after which there is a de-

crease. This is in agreement with the data after reference

group scaling.

For the between effect, autoscaling and no scaling yield

similar results in that the same variables (v3, v4, v7)

Fig. 4 Empirical data: between

effect after four scaling types.

Left scores on the first

component across time per

condition, with the VAF of the

between effect matrix; right the

associated loadings
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become apparent as important. However, the associated

loadings indicate similar relative importance for those

variables, which obviously was not the case in the no

scaling solution.

For this dataset the scaling type has a large influence on

the first component of the between effect. That is, the first

between components after no scaling and autoscaling show

totally different aspects of the data when compared to the

first between component after reference condition based

scalings. This suggests that a single component is insuffi-

cient to adequately describe the data, and therefore it was

decided to have a look at the second component of the

between effect.

Figure 5 depicts the second between component after

the four scaling types. In this figure, it can be observed that

in the second component for the unscaled data the vari-

ables with the early peak still dominate. The signs in

loadings (positive for v7 and negative for v3 and v4),

combined with the component scores with a maximum at

2 h and a minimum at 6 h, reflect that v7 shows a much

faster decay than v3 and v4. The variance in those three

metabolites is so dominant that the other metabolites (i.e.,

those with a peak around 10 h, or with a larger effect for

wine than for tea) hardly play a role in the first two

components. With reference residual scaling and reference

group scaling, the second component expresses the early

peak effect, largest for tea and followed by wine, primarily

for v2 and v7. With autoscaling, also an early peak effect is

expressed, but now with the largest effect for wine, pri-

marily for v1, v2 and v5.

4.3 Within effects: analysis and results

We considered the within-effects after no scaling (within-

VAF 22.0 %), reference residual scaling (45.0 %) and

autoscaling (48.3 %). In Fig. 6, the scores on the first

component are plotted across time for each condition (left),

and the associated loadings (right) after no scaling, refer-

ence residual scaling and autoscaling. As can be seen in

this figure, the within effect after no scaling results in a

high importance of variable 7. This reflects the relatively

large within variance in the tea condition, combined with

the fact that this metabolite has by far the largest values in

the data.

Both after autoscaling and reference residual scaling, the

first component of the within effect describes the individual

differences for v8 and v9. In the raw data it appears that the

maxima for v8 and v9 differ between the different indi-

viduals. This phenomenon is picked up by autoscaling and

reference residual scaling.

Fig. 5 Empirical data: between

effect after four scaling types.

Left scores on the second

component across time per

condition, with the VAF of the

between effect matrix; right the

associated loadings
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5 Concluding remarks

ASCA is powerful for identifying sources of variance due

to experimental manipulations among large numbers of

variables. We showed the importance of proper scaling in

ASCA. Proper scaling uses scaling factors free from the

effect of interest, thus excludes effects induced by the

experimental manipulation. Therefore, autoscaling is to be

discouraged, as it covers between-treatment variances. For

designs involving a reference group, we advise considering

the reference group sd as a scaling factor. For within ef-

fects, the residual variance is appropriate, while for be-

tween effects, the total variance (i.e., including any trend)

could also be useful. Further, we advise to make and in-

terpret plots of the unscaled and scaled data per variable—

to gain insight into the effects of the scaling applied.

The reference group sd may be (close to) zero for par-

ticular variable(s), for example, because consistently small

values are obtained. This would yield undefined (or ex-

tremely large) scaled variable(s); as a work-around one

could exclude the variable(s) concerned, analyze unscaled

data, or use as the scaling factor the standard deviation plus

a threshold as in Tusher et al. (2001).

The issue of scaling is also highly relevant to other

advanced methods based on separating sources of variation

according to the experimental design. One can think of

classification methods, as support vector machines and

random forests (of which the large effects of scaling have

been recently illustrated (Gromski et al. 2014), and of

methods intimately related to ASCA (Smilde et al. 2012),

as Scaled-to-maximum, aligned, and reduced trajectories

(Keun et al. 2004).
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