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Abstract Urinary tract infection (UTI) encompasses a vari-

ety of clinical syndromes ranging from mild to life-threatening

conditions. As such, it represents an interesting model for the

development of an analytically based scoring system of disease

severity and/or host response. Here we test the feasibility of this

concept using 1H NMR based metabolomics as the analytical

platform. Using an exhaustively clinically characterized cohort

and taking advantage of the multi-level study design, which

opens possibilities for case–control and longitudinal modeling,

we were able to identify molecular discriminators that charac-

terize UTI patients. Among those discriminators a number (e.g.

acetate, trimethylamine and others) showed association with

the degree of bacterial contamination of urine, whereas others,

such as, for instance, scyllo-inositol and para-aminohippuric

acid, are more likely to be the markers of morbidity.

Keywords Metabolomics � NMR � Data analysis �
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1 Introduction

Despite the progress made to date in understanding the

mechanistic basis of many diseases, medicine is still essen-

tially ‘‘more an art than a science’’ (Woodcock 2007). Spe-

cific and sensitive biological markers are important

contributors to the improved diagnostic methods as well as to

patient care and drug discovery. Advanced ‘‘-omics’’ tech-

nologies, such as genomics, proteomics and metabolomics,

enable identification of such markers (Vaidya and Bonventre

2010). Of our particular interest is metabolomics that focuses

on the analysis of metabolites present in biological fluids.

Metabolites are end-points of all the biochemical processes of

the organism and thus their collection—the metabolome is

the closest approximation of the physiological phenotype and

as such has a great potential for uncovering the biology

underlying diseases and providing valuable markers of

pathology (Lindon and Nicholson 2008; Holmes et al. 2008).

The biological interpretation of results from metabolo-

mics studies is rather complex and still in an early phase of

development (Mendes and Camacho 2005). The human

body is a ‘‘super-organism’’ that unites its own network of

interconnected tissues and organs with multiple colonies

of microorganisms (Nicholson et al. 2005). Interpretation

of changes in concentration of metabolites found in bio-

logical fluids can readily be performed based on the

underlying metabolic pathway; however, it is not always

possible to link the observed change in systemic metabolite

concentrations to a specific tissue or organ (Adourian et al.

2008). Especially in the case of disruption of highly

abundant metabolites, e.g. from energy or amino acid

metabolism, additional information would be required in

order to interpret the data in respect to the tissue of origin.

In addition, a change of such metabolites does not always

improve the knowledge about the underlying cellular
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mechanisms and biology. A way to facilitate the interpre-

tation of clinical metabolomics data is to integrate a

plethora of available clinical parameters and to utilize a

multilevel study design that should provide the opportunity

to access the various levels of biological processes.

One of the examples of a complex and heterogeneous

clinical entity, for which current diagnostic methods are not

straightforward, is urinary tract infection (UTI) (Wilson and

Gaido 2004). Clinical manifestations of UTI can cover the

range from mild cystitis to advanced pyelonephritis potentially

leading to urosepsis and multiple-organ failure. Physical

symptoms may vary from patient to patient and be similar to a

number of other diseases, mainly of infectious origin. Thus, the

presence of bacteria and leucocytes in urine can not be con-

sidered as a sole common denominator for UTI and even if it

was, the criterion for the colony count is variable and anyway

considered insensitive (Johnson 2004). The correct and timely

diagnosis relies on effective joint work of clinicians and

microbiologists (Johnson 2004). All of this explains the con-

siderable interest in providing new, specific and sensitive

markers for UTI and for the uropathogen involved. The focus

of the available metabolomics studies on UTI in the literature

has so far been on the identification of pathogens: in the work

of Gupta et al. a beautiful method with the use of 1H NMR was

proposed (Gupta et al. 2006, 2009; Gupta and Dwivedi 2005).

However, the method is targeted solely to the pathogens,

leaving all host-related questions, such as localization of the

infection within urinary tract and morbidity, unexplored.

In the current study we investigated possibilities of

using urinary metabolic profiles to monitor the health state

of UTI patients, the degree of infection and the recovery

process of UTI patients in the context of febrile, compli-

cated UTI. We used a selection of samples from an

exhaustively characterized cohort, with multiple urine

samples available per individual and with the main path-

ogen identified as Escherichia coli, which is the most

common pathogen for UTI. Samples from a group of age-

and gender- matched UTI symptom-free subjects were

included as control. The longitudinal design allowed

studying various biological processes: not only the differ-

ence between the patients and controls, but also the

recovery process, using each patient as its own control.

2 Materials and methods

2.1 Samples

The study protocol was approved by the ethical committee

of the Leiden University Medical Center and all included

patients gave written informed consent.

Urine samples were collected at the Emergency

Department and Primary Care Department from adult

patients presenting with febrile UTI. The methods have

been described previously (van der Starre et al. 2011; van

Nieuwkoop et al. 2010). The sampling was carried out at

several time points: the first urine samples were collected at

the day of enrolment as baseline samples (t = 0). Clean

midstream-catch urine cultures were obtained and were

analyzed using local standard microbiological methods.

Three-four (t = 4) and 30 days (t = 30) after the day of

enrolment, urine samples of the same patients were col-

lected and new bacterial culture tests were performed

(Supplementary Fig. 1).

For the current study, from a database of 253 subjects

enrolled, 40 subjects, for which urine culture confirmed

E. coli-positive complicated febrile UTI infection that

recovered after antibiotic treatment, were randomly selec-

ted (Supplementary Fig. 1). Samples from age- and gender-

matched subjects with low bacterial culture in urine and

without evidence of inflammatory diseases were used as

controls (Table 1). A number of samples were missing, a

few removed from the analysis due to either insufficient

spectra quality or high glucose content (Supplementary

Fig. 1). In the end the study included four classes of

samples originating from UTI symptom-free (N = 35) at

day 0 (baseline control), UTI patients (N = 32) at day 0

(baseline), UTI patients (N = 29) at day 4 and UTI patients

after recovery from infection (N = 37) at day 30 (Sup-

plementary Fig. 1).

2.2 Sample preparation

Samples were thawed, transferred into 96 deep-well plates

and centrifuged at 3,0009g for 15 min at 4�C to remove any

Table 1 Characteristics of the studied patients and controls groups at

baseline (t = 0)

Characteristics UTI patients Controls P value

N = 40 N = 40

Age, years, median (sd) 59 (14.6) 58 (17.9) 0.9

Female, N (%) 22 (55) 22 (55) 1

Smoking, N (%) 5 (12) 5 (12) 1

Co-morbidity, N (%)

Urinary tract disorder 4 (10) 4 (10) 1

Malignancy 4 (10) 1 (3) 0.17

Heart failure 5 (13) 3 (8) 0.46

Renal insufficiency 1 (4) 0 (0) 0.13

Diabetes mellitus 6 (15) 2 (5) 0.14

Immunocompromised 1 (3) 1 (3) 1

Urine dipstick results

Nitrite 26/37 (75)a 0/37 (0)a \0.001

Leucocyte esterase 35/37 (95)a 5/37 (14)a \0.001

a 3 missing values
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precipitate. For sample preparation 520 ll urine were mixed

with 60 ll of pH 7.0 phosphate buffer (1.5 M) in 100%

D2O containing 4 mM sodium 3-trimethylsilyl-tetra-

deuteriopropionate (TSP) and 2 mM NaN3 in a 96 deep-well

plate using a Gilson 215 liquid handler controlled by a Bruker

Sample Track LIMS system (Bruker BioSpin, Karlsruhe,

Germany).

2.3 NMR experiments and processing

1H NMR data were collected using a Bruker 600 MHz

AVANCE II spectrometer equipped with a 5 mm TCI cryo-

genic probe head and a z-gradient system; a Bruker BEST

(Bruker Efficient Sample Transfer) system was used in com-

bination with a 120 ll CryoFIT
TM

flow insert for sample

transfer. One-dimensional (1D) 1H NMR spectra were recor-

ded at 300 K using the first increment of a NOESY pulse

sequence (Kumar et al. 1980) with presaturation (cB1 =

50 Hz) during a relaxation delay of 4 s and a mixing time of

10 ms for efficient water suppression(Price 1999). Eight scans

of 65,536 points covering 12,335 Hz were recorded and zero

filled to 65,536 complex points prior to Fourier transformation,

an exponential window function was applied with a line-

broadening factor of 1.0 Hz. The spectra were manually phase

and baseline corrected and automatically referenced to the

internal standard (TSP = 0.0 ppm). Phase offset artifacts of

the residual water resonance were manually corrected using a

polynomial of degree 5 least square fit filtering of the free

induction decay (Coron et al. 2001). In order to monitor proper

filling of the NMR flow cell and for quality control 1D gradient

profiles (Vanzijl et al. 1994) along the z axis were recorded for

each sample prior and post data acquisition. Duration of 90�
pulses were automatically calibrated for each individual

sample using a homonuclear-gated nutation experiment (Wu

and Otting 2005) on the locked and shimmed samples after

automatic tuning and matching of the probe head.

2.4 Statistical analysis

Each spectrum was integrated (binned) using 0.014 ppm

integral regions between 10 and 1 ppm, the residual water

and urea region between 6 and 4.5 ppm was excluded,

resulting in 550 data points used for the analysis. To account

for any difference in concentration between the samples,

each spectrum was normalized to a total area of 1. Absolute

values were log-transformed. All pre-processing was done

using in-house developed routines in R statistical environ-

ment (http://www.r-project.org/). Variables were centered

and unit variance scaled prior to statistical analysis in

SIMCA-P? (version 12.0; Umetrics, Sweden) software

package. For initial analysis and outlier detection, principal

component analysis (PCA) was performed using 10 com-

ponents. After the initial PCA analysis the following regions

corresponding to paracetamol and its metabolites were

excluded from the analysis: 7.5–6.75, 3.95–3.8, 3.7–3.45,

2.2–2.14 and 1.84–1.88 ppm according to (Bales et al.

1985). For partial least squares-discriminant analysis (PLS-

DA) (Nocairi et al. 2005) samples were categorized based

on classes as defined by the study design. PLS model was

built using 5 categories according to logarithm of bacterial

count as a Y variable. Statistical models from supervised

multivariate data analysis were validated by random per-

mutation of the response variable and comparison of the

goodness of fit (R2Y and Q2) (Westerhuis et al. 2008;

Lindgren et al. 1996). For random permutation tests 100

models were calculated and the goodness of fit was com-

pared with the original model in a validation plot. Spectral

regions responsible for the separation between classes in

supervised models were identified based on the Variable

Influence on Projection (VIP) values, which correspond to

the importance of the variables (bins) for the model. The

variables with a VIP value larger than 1.8 were considered

significant and used for further analysis and identification of

the responsible peak(s) within the spectrum. Prediction of

class membership of samples by PLS-DA model was based

on the predicted Y variable with the cut-off of 0.5.

For multilevel component analysis using an in-house

developed script in R as described by Jansen et al. (2005).

data were not log-transformed. To assess the predictive

ability of multilevel PLS-DA in each cross-validation

round all the samples, belonging to two random individuals

were taken out.

Univariate tests were performed to assess the statistical

significance of the spectroscopic regions found using multi-

variate analysis: unpaired t-test was performed for the regions

found as discriminating between UTI patients and controls by

PLS-DA; ANOVA was performed on the regions that

showed association with bacterial count in PLS; paired t test

was carried out on the regions identified in multilevel anal-

ysis. All the corresponding P values were adjusted for mul-

tiple testing using Benjamini–Hochberg correction.

2.5 Identification of compounds of interest

Annotation of identified peaks was performed based on

reference spectra from the Bruker Bioref database and

in-house reference data. Confident identification was

facilitated by the use of Statistical Total Correlation

SpectroscopY method (Cloarec et al. 2005).

2.6 Quantification of paracetamol and differential

metabolites

Quantification was performed by deconvolution and sub-

sequent integration of resonances, corresponding to the

compounds of interest, using an in-house developed

1H NMR-based metabolic profiling of urinary tract infection 1229
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automation routine. Paracetamol–glucuronide was quanti-

fied based on the resonance at 5.10 ppm (d, 7.1 Hz); for

other compounds the signal with high intensity and low

degree of overlapping was chosen for quantification. The

absolute concentrations were calculated based on internal

reference TSP. Values were not corrected for differential

attenuation of the signals caused by relaxation during the

mixing time and rapid-pulsing saturation effects.

3 Results

The initial PCA on baseline samples revealed a trend in

separation between UTI patients and controls in the scores

plot of the first two principal components as shown in

Fig. 1a. The loadings plot of this model was dominated by

the spectral regions that belonged to one of the most

commonly used over-the-counter analgesic, paracetamol

(Supplementary Fig. 2). The absolute concentration of

paracetamol-glucuronide was used to stratify samples in

the PCA plot: the direction of increase of paracetamol-

glucuronide was found to match the direction of controls-

patients separation (Fig. 1b). As paracetamol is not an

infection or morbidity marker, the further analysis was

performed after the exclusion of the regions corresponding

to the drug and its metabolites.

The PCA analysis of the baseline samples after the

removal of spectral regions of paracetamol and its metab-

olites did not show separation between UTI patients and

controls within the scores plot of the first two principal

components; however, a clear trend was identified along

the third principal component (Fig. 2), which means that

inter-individual variability is to a certain extent more

prominent than the disease effect. No outliers were detec-

ted based on distance to the model (DModX). The samples

with other conditions than UTI (as defined in Table 2) did

not exhibit any clustering in PCA scores plot.

In the next step a supervised PLS-DA model was built

for t = 0 using UTI/controls as a response variable. In the

scores plot of the resulting model the two groups were well

separated (Fig. 3). Cumulative explained variance (R2Y) of

0.88 and cross validated predictive fraction (Q2) of 0.63

were calculated for the model; the model validation plot

showed intercepts of the R2Y and Q2 regression lines

with the vertical axis at 0.63 and -0.11, respectively,

indicating a valid model. Molecular discriminators were

identified based on relevant regions as identified by the
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corresponding VIP. A list of those regions, along with the

p-values based on t-test for the quantified compounds, the

direction of change and identities of the corresponding

metabolites are summarized in Table 2.

The advantage of PLS-based models is that they can

easily be used to predict the class membership of new

samples. Data of the UTI patients at t = 4 were pre-

dicted using the two-class PLS-DA model that was built

as described above. Of a total of 29 urine samples

included in the prediction set, 19 (65.5%) were classified

as controls, whereas 10 (34.5%) samples were classified

as UTI (Fig. 4). Besides using data from the 4-days time

point as prediction set, we also performed a separate

analysis for the 30-days time point (Fig. 4). In this case,

out of 37 samples collected, 32 (86.5%) were attributed

to the group of controls and 5 (13.5%) were categorized

as UTI.

An important parameter characterizing UTI patients is

the number of bacteria in urine; however, bacteria can also

be present in urine of the individuals, who do not exhibit

any symptoms of UTI (Lin and Fajardo 2008). We built a

PLS regression model from NMR data of urine at baseline

using the result of bacterial culture as response variable.

Since bacterial count and UTI classification do not fully

correlate we expected to obtain a slightly different model

as compared to the model built based on UTI classification

for this timepoint. Using 2 components a cumulative

R2Y = 0.78 and Q2 = 0.44 were obtained and model

Table 2 Spectroscopic regions that appear as influential in various statistical models and the statistical significance of the corresponding

univariate tests based on the quantified corresponding peaks

Identity ChemSpider

IDs

Spectral bins (ppm)a Controls vs. UTI

patientsb
Bacteria

concentrationc
Recovery from

t = 0–30d

t test Change ANOVA

P value

Change Paired Change

P value t test

P value

1-Methylnicotinamide 10628510 9.284, 9.271, 8.971, 4.484 9.00E-07 ; 2.00E-05 ;

Acetic acid 170 1.934, 1.921 7.00E-08 : 2.00E-07 :

Acylcarnitine NA 3.189 0.004 :

Citric acid 29081 2.562, 2.534 9.00E-05 ;

Creatinine 568 4.075, 3.066, 3.052 0.3 ;

Furoylglycine 20474156 7.703, 7.689 0.15 :

Glycolic acid derivative NA 3.953 0.55 ; 0.56 ; 0.55 :

Hippuric acid 451 7.853, 7.662, 7.648, 7.580,

3.966, 8.548, 8.534

0.001 ; 0.001 ;

Lactic acid 96860 1.334 0.0008 : 0.0002 :

Para-aminohippuric acid 2063 7.757 0.055 :

Scyllo-inositol 23975912 3.325 0.1 :

Taurine 1091 3.448, 3.434, 3.421, 3.257 1.00E-03 : 0.08 : 2.00E-07 ;

Trigonelline 5369 8.698, 4.443 0.09 :

Trimethylamine 1114 2.889 4.00E-06 : 0.0001 : 0.0001

Unknown 1 NA 7.962 0.01 :

Unknown 2 NA 7.743 0.015 :

Unknown 3 NA 7.512 0.0006 :

Unknown 4 NA 6.68 4.00E-05 :

Unknown 5 NA 6.503 0.065 :

Unknown 6 NA 3.162 0.05 ;

a Chemical shift corresponding to the center of the bin region
b Two-group t test for the healthy controls and UTI patients at baseline; : corresponds to intensity of the region being higher in UTI patients

compared to controls, ; means that region intensity is lower in UTI patients compared to controls
c ANOVA analysis for the number of bacteria present in urine; direction corresponds to the correlation to the number of bacteria: : corresponds

to the raise of the region intensity with the increase of the number of bacteria, ; to the decrease of the region intensity with the increase of the

number of bacteria
d Paired t test for the UTI patients at baseline and 30 days; : direction of change corresponds to intensity of the region being higher at 30 days

compared to baseline, ; means that region intensity is lower at 30 days compared to baseline
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validation showed intercepts of the R2Y and Q2Y regres-

sion lines with the vertical axis at 0.63 and -0.12,

respectively, in the model validation plot. As can be seen

from the PLS scores plot (Fig. 5) the samples with the

highest bacteria concentration in urine were very distinct

from the rest forming a separate cluster, whereas the rest of

the samples were overlapping. The spectral regions

responsible for the correlation of the 1H NMR data and

bacterial count were chosen on the basis of the corre-

sponding VIP. A list of those regions, along with the

P values derived from ANOVA based on the quantified

compounds, the direction of change and identities of the

corresponding metabolites are summarized in Table 2.

To better understand the process of patient recovery and

to find the spectroscopic regions that correlate with this

process, we took advantage of the longitudinal study

design. One of the statistical methods suitable for such

analysis is multilevel component analysis that separates

variation present in the data into two levels: between-

individual and within-individual. We performed this anal-

ysis on the 29 patients for which both the data from the

baseline and from the 30-days time point were available

and concentrated on the within-individual information.

This should best reflect the recovery from the baseline,

when patients are diagnosed as infected, to 30 days, when

they are considered UTI symptom-free. PCA scores plot of

the first two principle components that cover 15.8 and
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14.8% of the variation, respectively, showed good separa-

tion between baseline and t = 30 time points (data not

shown). The PLS-DA model of this data had high quality

parameters (R2Y = 0.98, Q2 = 0.78 for four components),

performs significantly better then random models

(P \ 10-15) and perfectly separated the two time points

(data not shown). The NMR spectral regions responsible

for the separation between baseline and the t = 30 time

point were identified based on VIP values. The underlying

metabolites as well as the p-values from paired t-test based

on the quantified compounds and the direction of change

are summarized in Table 2.

To summarize, taking advantage of our study design we

built several statistical models, which allowed getting a

broader view of metabolic features associated with UTI,

than the traditional ‘‘case–control’’ design.

4 Discussion

UTI, as many other disorders, represents a complex clinical

entity, for which diagnostics is not straightforward and

based on consensus criteria (Wilson and Gaido 2004).

Thus, unlike in animal experiments, in clinical research

assigning people to certain groups is not always uncondi-

tional. The diagnosis of a disease can be ambiguous and

defining the healthy group can be complicated by that there

is no clear definition of ‘‘healthy’’. Consequently, it may be

very advantageous to supplement a traditional ‘‘case–con-

trol’’ design with a more complex study design and the use

of additional clinical data. When used without extra

information, ‘‘case–control’’ analysis might even be mis-

leading. For example, the separation of the control and UTI

groups was seen in the first two principal components of

PCA; however, this discrimination was not disease-related,

but the result of patients taking the antipyretic and anal-

gesic drug paracetamol. An analysis strategy for such type

of data is to identify all of the spectroscopic regions that

contain signals from drug-related compounds and to

exclude them prior to further analysis. However, it is not

feasible to account for the whole range of the medication

used and, more importantly within the context of clinical

metabolomics studies in general, to account for drug-rela-

ted shifts in metabolism, especially in the case of long-term

treatment regimes of chronic conditions. It is essential to

consider such effects when developing the study design in

order to minimize or control such influences.

Samples from 4 days after admission, when the patients

were still under therapy, but on the way to recovery, were

used to check if the modeled differences were related to the

effect of medication or not. The fact that the majority of

those samples were classified as healthy by the model built

on baseline samples is an indication that the model is not

reflecting therapy/drug intake, but is indeed related to the

clinical difference between the groups.

The samples from the 30-days time point, when UTI

patients were symptom-free, could also be used to gain

additional information on the performance of the model as

well as to get insight into the underlying biology. When

predicted using the PLS-DA model built on the baseline

UTI infected and UTI symptom-free samples, most of the

30-days samples (86.5%) were projected to the control

group. Those few, which were still predicted as infected

UTI patients, may have another condition (as we do not

know at this point how specific our model is) or have

asymptomatic UTI. On the other hand, they can be healthy

and be false positives, as the predictive ability of our

model, estimated by cross-validation was 63%. There was

neither a consistent pattern of metabolites that would

describe the prediction of 30-days samples as infected, nor

common complication/co-morbidity between those sam-

ples, which makes it difficult to suppose the reason for the

misprediction. Despite that, considering the prediction of

30-days samples as an independent statistical test for our

model, it gives very satisfactory results.

Pair-wise analysis for baseline and 30-days samples

from the same individuals was conducted in order to

monitor the recovery process. It revealed a number of

classifiers and improved their statistical significance. The

identified metabolites overlapped with the compounds

from the model discriminating healthy and UTI subjects,

however a few of them were unique (para-aminohippuric

acid, scyllo-inositol and a few unidentified compounds).

Besides the multilevel design, the advantage of the

current study was the exhaustive clinical characterization

of the patients. Among the variety of clinical parameters

available, the number of bacteria in urine was of specific

importance. We performed regression-based analysis of the

relation between the 1H NMR data and the bacterial load in

urine as determined by bacterial culture. The classifiers that

emerged from this analysis were to a certain extent over-

lapping with the classifiers derived from the discriminative

model on baseline samples. This was no surprise, since

UTI is generally characterized by the presence of bacteria

in urine.

Straightforward assignment of classifiers from each

model to the intracellular biochemical pathways will not

improve the understanding of UTI. We tried to use the

information available from the different statistical models

jointly in order to enrich the biological interpretation.

When comparing the lists of discriminators obtained from

the different models (discriminating UTI patients from

controls, modeling the recovery process and modeling the

data against the degree of bacterial contamination of urine)

it is evident that there is a large overlap which makes

biological interpretation of the results feasible. For
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instance, some of the overlapping metabolites were already

known from the literature to be related to the bacterial

contamination of urine: acetate, lactate and trimethylamine

(Gupta et al. 2009). Others, if they were found only in the

comparative analysis of the two groups, could be attributed

based on previous studies to certain phenomena. Hippuric

acid, for example, is often associated with the gut micro-

flora (Swann et al. 2009) and taurine with liver toxicity

(Nicholson et al. 1999). However, our findings suggest that

they are also associated with the bacterial contamination of

urine, which obviously does not mean that they are not

related to the mentioned physiological processes as well,

but that a complex network of interconnected factors is

involved. The metabolites that appear to be related to the

recovery process might be considered as potential mor-

bidity markers. One of them, para-aminohippuric acid, is a

well-established diagnostic marker for renal plasma flow

and glomerular filtration (Reubi 1953). The recovery from

the complicated, tissue-invasive UTI is associated with the

resumption of the kidneys’ function, so the positive change

in para-aminohippuric acid corroborates our assumption

that some of the markers discovered in the paired analysis

are the markers of morbidity.

Despite the promising discriminatory and predictive

abilities of the statistical models, described above, their

real clinical utility would need careful examination. As a

first attempt we restricted ourselves to the case of E. coli as

the main pathogen of UTI. Currently we are planning to

investigate if our models will hold when samples with

other pathogens are added. Besides that, the specificities of

the models with regard to other diseases of both infectious

and non-infectious origin have to be assessed.

5 Conclusions

In the current paper we used a metabolomics approach to

profile UTI, which is on the one hand one of the most

common infectious diseases among the adults, and on the

other hand a disease that still lacks markers of morbidity.

Using 1H NMR profiles of urine we generated various

statistical models: (a) discriminating UTI patients and

control subjects, (b) following the recovery process of UTI

patients and (c) associating urine metabolic content with

bacterial contamination. The discriminative model was

able to classify most of the independent samples correctly

according to their diagnosis, which indicates its high pre-

dictive ability. Comparing the sets of molecules derived

from different analyses, we concluded that some of the

compounds (e.g. trimethylamine and acetate) can be

attributed to the effect of bacterial contamination of urine;

others (e.g. para-aminohippuric acid, scyllo-inositol) can

be considered markers of morbidity.
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