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Abstract Not only the levels of individual metabolites,

but also the relations between the levels of different

metabolites may indicate (experimentally induced) changes

in a biological system. Component analysis methods in

current ‘standard’ use for metabolomics, such as Principal

Component Analysis (PCA), do not focus on changes in

these relations. We therefore propose the concept of

‘Between Metabolite Relationships’ (BMRs): common

changes in the covariance (or correlation) between all

metabolites in an organism. Such structural changes may

indicate metabolic change brought about by experimental

manipulation but which are lost with standard data analysis

methods. These BMRs can be analysed by the INdividual

Differences SCALing (INDSCAL) method. First the BMR

quantification is described and subsequently the INDSCAL

method. Finally, two studies illustrate the power and the

applicability of BMRs in metabolomics. The first study is

about the induced plant response of cabbage to herbivory,

of which BMRs are a considerable part. In the second

study—a human nutritional intervention study of green tea

extract—standard data analysis tools did not reveal any

metabolic change, although the BMRs were considerably

affected. The presented results show that BMRs can be

easily implemented in a wide variety of metabolomic

studies. They provide a new source of information to

describe biological systems in a way that fits flawlessly into

the next generation of systems biology questions, dealing

with personalized responses.
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1 Introduction

The relationships between different anatomical measure-

ments are a fundamental aspect of human physiology, as

has been elegantly depicted by Leonardo da Vinci in

his seminal work ‘The Vitruvian Man’ (da Vinci 1487;

Vitruvius 25 BC). This work shows these relationships are

highly conserved, even for men of variable length. This

ancient idea of describing relationships between different

properties has reached many other fields of research, for

example quantitative genetics (Steppan et al. 2002) and

individual differences psychology (Goldberg 1990).
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Also the levels of many metabolites in a biological

system may be highly interrelated through the biochemical

pathways. Perturbations of these biological systems (e.g.

diet or disease) may alter enzyme activity and therefore the

link between different metabolites. However, the extent of

such alterations may also differ between individuals.

Thereby also in- or decreases of the inter-individual

metabolite level differences may indicate system change.

Then not only absolute metabolite level differences

between experimental groups, but also the relationships

between the metabolites may indicate change. Such

Between Metabolite Relationships (BMRs) therefore

describe an aspect of metabolism that is complementary to

the changes that are common to all individuals (Weckwerth

et al. 2004).

Recent advances in ‘omics’-research brought the study

of BMRs closer, because metabolomics emerges more and

more as a system-wide approach to observe metabolism

(Bino et al. 2004; Fiehn 2002; Hall 2006). The data of a

metabolomics study usually consists of a list of numerous

metabolites, of which the levels are given for every mea-

sured sample (e.g. individual and/or time-point). Of prime

interest to metabolomics studies may be to find the in- or

decrease of specific metabolite levels between different

groups of individuals (e.g. before and after an experimental

perturbation) (Fig. 1a). However, this paradigm holds a

major shortcoming for the system-wide view provided by

metabolomics analyses, because it may disregard metabo-

lite combinations that show interesting variation where the

individual metabolites do not.

Univariate methods that quantify level changes of

individual metabolites (e.g., ANalysis Of VAriance,

ANOVA (Sokal and Rohlf 1995)) disregard the interrela-

tions between levels of different metabolites and thereby

the system-wide aspect of metabolism. Therefore in gen-

eral multivariate methods are used to analyse data gener-

ated in metabolomics studies, mostly those from the

‘Component Analysis’ family such as PCA and PLS-DA

(Barker and Rayens 2003, Jolliffe 2002). These summarize

data into a small number of ‘components’—latent variables

that gather information about the importance of all mea-

sured metabolites. These profiles are constructed based on

the levels of all metabolites and express the relative

importance of every metabolite in combination with all

other metabolites. PCA or PLS-DA models in e.g. case–

control studies enable to describe differences in metabolite

combinations between groups, even if the levels of single

metabolites are not significantly different (Fig. 1b).

However, neither ANOVA nor PLS-DA explicitly

reveals the changes in the relationships between metabo-

lites in different experimental groups. Also unsupervised

methods like PCA (Jolliffe 2002) may be insufficient to

describe BMRs, because these methods cover all metabolic

variation simultaneously. The BMRs—schematically

depicted in Fig. 1c—usually remain entangled with other

sources of metabolic change and remain beyond reach of

any method in these two metabolomic paradigms.

Several studies focus on relations between metabolites

(Steuer 2006), enzymes and genes (van Erk et al. 2010;

Zhai et al. 2010). These studies visualise such relations by

Correlation Networks that show the relationships between

all metabolite/enzymes/genes pairs (Steuer et al. 2003).

However, as already mentioned ‘Due to the sheer number

of pairwise metabolic correlations, large overview network

graphs easily get incomprehensible’ (Weckwerth et al.

2004) which is specifically relevant in metabolomics.

Therefore a method that both specifically focuses on BMRs

and is based on interpretable components that describe the

behaviour of the entire system (i.e. all pairwise metabolite

relations together) is required. It will provide a novel and

complementary view on metabolism.

In the field of individual differences psychology, a

component method appropriate for the analysis of BMRs

called Individual Differences Scaling (INDSCAL) is

already available (Carroll 1981). This method translates the

changes in covariance or correlations between metabolites

upon experimental manipulation into a series of scores

and loadings, analogous to those from PCA or PLS-DA.

A voluminous yet well-readable publication reveals that

INDSCAL is a special version of Parallel Factor Analysis

Fig. 1 Three paradigms to observe metabolic differences between

two groups: a Level difference of an individual metabolite (e.g.

ANOVA), b Level difference in a combination of, i.e. a component of

more metabolites (e.g. PLS), c Changes in the combined relationship

between metabolites (INDSCAL)
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(PARAFAC) (Harshman and Lundy 1984).1 The PARA-

FAC model has been used earlier to solve a range of

questions in metabolomics studies that focused on changes

in metabolite profiles, see e.g. (Montoliu et al. 2009; Jansen

et al. 2008; Forshed et al. 2007; Sinha et al. 2004;

Verouden et al. 2009) and will therefore provide a view on

BMRs intuitive to metabolomics researchers.

First BMRs and the INDSCAL model are presented.

Then two metabolomics data sets are analysed with IND-

SCAL, one with a very prominent response of plant

chemistry to herbivory and another with a much more

subtle response of obese humans to catechin-enriched

green tea extract (GTE). The results of standard data

analysis methods used in metabolomics, such as ANOVA,

PCA, and PLS-DA are compared to that of INDSCAL.

2 Theory

In metabolomics experiments, one or more experimental

factors can be manipulated (e.g. doses of a toxicant, dif-

ferent populations) to observe their effect on the metabo-

lites present in an organism, often on different time-points

after the manipulation. Metabolomic data consists of

comprehensive biochemical descriptions of each sample as

a list of metabolites with their corresponding levels. An

‘experimental group’ of multiple individuals—called bio-

logical replicates—undergo a combination of experimental

factors. Technical and financial limitations usually lead to

considerably more measured metabolites than the number

of biological replicates.

The ‘conceptual model’ underlying most metabolomics

experiments states that an experimental manipulation may

change the levels of several metabolites. When this

manipulation is performed on several biological replicates,

their response should be similar to the other replicates, up

to a certain deviation caused by natural and technical

variation. When quantified in a linear model for one factor

with groups 1…k…K, this leads to Eq. 1.

Xk ¼ 1Ik
lT þ 1Ik

lT
k þ Sk for k ¼ 1. . .K ð1Þ

where Xk is the (Ik 9 J) matrix containing the levels of

each metabolite, indicated by 1…j…J in the biological

replicates 1k…ik…Ik of experimental group k, l is the

length J ‘centroid’ vector of all samples, vector lk the

centroid vector for group k expressed as a deviation from l;

matrix Sk contains the deviation of each individual bio-

logical replicate from vector lk; see Supplementary

Table 1 for a list of symbols used throughout the paper.

Equation 1 is generally used to quantify the significance

of this experimental manipulation on levels of a small

subset of single metabolites. This can be done by ANOVA

(Sokal and Rohlf 1995) that estimates the treatment effects

expressed in a series of vectors lk k ¼ 1. . .Kð Þ: interesting

putative biomarkers are then identified as variables j for

which variation across the j-th elements of lk k ¼ 1. . .Kð Þ
is high relative to the natural and technical variation of the

biological replicates derived from Sk. The model in Eq. 1

does not make any assumptions about the relationships

between metabolites, which falls in the realm of the com-

ponent analysis paradigm.

2.1 Multivariate components

A major objective in metabolomics is to understand the

underlying biochemical system, which makes observation

of the variations in each individual metabolite insufficient.

The relations between different metabolites may both lead

to a more parsimonious model—the biochemical system

will constrain the complexity of the metabolic changes

resulting from the experiment—and may lead to hitherto

unknown relations between the metabolites that will pro-

vide a better insight into the observed system (Jansen et al.

2009c).

To model these system-wide relationships metabolomics

embraced the multivariate ‘component’ paradigm that

models the relationships between all J metabolite descrip-

tors (Fig. 1b). The ‘standard’ methods in this field may also

be expressed using the partitioning of the variation in Eq. 1.

Principal Component Analysis simultaneously describes lk

and Sk, so that this model will give a convoluted description

of the paradigms in Fig. 1b, c. The often-used method

Partial Least Squares-Discriminant Analysis (PLS-DA)

aims—like ANOVA—to describe lk at the expense of the

‘biological variation’ (inter-individual variation, natural

variation) in matrix Sk. Clearly, thereby PLS-DA does

exactly the opposite of what is of interest to BMRs.

The analysis of BMRs requires separation of the varia-

tion in lk from that in Sk, because the BMR-related infor-

mation (between the individual biological replicates) is

contained only in the latter matrix. Therefore a component

analysis method needs to be developed that focuses on the

relations between the metabolites within this contribution.

2.2 Between Metabolite Relationships

In characterising BMRs, the strength of relationship

between metabolites is of high interest. However, also how

much variation in each experimental group is associated

with this relationship is important. Although Pearson cor-

relations are widely used in metabolomics, they overlook

this aspect, because in Pearson correlations the variation in

1 The book that this chapter appeared in is out-of-print and difficult to

obtain. However, it can be found online in PDF format: http://publish.

uwo.ca/*harshman/abstract.html.
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the levels of both metabolites is scaled by their standard

deviations. Therefore covariances are the preferred mea-

sure for BMRs.

A BMR-describing component model should focus upon

the differences between groups in the systematic part of the

biological variation. This information is hidden in Sk,

specifically in the relationships between the metabolites.

A view on BMRs therefore necessarily revolves around

quantifying relations between the columns of Sk. This can

be done by covariances, like in Eq. 2.

Rk ¼ I�1
k S T

k Sk ð2Þ

where Rk is the covariance matrix of experimental group

k with dimensions (J 9 J).

Because interpreting Rk may be tedious for many

metabolite covariances, the holistic and simple view of a

component model of BMRs may be highly desirable.

2.3 Individual differences scaling

A component model for BMRs needs to describe the

relations between metabolites, rather than the levels

themselves as well as possible. An existing component

model that does just this is INdividual Differences

SCALing (INDSCAL) model (Kruskal and Wish 1978;

Harshman and Lundy 1984; Carroll 1981; Carroll and

Chang, 1970), which is given in Eq. 3.

Model Rk ¼AGkATþEk

Minimization f A;Gkð Þ ¼
PK

k¼1

Rk�AGkAT
�
�

�
�2

Constraints diag ATA
� �

¼ 1R; Gk

is diagonal with nonnegative elements ð3Þ

where Gk is an (R 9 R) score matrix of group k; matrix

A of size (J 9 R) contains the chemical loadings; Ek

contains the residuals of which the sum-of-squares is

minimized. The constraints are imposed to arrive at iden-

tified and meaningful solutions.

The INDSCAL model loadings A describe the important

relations between metabolites and the scores Gk describe

the magnitude of the variation of these relations within

each experimental group, such that both important aspects

of the BMRs are described.

The INDSCAL model is strongly related to Parallel

Factor Analysis (PARAFAC) (Bro 1997; Harshman 1970;

Smilde et al. 2004), an often-used component model in

metabolomics. The INDSCAL model can be fitted by

modelling the covariance matrices Rk (arranged in a

(R 9 J 9 J) three-way array) by PARAFAC (ten Berge

and Kiers 1991). The additional nonnegativity constraint on

Gk can be straightforwardly imposed by publicly available

software (Andersson and Bro 2000). Like PARAFAC, the

components of an INDSCAL model are unique.

2.4 Model visualization and interpretation

Conventionally, the INDSCAL loadings A are shown in such

a way that high loading values relate to the relevance of those

metabolites in the BMRs important on each component.

However, it may be better interpretable to rearrange the

loadings following the structure of the covariance matrices,

i.e. Rk ¼
PR

r¼1 gkrara
T
r þ Ek ¼

PR
r¼1 gkrAr þ Ek, where

the matrices Ar of dimensions J 9 J are symmetric. Then

high values in Ar directly indicate important relations

between metabolites. It may therefore be easier to interpret a

heat map of Ar than a conventional loading plot of A to

identify relevant metabolites. However, since such heat

maps do not allow comparison between components in one

figure, both may be of value to gain insight in the BMRs. The

scores Gk (or rather the diagonal elements gkr) show for

which group k the relations in Ar are important. A score of

zero implies that the corresponding relations are absent in

group k.

Just like in PARAFAC, the components fitted for

INDSCAL are not orthogonal. The amount of information

explained by the model can therefore only be calculated for

the entire model. Furthermore, adding INDSCAL compo-

nents modifies all other components (Smilde et al. 2004),

which means a proper number of components has to be

chosen before interpreting the model.

2.5 Number of components, stability and validation

The amount of information each component adds to the

model may be used to determine the appropriate number of

INDSCAL components, by comparing the information

explained in a model to those with fewer components.

Whether the fitted model is prone to local optima can be

tested by using multiple random starting values: the models

need to be comparable, otherwise the model may contain

too many components, thereby covering technical or other

non-systematic variation.

Because the INDSCAL model describes entire experi-

mental groups rather than individual biological replicates,

the significance of observed effects is not expressed in the

scores Gk. An earlier-proposed jack-knife approach relies

heavily on distributional assumptions (Weinberg et al.

1984), not likely fulfilled by metabolomics data. Therefore

we quantify this significance by resampling: the results (i.e.

scores and loadings) of models where individual biological

replicates are left out are compared to the original model,

which shows how individual replicates influence the

BMRs: an essential aspect of metabolic change 425
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model. This resampling strategy is fully explained in the

supplementary material. Also a schematic pipeline to

describe BMRs by INDSCAL is given there (Supplemen-

tary Fig. 1).

3 Materials and methods

3.1 Induced plant response study data set

This experiment studied the ‘induced plant response’ of

cabbage plants to simulated herbivory to the plant shoot

(SJA) or root (RJA), by the plant hormone jasmonic acid.

These plants were compared to control (CON) plants, not

treated with the hormone. The defense was characterized

by the glucosinolate compound class: 11 compounds were

profiled in plants harvested at 1, 7 and 14 days after the

simulated attacks. The dataset contains 6–10 replicate

plants per herbivory type/harvest time. This study was

described in much more detail in an earlier paper (Jansen

et al. 2009b).

3.2 Human nutritional intervention study data set

In a double-blinded, placebo-controlled nutritional inter-

vention study with a parallel design, 186 human subjects

with abdominal obesity (BMI 25–35 kg/m2 and a waist

circumference of over 80 cm for women or 95 cm for men)

consumed either catechin-enriched green tea extract drink

(GTE; 600 mg catechins/day, 87 subjects) or a placebo

drink (placebo, green tea-flavoured drink without any active

ingredients, 99 subjects) over a period of 12 weeks. The

experiment was conducted at University of Nottingham

and approved by the University of Nottingham Medical

School Ethics Committee. Fasted serum samples were

collected at the baseline (start of the experiment; T0) and

after 4, 8 and 12 weeks of intervention (T4, T8 and T12).

For each serum sample a metabolic profile was obtained,

composed of 136 lipid metabolites expressed as ratios

between the peak areas of the metabolite and internal

standard. The supplementary material contains a descrip-

tion of the analytical method and Supplementary Table 2

lists the measured metabolites.

3.3 Software

All statistical analyses were carried out in MATLAB 2009a

(The Mathworks Inc., Natick, Massachusetts, USA), using

in-house routines, partly based on the N-way Toolbox

(Andersson and Bro 2000). They have been made available

on www.bdagroup.nl.

4 Results and discussion

4.1 Induced plant response study—comparison of PCA

and INDSCAL results

In the ‘‘induced plant response’’ study, the metabolic effect

of shoot herbivory (SJA) or root herbivory (RJA) are of

interest. Initially a PCA model was fitted, slightly modified

to exclude the average time-profile of all plants related to

uninteresting chemical variation (see earlier paper: Jansen

et al. 2009b). The results of this analysis are given (again)

in Supplementary Fig. 2.

The PCA results have been described in great detail in

the earlier paper and are only briefly repeated here. The

induced response to jasmonic acid consists of an increase

in Glucobrassicin (GBC) and Neoglucobrassicin (NEO) for

both treatments, but considerably larger for SJA. The RJA

plants have higher levels of Progoitrin (PRO) and Gluco-

brassicanapin (GBN) after 7 and 14 days (PC 3). These

changes are consistent for all the plants in the relevant

treatment-time combinations and will therefore end up in

lk in Eq. 1. The increase in NEO and GBC will differ

between plants, but the model also revealed that SJA plants

harvested after 7 and 14 days with more NEO, contain less

GBC, this will typically end up in matrix Sk of Eq. 1 and

therefore be the target of INDSCAL analysis. The earlier

study also showed the increase in PRO and GBN levels in

RJA plants after 7 and 14 days is preceded by an increase

in the natural variation of these levels, which should also

be revealed by INDSCAL.

A 4-component INDSCAL model explains a highly

unstable amount of information (see Table 1), leading to

three-components. This INDSCAL model (Fig. 2) corre-

sponds very well to the PCA results. The first component

explains a BMR in the SJA plants that increases from

absence to an enormous contribution 14 days after harvest

and explains the high NEO with low GBC levels (see

Fig. 2c). The positive relation between PRO and GBN,

Table 1 Number of components for INDSCAL model of plant data

set

# components % convergence % variance

explained

1 100 92

2 100 97

3 100 99

4 80 99.5

5 55 99.7

The second column shows how many models converged to a stable

solution and the third how much information is described by the

model
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expected to be high specifically high 1 day after RJA is

indeed present in the second INDSCAL component

(Fig. 2d). The component is also important 14 days after

SJA, which after further inspection of the large confidence

interval on the PCA scores. The third INDSCAL compo-

nent describes the consistently larger variation in NEO and

in GBC related to the natural variation between the dif-

ferent SJA (1–14 days) and RJA plants (1–7 days) descri-

bed by the first PCA component (Fig. 2e). In this data set,

the qualitatively observed BMRs in the earlier PCA model

could be quantified in the INDSCAL model.

4.2 Example of human nutritional metabolomics study

and BMRs

In this section, BMR analysis is applied on lipid profiles

from obese human subjects consuming either green tea

extract (GTE) or placebo during 12 weeks. Changes in the

lipidome were expected, because dietary supplementation

of GTE has been proposed as a strategy for weight loss

(Maki et al. 2009; Kovacs and Mela 2006). It has been

hypothesized to promote lipolysis as a mechanism by

which GTE stimulates fat oxidation (Westerterp-Plantenga

Fig. 2 INDSCAL model of

plant data set. a Group scores

for component 1 vs. component

2, b Group scores for

component 2 vs. component 3,

circles refer to control group

(CON), squares to root

herbivory (RJA) and crosses to

shoot herbivory (SJA). Loading

are presented as heatplots

separately for each component:

c loadings for component 1,

d loadings for component 2 and

e loadings for component 3

BMRs: an essential aspect of metabolic change 427

123



2010) and to affect lipid metabolism by inhibiting lipid

absorption and digestion (Koo and Noh 2007).

The effect of GTE on the lipid profiles was analysed by

investigating changes in individual metabolite levels, in

multi-metabolite profiles and in BMR components fitted by

INDSCAL. Variables were not scaled and INDSCAL was

performed with covariances to compare all results to each

other.

4.2.1 Changes in individual metabolite levels

Univariate, nonparametric U-Mann–Whitney statistic tests

(Sokal and Rohlf 1995) did not reveal any statistically

significant changes in individual metabolite levels between

T12 (end of intervention period) and T0 (baseline) (see

Supplementary Table 3), for either GTE or placebo. This

indicates GTE did not induce an effect stronger than the

inter-individual variation. This is frequently observed in

dietary intervention studies within healthy human subjects,

where effects are typically subtle and obscured by large

inter-individual variations.

4.2.2 Profiles of multiple metabolites

An unsupervised PCA model did not reveal any relevant

difference between GTE and placebo groups (see Supple-

mentary Fig. 3). A supervised PLS-DA model also did not

provide statistically significant differences between the

GTE and placebo group metabolite profiles between T0

and T12 (see Supplementary Table 4). A multiway-PLS-

DA (N-PLS-DA) was employed to simultaneously evaluate

time-related metabolic changes induced by GTE at all four

time points (Bro 1996; Castro and Manetti 2007), while

retaining the structure of the repeated measurements on the

same individuals (Smilde et al. 2010). The diagnostic

outcome of this model was very weak: e.g. 47.1% of the

samples were misclassified (see Supplementary Table 4).

This shows GTE intervention did not change the serum

lipid profiles significantly as observed by the ‘standard’

multivariate data analysis methods most widely used in

metabolomics (Jansen et al. 2009c; Trygg et al. 2007;

Lindon et al. 2000; Holmes et al. 2000).

4.2.3 Between Metabolite Relationships

To include all available a priori knowledge about the

experimental design into the INDSCAL model, a ‘baseline’

group (BL) was constructed of all individuals measured at

the start of the experiment (T0), assuming all subjects to

belong to a homogeneous population before the nutri-

tional intervention. For the remaining samples, covariance

matrices were calculated for each experimental groups,

i.e. treatment and measurement time-point combination:

GTE-T4, GTE-T8, GTE-T12, placebo-T4, placebo-T8 and

placebo-T12.

To determine the number of INDSCAL components

appropriate to model these covariance matrices, one to five

components were fitted 20 times, starting from random

values. Table 2 shows the percentages of explained infor-

mation and of converged models. This table shows that the

model requires two components, because 20% of the

models with three components did not converge to a stable

solution.

The INDSCAL scores of the GTE group (black circles

in Fig. 3a) differ from those of the placebo group (white

circles) after 4, 8 and 12 weeks of intervention and from

the BL group (grey circle). The first INDSCAL component

mainly describes a systematic drift of the GTE group from

the region of the plot covered by the placebo group and the

second component shows an additional variation in the

BMRs of the GTE group, prominent at T4 (Fig. 3a).

The resampling results (confidence intervals around the

circles in Fig. 3a) show that the differences between GTE

and placebo are highly significant after 4 and 12 weeks and

that after 8 weeks the resampling interval of GTE has only

very slight overlap with that of BL. The resampling results

of the chemical loadings (intervals around the circles in

Fig. 3b) show that the BMR response to GTE consists of

the covariance between metabolites TG28, TG29, TG41

and TG42.

The first INDSCAL component is of most interest in this

study, because it shows a consistent GTE-associated drift.

The heat plot in Fig. 3c focuses upon these loadings. This

heat plot shows BMRs rather than the contributions of the

individual lipids to the loadings in Fig. 3b. The heat plot

quantifies the BMRs in greyscale, showing for example

that the covariance between TGs 28 and 29 is larger than

between TGs 54 and 42, considerably less interpretable

from Fig. 3b alone.

Table 2 Number of components for INDSCAL model for human

nutritional data set

# components % convergence % variance

explained

1 100 97.1

2 100 99.0

3 80 99.4

4 60 99.6

5 70 99.8

The second column shows how many models converged to a stable

solution and the third how much information is described by the

model
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4.3 Selected lipids: level changes and BMRs

The effect of GTE on the plasma lipids is clearly visible

in both INDSCAL model representations in Fig. 3. It is

mainly associated with relations between a very small

subset of lipids. Most important are the triacylglycerols

TG28-29 and TG41-42. Figure 4a shows that the variance

of TG29 (those for TGs 28, 41 and 42 are comparable and

not shown) is significantly affected by GTE compared to

the control and the BL groups, although the mean group

levels of these metabolites did not change (Supplementary

Fig. 4). The Pearson correlation coefficients for these lipids

did not change between GTE and placebo (see Supple-

mentary Table 5), but the covariances did (Fig. 4b; Sup-

plementary Fig. 4). The barplot in Fig. 4b corresponds

closely to the INDSCAL scores (Fig. 3a). The INDSCAL

results and the (co)variance plots show that the effect of

GTE manifested itself by a systematic increase of the

covariance between TG28 and TG29 during the entire

study period and an additional increase of the covariance

between TG41 and TG42 during the first 4 weeks of

intervention, described by the second INDSCAL compo-

nent. The last is related to a large inter-individual

difference in time and magnitude of response at the

beginning of the intervention.

4.4 Interpretation of the observed GTE effect

The INDSCAL model shows that supplementation of GTE

significantly affects relationships between a small subset of

triacyloglycerols (see Supplementary Table 6 for the iso-

mer composition). Similar TGs have been reported to play

an important role in diet-induced weight loss for metabolic

syndrome in a 33-week intervention (Schwab et al. 2008).

These changes were not shown by the standard uni- and

multivariate statistical analyses, because these focus upon

responses in metabolite levels similar for all treated indi-

viduals (i.e. PLS-DA or Mann–Whitney tests). Figures 3

and 4 show the observed BMRs relate to an increase in the

variation in the levels of selected triacyloglycerols between

subjects that received the same intervention.

Observed changes in metabolite covariances show that

their changes are dependent between metabolites and

therefore the observed effect of GTE can be explained on

a system biology level. Inter-individual variation in the

levels of selected triacylglycerols could be related to

Fig. 3 INDSCAL model of

human nutrition data set.

a Group scores: the white
circles indicated the placebo

group, the black the GTE group

and the grey the common

baseline group (sampled before

start of intervention). The

region around each score is

obtained during model

validation and refers to region

of plot where 95% scores

obtained from resampled

models occurred. b Loadings

with regions of confidence

obtained during model

validation analogously as for

scores. c Heat plot of BMRs in

greyscale; both inserts focus on

the relations of TG28 with 29

and of TG54 with 42: these are

indicated by the white frames
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individual differences in the activities of transcription

factors or enzymes regulating these metabolites (individual

phenotype). Depending on the characteristics of the indi-

vidual phenotype, GTE could induce the increase or

decrease of these specific metabolite levels (see Supple-

mentary material for a simulation example). For example,

it has been stated that there is a wide variability in the

flavonoid O-methylation by catechol-O-methyltransferase

(COMT), a key enzyme that is hypothesized to be involved

in fat oxidation and whose activity may differ between

ethnic groups (Westerterp-Plantenga 2010). Alternatively,

the increase of inter-individual variation in levels of

selected triacyloglycerols can be explained by multiple

mechanisms of actions and/or active compounds present in

GTE. That may lead to opposing effects of GTE on a

network of transcription factors and enzymes and thereby

to up- and downregulation of the production of specific

metabolites and less controlled ranges of metabolite levels.

In this case, metabolic change might be the consequence of

a superposition of e.g. changes in dietary fatty acid com-

position, different mechanisms of TG activation or differ-

ent effects on the lipid species present in the TGs (Kovacs

and Mela 2006; Westerterp-Plantenga 2010).

4.5 INDSCAL and BMRs in practice

To extract BMR-related information by standard data

analysis methods may be difficult (i.e. PCA) and often even

impossible (PLS-DA): these methods have a different

focus. This paper shows, by two examples of metabolomic

data sets from plant and human nutrition studies, that the

BMR-related components of INDSCAL showed an essen-

tial aspect of metabolic change that was complementary to

that obtained by standard methods. A PCA model of the

plant ‘‘induced response study’’ only showed BMR-related

change intermingled with level changes like those in

Fig. 1b. However, with INDSCAL these were directly

focused upon. In the human nutritional study, INDSCAL

revealed increases in the inter-individual variation of four

triacylglycerols upon GTE supplementation, while this (or

any other) effect of GTE could not be observed by standard

data analysis methods.

In this study, the BMRs were expressed and included in

INDSCAL as covariances, but also other dissimilarity

measures such as Pearson or Spearman correlation coeffi-

cients can be used for a different focus (Jansen et al. 2009a).

In fact, multidimensional scaling methods like INDSCAL

allow matrices Rk to be filled with many dissimilarity

measures, underlined by a valid distance metric (Borg and

Groenen 2010). The choice of dissimilarity measure

depends on the expected nature of the relationships, such

that INDSCAL is a highly flexible tool to find BMRs.

Covariance analysis between metabolites, as opposed to

correlations, is highly appropriate for studies where

responses are expected to be inconsistent between indi-

viduals. For example, INDSCAL directly targets the

expected variation in the response of different humans to

dietary intervention, such as that of GTE. Because not all

individuals respond to a dietary supplementation of GTE in

the same fashion or degree, covariances rather than levels

of these metabolites change when the entire experimental

group is observed. The metabolites involved in this effect

then also have a different role than in the conventional

paradigms in Fig. 1a, b: triacylglycerols of which the

covariances with other metabolites change during dietary

intervention could be used a posteriori to select the indi-

viduals from the experimental group that have a similar

metabolic response. This relates directly to the evolution-

ary constraints that were already discussed in the intro-

duction: these also rely on responses only present in a

subset of the population. The introduction of INDSCAL

also makes such patterns available to metabolomics.

The literature concerning visualisation of INDSCAL

models is sparse (with exceptions like (Chang and Carroll

1980)). The representation of Ar in heat maps is—to our

knowledge—new and considerably increases the insight into

Fig. 4 Variance and covariance of selected metabolites. a Variance of TG29 and b covariance between TG28 and TG29; BL baseline group,

GTE catechin-enriched green tea extract group, placebo placebo group, significantly different: **P \ 0.05 and ***P \ 0.01
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the metabolic relations described by the BMRs, compared to

the conventional representation in Fig. 4. However, the

relations between metabolites represent the biochemical

reactions within the studied organisms, therefore the IND-

SCAL loadings would immensely benefit from an interpre-

tation through biochemical pathways. This would connect

the Correlation Networks that until now have observed

metabolism as a series of pairwise correlations between

metabolites (Steuer et al. 2003) with component analyses

that simultaneously connect all metabolites to each other.

The synergy between Correlation Networks and INDSCAL

will be the topic of a follow-up paper.

The Between Metabolite Relationships, together with

INDSCAL, will therefore greatly enhance the amount of

biochemical information that can be obtained from ‘omics’

experiments.

5 Concluding remarks

Between Metabolite Relationships (BMRs) may reveal

systematic changes in biological systems that remain elu-

sive when only metabolite level changes are taken into

account. The Individual Differences Scaling (INDSCAL)

method is introduced here as a method to analyse these

BMRs with component models, which give a system-wide

view on the changes in relationships between all com-

pounds measured in a metabolomics study.

The results of INDSCAL can support and explain

already known metabolic changes, such as those in the

‘‘induced plant response’’ study. They can also provide

information that lays beyond the reach of standard data

analysis methods in use in metabolomics as in the human

nutritional intervention study. The BMRs indicated which

relations between metabolites are most prone to a variable

response by the biological replicates e.g. by jasmonic acid

application (subset of glucosinolates in ‘‘induced plant

response’’ study) or by the GTE intervention (subset of

triacyloglycerols in human nutritional intervention study).

Identification of such changes in metabolite relationships

will improve the understanding of possible mechanisms of

action of tested interventions.

The BMRs, together with INDSCAL, thereby open the

door to dedicated analysis of the next generation of ques-

tions in systems biology: those that deal with personalized

medicine and individual or cohort-specific responses to

dietary change.
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