Skip to main content
Log in

Global profiling of the muscle metabolome: method optimization, validation and application to determine exercise-induced metabolic effects

  • Original Article
  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Skeletal muscle represents a crucial metabolic organ in the body characterized by a tremendous metabolic plasticity and the ability to influence important metabolic events elsewhere in the body. In order to understand the metabolic implications of skeletal muscle, it is imperative to characterize the metabolites within the tissue itself. In this work we aimed at developing a suitable analytical pipeline to analyze the metabolome of muscle tissue. Methanol/chloroform/water at neutral pH was selected as the method of choice for metabolite extraction prior to analysis by chromatographic-mass spectrometry systems in five different platforms covering a relevant part of the muscle metabolome: organic acids, amines, nucleotides, coenzymes, acylcarnitines and oxylipins. This analytical pipeline was extensively validated and proved to be robust, precise, accurate and biologically sound. The capability of our analytical method to capture metabolic alterations upon challenges was finally tested using a small proof-of-concept study involving an exercise intervention. Mild but consistent metabolic patterns were observed, allowing the discrimination between non-exercised and exercised muscles. Despite the low numbers of subjects enrolled in this study (5), these results are indicative that our method is suitable to determine intervention effects in skeletal muscle tissue whenever applied to adequately powered and well characterized studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Atkinson, D. E., & Walton, G. M. (1967). Adenosine triphosphate conservation in metabolic regulation. Rat liver citrate cleavage enzyme. The Journal of Biological Chemistry, 242, 3239–3241.

    CAS  PubMed  Google Scholar 

  • Berg, J. M., Tymoczko, J. L., & Stryer, L. (2007). Biochemistry (6th ed.). New York: W. H. Freeman and Company.

    Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    Article  CAS  PubMed  Google Scholar 

  • Bogdanov, M., et al. (2008). Metabolomic profiling to develop blood biomarkers for Parkinson’s disease. Brain: A Journal of Neurology, 131, 389–396.

    Article  Google Scholar 

  • Bremer, J. (1983). Carnitine—metabolism and functions. Physiological Reviews, 63, 1420–1480.

    CAS  PubMed  Google Scholar 

  • Broberg, S., & Sahlin, K. (1989). Adenine nucleotide degradation in human skeletal muscle during prolonged exercise. Journal of Applied Physiology, 67, 116–122.

    CAS  PubMed  Google Scholar 

  • Bruce, S. J., et al. (2010). A plasma global metabolic profiling approach applied to an exercise study monitoring the effects of glucose, galactose and fructose drinks during post-exercise recovery. Journal of Chromatography B, 878, 3015–3023.

    Article  CAS  Google Scholar 

  • Butterfield, W. J., & Whichelow, M. J. (1964). Are thyroid hormones diabetogenic?A study of peripheral glucose metabolism during glucose infusions in normal subjects and hyperthyroid patients before and after treatment. Metabolism, Clinical and Experimental, 13, 620–628.

    Article  CAS  Google Scholar 

  • Catoire, M., et al. (2012). Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle. PLoS ONE, 7, e51066.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen, S., et al. (2013). Simultaneous extraction of metabolome and lipidome with methyl tert-butyl ether from a single small tissue sample for ultra-high performance liquid chromatography/mass spectrometry. Journal of Chromatography A, 1298, 9–16.

    Article  CAS  PubMed  Google Scholar 

  • Constantin-Teodosiu, D., Howell, S., & Greenhaff, P. L. (1996). Carnitine metabolism in human muscle fiber types during submaximal dynamic exercise. Journal of Applied Physiology, 80, 1061–1064.

    CAS  PubMed  Google Scholar 

  • Corpeleijn, E., Saris, W. H., & Blaak, E. E. (2009). Metabolic flexibility in the development of insulin resistance and type 2 diabetes: Effects of lifestyle. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 10, 178–193.

    Article  CAS  Google Scholar 

  • DeFronzo, R. A., Gunnarsson, R., Bjorkman, O., Olsson, M., & Wahren, J. (1985). Effects of insulin on peripheral and splanchnic glucose metabolism in noninsulin-dependent (type II) diabetes mellitus. The Journal of Clinical Investigation, 76, 149–155.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Divertie, G. D., Jensen, M. D., & Miles, J. M. (1991). Stimulation of lipolysis in humans by physiological hypercortisolemia. Diabetes, 40, 1228–1232.

    Article  CAS  PubMed  Google Scholar 

  • Dyck, D. J., Putman, C. T., Heigenhauser, G. J., Hultman, E., & Spriet, L. L. (1993). Regulation of fat–carbohydrate interaction in skeletal muscle during intense aerobic cycling. The American Journal of Physiology, 265, E852–E859.

    CAS  PubMed  Google Scholar 

  • Egan, B., & Zierath, J. R. (2013). Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metabolism, 17, 162–184.

    Article  CAS  PubMed  Google Scholar 

  • El Rammouz, R., Letisse, F., Durand, S., Portais, J. C., Moussa, Z. W., & Fernandez, X. (2010). Analysis of skeletal muscle metabolome: Evaluation of extraction methods for targeted metabolite quantification using liquid chromatography tandem mass spectrometry. Analytical Biochemistry, 398, 169–177.

    Article  PubMed  Google Scholar 

  • Elia, M., Wood, S., Khan, K., & Pullicino, E. (1990). Ketone body metabolism in lean male adults during short-term starvation, with particular reference to forearm muscle metabolism. Clinical Science, 78, 579–584.

    CAS  PubMed  Google Scholar 

  • Foster, D. W. (2012). Malonyl-CoA: The regulator of fatty acid synthesis and oxidation. The Journal of Clinical Investigation, 122, 1958–1959.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gayte-Sorbier, A., Airaudo, C. B., & Armand, P. (1985). Stability of glutamic acid and monosodium glutamate under model system conditions: Influence of physical and technological factors. Journal of Food Science, 50, 350–352.

    Article  CAS  Google Scholar 

  • Goossens, G. H. (2008). The role of adipose tissue dysfunction in the pathogenesis of obesity-related insulin resistance. Physiology & Behavior, 94, 206–218.

    Article  CAS  Google Scholar 

  • Hardie, D. G., & Hawley, S. A. (2001). AMP-activated protein kinase: The energy charge hypothesis revisited. BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 23, 1112–1119.

    Article  CAS  Google Scholar 

  • Harris, R. C., Foster, C. V., & Hultman, E. (1987). Acetylcarnitine formation during intense muscular contraction in humans. Journal of Applied Physiology, 63, 440–442.

    CAS  PubMed  Google Scholar 

  • Huber, M., et al. (2011). How should we define health? BMJ, 343, d4163.

    Article  PubMed  Google Scholar 

  • Jurie, C., Robelin, J., Picard, B., Renand, G., & Geay, Y. (1995). Inter-animal variation in the biological characteristics of muscle tissue in male limousin cattle. Meat Science, 39, 415–425.

    Article  CAS  PubMed  Google Scholar 

  • Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444, 840–846.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, D. E. (2005). Skeletal muscle fat oxidation: Timing and flexibility are everything. The Journal of Clinical Investigation, 115, 1699–1702.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kiens, B., Essen-Gustavsson, B., Christensen, N. J., & Saltin, B. (1993). Skeletal muscle substrate utilization during submaximal exercise in man: Effect of endurance training. The Journal of Physiology, 469, 459–478.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kleemann, R., et al. (2010). Time-resolved and tissue-specific systems analysis of the pathogenesis of insulin resistance. PLoS ONE, 5, e8817.

    Article  PubMed Central  PubMed  Google Scholar 

  • Koek, M. M., van der Kloet, F. M., Kleemann, R., Kooistra, T., Verheij, E. R., & Hankemeier, T. (2011). Semi-automated non-target processing in GC × GC-MS metabolomics analysis: Applicability for biomedical studies. Metabolomics: Official Journal of the Metabolomic Society, 7, 1–14.

    Article  CAS  Google Scholar 

  • Koopmans, S. J., et al. (2011). Dietary saturated fat/cholesterol, but not unsaturated fat or starch, induces C-reactive protein associated early atherosclerosis and ectopic fat deposition in diabetic pigs. Cardiovascular Diabetology, 10, 64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Le Moyec, L., Mille-Hamard, L., Triba, M. N., Breuneval, C., Petot, H., & Billat, V. L. (2012). NMR metabolomics for assessment of exercise effects with mouse biofluids. Analytical and Bioanalytical Chemistry, 404, 593–602.

    Article  PubMed  Google Scholar 

  • Lee, R., West, D., Phillips, S. M., & Britz-McKibbin, P. (2010). Differential metabolomics for quantitative assessment of oxidative stress with strenuous exercise and nutritional intervention: Thiol-specific regulation of cellular metabolism with N-acetyl-l-cysteine pretreatment. Analytical Chemistry, 82, 2959–2968.

    Article  CAS  PubMed  Google Scholar 

  • Lekven, J., & Semb, G. (1974). Effect of dopamine and calcium on lipolysis and myocardial ischemic injury following acute coronary occlusion in the dog. Circulation Research, 34, 349–359.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, G. D., et al. (2010). Metabolic signatures of exercise in human plasma. Science Translational Medicine, 2, 33–37.

    Article  Google Scholar 

  • Maiorana, A., et al. (2001). The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. Journal of the American College of Cardiology, 38, 860–866.

    Article  CAS  PubMed  Google Scholar 

  • Meex, R. C., et al. (2010). Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes, 59, 572–579.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mitchell, G. A., et al. (1995). Medical aspects of ketone body metabolism. Clinical and Investigative Medicine. Medecine Clinique et Experimentale, 18, 193–216.

    CAS  PubMed  Google Scholar 

  • Newgard, C. B., et al. (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metabolism, 9, 311–326.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noga, M. J., et al. (2012). Metabolomics of cerebrospinal fluid reveals changes in the central nervous system metabolism in a rat model of multiple sclerosis. Metabolomics: Official Journal of the Metabolomic Society, 8, 253–263.

    Article  CAS  Google Scholar 

  • Pedersen, B. K. (2009). The diseasome of physical inactivity—and the role of myokines in muscle–fat cross talk. The Journal of Physiology, 587, 5559–5568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen, B. K., Akerstrom, T. C., Nielsen, A. R., & Fischer, C. P. (2007). Role of myokines in exercise and metabolism. Journal of Applied Physiology, 103, 1093–1098.

    Article  CAS  PubMed  Google Scholar 

  • Pellis, L., et al. (2012). Plasma metabolomics and proteomics profiling after a postprandial challenge reveal subtle diet effects on human metabolic status. Metabolomics: Official Journal of the Metabolomic Society, 8, 347–359.

    Article  CAS  Google Scholar 

  • Pink, D. B., et al. (2011). Lysine alpha–ketoglutarate reductase, but not saccharopine dehydrogenase, is subject to substrate inhibition in pig liver. Nutrition Research, 31, 544–554.

    Article  CAS  PubMed  Google Scholar 

  • Qvisth, V., Hagstrom-Toft, E., Enoksson, S., Moberg, E., Arner, P., & Bolinder, J. (2006). Human skeletal muscle lipolysis is more responsive to epinephrine than to norepinephrine stimulation in vivo. The Journal of Clinical Endocrinology and Metabolism, 91, 665–670.

    Article  CAS  PubMed  Google Scholar 

  • Samjoo, I. A., Safdar, A., Hamadeh, M. J., Raha, S., & Tarnopolsky, M. A. (2013). The effect of endurance exercise on both skeletal muscle and systemic oxidative stress in previously sedentary obese men. Nutrition & Diabetes, 3, e88.

    Article  CAS  Google Scholar 

  • Seifar, R. M., et al. (2013). Quantitative analysis of intracellular coenzymes in Saccharomyces cerevisiae using ion pair reversed phase ultra high performance liquid chromatography tandem mass spectrometry. Journal of Chromatography A, 1311, 115–120.

    Article  CAS  PubMed  Google Scholar 

  • Seifar, R. M., Ras, C., van Dam, J. C., van Gulik, W. M., Heijnen, J. J., & van Winden, W. A. (2009). Simultaneous quantification of free nucleotides in complex biological samples using ion pair reversed phase liquid chromatography isotope dilution tandem mass spectrometry. Analytical Biochemistry, 388, 213–219.

    Article  CAS  PubMed  Google Scholar 

  • Storlien, L., Oakes, N. D., & Kelley, D. E. (2004). Metabolic flexibility. The Proceedings of the Nutrition Society, 63, 363–368.

    Article  CAS  PubMed  Google Scholar 

  • Strassburg, K., et al. (2012). Quantitative profiling of oxylipins through comprehensive LC-MS/MS analysis: Application in cardiac surgery. Analytical and Bioanalytical Chemistry, 404, 1413–1426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stump, C. S., Henriksen, E. J., Wei, Y., & Sowers, J. R. (2006). The metabolic syndrome: Role of skeletal muscle metabolism. Annals of Medicine, 38, 389–402.

    Article  CAS  PubMed  Google Scholar 

  • Tempelman, R. J. (2005). Assessing statistical precision, power, and robustness of alternative experimental designs for two color microarray platforms based on mixed effects models. Veterinary Immunology and Immunopathology, 105, 175–186.

    Article  CAS  PubMed  Google Scholar 

  • van der Kloet, F. M., Bobeldijk, I., Verheij, E. R., & Jellema, R. H. (2009). Analytical error reduction using single point calibration for accurate and precise metabolomic phenotyping. Journal of Proteome Research, 8, 5132–5141.

    Article  PubMed  Google Scholar 

  • van Loon, L. J., Greenhaff, P. L., Constantin-Teodosiu, D., Saris, W. H., & Wagenmakers, A. J. (2001). The effects of increasing exercise intensity on muscle fuel utilisation in humans. The Journal of Physiology, 536, 295–304.

    Article  PubMed Central  PubMed  Google Scholar 

  • van Ommen, B., et al. (2008). The challenges for molecular nutrition research 2: Quantification of the nutritional phenotype. Genes & Nutrition, 3, 51–59.

    Article  Google Scholar 

  • Velica, P., & Bunce, C. M. (2008). Prostaglandins in muscle regeneration. Journal of Muscle Research and Cell Motility, 29, 163–167.

    Article  CAS  PubMed  Google Scholar 

  • Wu, H., Southam, A. D., Hines, A., & Viant, M. R. (2008). High-throughput tissue extraction protocol for NMR- and MS-based metabolomics. Analytical Biochemistry, 372, 204–212.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was (co)financed by the Netherlands Metabolomics Centre (NMC) which is part of the Netherlands Genomics Initiative/Netherlands Organization for Scientific Research. We gratefully acknowledge Sietse-Jan Koopmans (Wageningen University) for providing pig muscle biopsies. Raymond Ramaker, Olga Willemsen, Theo van der Kaaij, Ayovi Almeida, Sabine Bos and Jan Steinz (NMC/Leiden University) for MS measurements and data preprocessing. Margriet Hendriks (NMC/Leiden University) for her input regarding mixed models and Boyd Rotteveld for the extraction efficiency experiments performed during his bachelor internship at the Analytical Biosciences Department (Leiden University).

Conflict of Interest

All authors declare that they have no conflict of interest.

Animal Rights Statement

All institutional and national guidelines for the care and use of laboratory animals were followed.

Informed Consent Statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo D. A. M. Alves.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, R.D.A.M., Dane, A.D., Harms, A. et al. Global profiling of the muscle metabolome: method optimization, validation and application to determine exercise-induced metabolic effects. Metabolomics 11, 271–285 (2015). https://doi.org/10.1007/s11306-014-0701-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-014-0701-7

Keywords

Navigation