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Abstract Clustering and correlation analysis techniques

have become popular tools for the analysis of data produced

by metabolomics experiments. The results obtained from

these approaches provide an overview of the interactions

between objects of interest. Often in these experiments, one

is more interested in information about the nature of these

relationships, e.g., cause-effect relationships, than in the

actual strength of the interactions. Finding such relation-

ships is of crucial importance as most biological processes

can only be understood in this way. Bayesian networks

allow representation of these cause-effect relationships

among variables of interest in terms of whether and how

they influence each other given that a third, possibly empty,

group of variables is known. This technique also allows the

incorporation of prior knowledge as established from the

literature or from biologists. The representation as a direc-

ted graph of these relationship is highly intuitive and helps

to understand these processes. This paper describes how

constraint-based Bayesian networks can be applied to

metabolomics data and can be used to uncover the impor-

tant pathways which play a significant role in the ripening of

fresh tomatoes. We also show here how this methods of

reconstructing pathways is intuitive and performs better

than classical techniques. Methods for learning Bayesian

network models are powerful tools for the analysis of data

of the magnitude as generated by metabolomics experi-

ments. It allows one to model cause-effect relationships and

helps in understanding the underlying processes.

Keywords Constraint-based learning · Bayesian

networks · Metabolic pathways · Tomato volatiles ·

oxylipin pathway · urea/citric acid cycles

1 Introduction

Metabolomics plays an increasingly important role in the

research area of drug discovery, food & nutrition, plant and

animal biology and many other applications. Where tran-

scriptomic and proteomic analysis does not tell the

complete story, metabolic profiling can add significantly to

the picture of what is happening inside a living cell. Sta-

tistical and mathematical techniques are commonly used to

correlate changes in metabolic composition with changes in
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biological conditions (Suizdak 2003; Eiceman and Karpas

2005; Gohlke 1959; Weckwerth 2003; Kopka et al. 2004).

Chromatography coupled to mass spectrometry based

methods, e.g., GC-MS and LC-MS, have been the most

popular metabolic profiling techniques over the past decade.

Hundreds of new metabolites have been identified in plants

(Fiehn et al. 2000; Moco et al. 2006; Schauer et al. 2006)

and the improved sensitivity of modern methods has led to

an increased amount of metabolic information. Techniques

such as these have enabled identification of metabolites at

much higher resolutions than previously possible. Interest-

ing relationships can thus be found by integrating different

types of data (omics) from various analytical sources. In this

paper, Bayesian network learning methods are explored to

uncover molecular pathways of tomato metabolism. This is

done by using constraint-based learning methods. The

related research is reviewed in the next section.

1.1 Related research

Various methods in classical multivariate statistics have

been used in the past to discover and visualize complex

metabolic networks using supervised and unsupervised

clustering methods. Clustering techniques (Opgen-Rhein

and Strimmer 2007) provide good summarization of data

concerning functional relations between metabolites but as

these methods are global one cannot expect to find relations

which are relevant for small subsets of data. These tech-

niques are good for capturing whether or not variables

influence each other; however the nature of interaction

between metabolites is complex and cannot be estimated

using only linear correlations (Husmeier et al. 2005). Fur-

thermore, domain knowledge, which often plays a vital role

to find novel relationships and which can be obtained from

literature and experts, cannot be incorporated in these tra-

ditional techniques with the exception of choosing the

proper parametric form of the functional interaction between

variables, e.g., linear or exponential. Learning logistic

regression models from data is the standard approach for

capturing the statistical interactions among a set of input

variables to predict the value of a dependent, or output,

variable. However, it is difficult to establish the impact of

process changes among the variables using only regression

models. Moreover, when there are insufficient data it cannot

accommodate background knowledge (expert judgement)

and causal explanation to the relationships obtained.

We present here a constraint-based Bayesian network

approach, which is a specialized form of graphical models

(Jordan 2004). Use of Bayesian networks to analyze bio-

logical datasets in various genomics domain has been

growing in the last decade. Different types of Bayesian

network learning methods, e.g., search and score, have

been used to recover target-regulator pairs from a yeast cell

cycle microarray datasets (Murphy 2002); Zou and Conzen

2005), and also significant work has been done by Fried-

man et al. to reconstruct gene regulatory networks from

microarray datasets (Friedman et al. 2000). Similar tech-

niques have also been used for pathway identification to

understand the underlying biological processes. In this

paper we demonstrate how Bayesian network learning

techniques can be used to uncover a very important met-

abolic pathway (oxylipin pathway) which plays an

important role in the ripening of fresh tomatoes. We also

show why this technique is better than other statistical

techniques used in this domain.

In principle a Bayesian network is a graphical represen-

tation of a multivariate probability distribution and is an

example of a probabilistic network. A probabilistic network

typically consists of nodes connected by edges, where each

node corresponds to a random variable and edges represent

dependence between them. Absence of edges between nodes

represents conditional independence. Bayesian networks, a

special type of a probabilistic network, contain directed

edges, also called as arcs or arrows. The advantage of

Bayesian networks over alternative techniques (e.g., logistic

regression) is that they allow explicit representation of the

mutual interactions among variables and groups of vari-

ables. They take into account the explanatory power of

known variables in an intuitively simple graphical format.

As a Bayesian network is a multivariate probability distri-

bution with statistical independence assumptions, it is

possible to reason probabilistically with this representation

(For an example see the next section). The other advantage

lies in the fact that probability distributions can be updated in

the light of new, known information. This is why Bayesian

networks can be used to support decision making. The

results obtained using this technique are exceptionally

intuitive and this type of analysis is not possible by classical

analysis tools. Nonetheless, there are a few limitations; for

example when the number of variables increases in size the

computational complexity increases, which is NP-hard.

Apart from this, Bayesian networks, like regression models,

are also sensitive to sample size. However, on the positive

side most biological processes are hierarchical in nature and

there are more variables then relationships between them

i.e., the graphs are sparse.

1.2 Example

In Fig. 1 we present an example of the urea and citric acid

cycles. These two cycles are linked by the synthesis of

fumarate. To highlight the basics of the Bayesian network

method, the reactions leading to and from fumarate are

shown in Fig. 2, where both the probability distribution and
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the graph are shown. The graph encodes rather subtle

information about statistical dependence and independence

between sets of variables. For example, according to the

graph in Fig. 2, the concentrations of both argininosucci-

nate and succinate are independent as there are no arrows

connecting these nodes. Both production of fumarate and

malate are a common consequence of presence of argini-

nosuccinate and succinate (as there are directed paths

going from these nodes to both fumarate and malate). The

semantics attached to Bayesian networks implies that if

either fumarate or malate or oxaloacetate are observed in

high levels, then argininosuccinate and succinate become

dependent given the fact that we know levels of fumarate.

Finally, argininosuccinate (or succinate) and oxaloacetate

are conditionally independent given the concentration

levels of fumarate. It also means that if one has observed

high or low levels of fumarate then this does not convey

any new information about concentrations of malate or

oxaloacetate, and vice versa. Given a Bayesian network,

any conditional probability involving any of the variables

included in the model can be computed.

It is a standard practice to compute probabilities of

individual variables from a set of variables. These proba-

bilities are referred as marginal or conditional and are

updated by fixing observations over one or more variables.

Figure 3 shows the bar graphs associated with the

individual variables when the frequency of states of these

variables are computed; in Fig. 4 the variables have been

conditioned on the assumption that oxaloacetate=high to

display that for the case when the concentration is higher

Fig. 1 Urea/Citric Acid cycle

Fig. 2 Example of a simple Bayesian network consisting of a

probability distribution Pr and a directed graph. The probability

distribution Pr is specified using conditional probability distribution

associated to the individual nodes, such as Pr(A = high · AS = high)

= 0.96
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for a certain metabolite. In both figures simply looking at

the shape of the bar graphs already conveys much infor-

mation on the concentration levels of each metabolite.

1.3 Overview of Bayesian networks

Bayesian networks can be learned from data as a standard

practice in multivariate statistics, but as they are easily

understood they can also be manually constructed based on

expert knowledge in a particular problem domain. For

example, if one knows the interaction of metabolites in a

certain pathway, one can even make a hypothetical network

based on literature without data. Each of the metabolites in

the network would be associated with a probability

embedded in a contingency table (also known as a condi-

tional probability table), expressing an expert’s degree of

belief. As was illustrated above, if one has observed a level

of one or more compounds it is possible, using the Bayesian

network, to predict the likelihood or concentration levels of

the other compounds. Thus the likelihood represents the

concentration levels of metabolites. The important aspects

of understanding Bayesian networks lies in the fact that the

graph structure of network is separate from the probability

distribution associated with it.

The graphical nature of the network combined with

probability theory allows one to do data analysis in an intu-

itive way. It is important to understand the interaction

between different variables but it is more important to

understand the nature of these relationships. From example in

the previous section representing urea/citric acid cycle in

Fig. 1 argininosuccinate, fumarate and malate represent a

serial connection, arginine, argininosuccinate and fumarate

represent a diverging connection and argininosuccinate,

fumarate and succinate represent a converging connection.

As mentioned before knowing information about the con-

centrations levels of fumarate makes argininosuccinate and

malate independent in a serial connection, knowing con-

centration levels of argininosuccinate make arginine and

fumarate independent in a diverging connection and knowing

concentration levels of fumarate makes argininosuccinate

and succinate dependent in a converging connection.

Formally, a Bayesian network represents an acyclic

directed graph (ADG), i.e., a set of nodes, or vertices, and

directed edges, or arcs, and is defined as a pair G = (V,E),

where V is a finite set of distinct nodes and E � V � V is a

set of distinct arcs. A pair ðu; vÞ 2 E is denoted by an arc

u→ v from u to v and it is said that u is a parent of v and v is

said to be a child of u, often this relationship also represents a

Fig. 3 Prior marginal

probability distributions for the

Bayesian belief network shown

in Fig. 2

422 A. K. Gavai et al.

123



cause-effect relationship. A path hv1; . . .; vni is a set of dis-
tinct nodes such that vi→ vi+1 or vi← vi+1, for each i. A path

is called directed if vi← vi+1 or vi→ vi+1, for each i. A node

v is called a descendant of a node u if there is a directed path

from u to v in the graph. Statements on conditional depen-

dence and independence can be derived from the graph using

the d-separation criterion (Pearl 1998). The basic idea of d-

seperation is that just by looking at the graph it is possible to

derive independence information about the associated

probability distribution of a Bayesian network. Consider

Fig. 5, which depicts three types of subgraphs which are

relevant in interpreting a Bayesian network. The subgraphs

X → Y → Z and X ← Y ← Z, called serial connection and

X ← Y → Z, called diverging connection, are equivalent.

Then there is also the non-equivalent converging connec-

tion. All three of these causal situations give rise to different

conditional independence of the associated random. For-

mally d-separation is expressed as follows: Two nodes on an

ADG, G= (V,E) are said to be d-separated by a set of nodes

S � V if there is a node w such that either:

● w 2 S and w does not have a converging connection on

any path connecting the nodes and w is on this path, or

● w 62 S and neither any of the descendants of w in S.

If two variables are d-separated given a set of variables

S in a directed graph, then they are conditionally inde-

pendent given another set of variables in all probability

distributions compatible with the graph. Two variables X

and Y are conditionally independent given a set of variables

Fig. 4 Posterior marginal

probability distributions for the

Bayesian belief network after

entering evidence on

concentration levels of

oxaloacetate. Note the increase

in probabilities of the levels of

concentrations of both

oxaloacetate and

argininosuccinate compared to

Fig. 3. It also predicts that it is

more likely that the

%concentration levels of

argininosuccinate to be high

a

b

c

Fig. 5 Three different graph structures of a Bayesian network and

their interpretation
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S if knowledge on X gives no additional information on Y

once we know about S.

Bayesian networks are also said to be an independence

map, or I-map for short, as independencies can be read off

by d-separation from the graph and these also hold for the

underlying probability distribution. This property allows us

to find independence between variables of interest in a

problem domain. d-Separation in a graph structure G is

represented by ⫫G and conditional independence in a

probability distribution, by ⫫P. Some standard notations

used in the context are as follows:

● u ⫫G v∣S : u 2 V and v 2 V are d-separated in graph
G = (V,E), given a set of nodes W.

● U ⫫G V∣W : Each u 2 V and each v 2 V is d-separated

in graph G or U and V are d-separated inG, given the set

of nodes W.

● U G V∣W : Each u 2 V and each v 2 V is d-connected,

given the set of nodes W.

● X ⫫P Y∣S : X and Y are conditionally independent

given S.

● X P Y∣S : X and Y are conditionally dependent given

S.

● if S = /, and X ⫫P Y ∣ / holds, then sets X and Y are

called marginally independent.

Not always we will have knowledge about relationships

between metabolites of interest in which case we would

want to find these relationships from available experimental

data. This approach is not uncommon when the number of

variables is large and there is little or no knowledge available

of the underlying process. Moreover, it can be a laborious

task to construct networks of several hundred nodes just by

hand. Therefore there has been considerable research in this

area to do unsupervised learning of conditional dependence

and independence relationships from data. The key

assumptions used for this approach are that biological pro-

cesses are hierarchical in nature and links between

metabolites in metabolic processes are sparse in nature. In

the past, correlation and clustering methods have been used

successfully to identify groups of metabolites clustering

together and reconstruct pathways (Yilmaz 2001; Ursem

et al. (2008)). Bayesian networks allows us to model causal

relationships by looking at the direction of the arrows in the

directed graph. Causal relationships play a vital role when

we want to find out when one variable causes a change in

another variable. Often these relations are investigated by

experimental research to determine if changes in one vari-

able truly cause change in another variable. However to

generate an equivalent network is still possible using

Bayesian network. For Bayesian networks there is the

restriction that arrows are not allowed to form directed

cycles (paths that end at the node where they started)–these

graphs are called acyclic. Of course, there can be feedback

loops involved in a problem domain which can be perfectly

modeled using another type of Bayesian networks, so-called

dynamic Bayesian networks (Murphy 2002), which require

time-series data.

1.4 Learning in Bayesian networks

Learning the graph of a Bayesian network is done by

exploring data using partial correlations as a means to

distinguish dependent from independent relationships. To

put it simple, direct and indirect relationships can be

identified easily from the constructed networks: metabo-

lites missing arrows indicate (conditional) independence.

There are two aspects of representing data using this

technique viz. qualitative and quantitative. The qualitative

aspect includes representation of data using nodes and

arrows and these relationships can be quantified using a

conditional probability distribution. Constraint-based

methods have the advantage that they allow incorporation

of prior biological knowledge about dependence of vari-

ables, and therefore this has been taken as the method of

choice for the present research. We consider here the PC-

algorithm (Peter and Clark) (Sprites et al. 2000) which is a

constraint-based method. There are certain assumptions to

this approach such as the independence between nodes has

a perfect representation by an ADG; under this assumption

the PC algorithm will discover an equivalent Bayesian

network. Another assumption is that networks are sparse,

i.e., have few relationships between metabolites as shown

in Fig. 1. There are several ways to verify conditional

independence relationships which include reducing size of

the database, finding correlations, direct query from experts

and finding clusters in a causal network.

The algorithm is based on asking true independence

relationship between sets of variables of the form Xi⫫Xj∣S,
where S is a subset of variables. An overview of the steps

are as follows:

● Construct an undirected graph.

● Find converging connections, by testing for indepen-

dence and

● Give directions to the links without producing cycles.

Here we consider an imaginary oracle as our expert which

tells us if two nodes are conditionally independent given a

subset of nodes S (later this oracle will be replaced by

statistical test to find partial correlations, e.g., G2 test or

Fisher’s Z transformation). If the oracle (domain expert)

says two nodes are conditionally independent given a third

node S then we remove the edge between two nodes and

make them independent. Asking questions like this for all

the nodes involved and recursively deleting edges between

nodes based on the answers will result in an undirected

graph also known as the skeleton of the network. The next
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step then is to give directions to the edges based on rules

(Meek 1995b) to generate a ADG, sometime there might

exist bi-directional arrows which is not a part of Bayesian

networks, but its presence indicate hidden nodes, which

might have been missed from the experiment or not being

observed.

In this paper, we demonstrate how learning and rea-

soning with Bayesian networks can be used to reconstruct

the oxylipin pathway found in the synthesis of fresh tomato

volatiles. We show how the results obtained by running

Bayesian network analysis on experimental data of bio-

chemical compounds of beef, round and cherry tomatoes

supports the elucidation of the nature of the biological

processes. For brevity, our focus is only on learning of

structures and not on parameter estimation, which is often

used to learn the probability distribution of the dataset.

Subsequently, we discuss how to interpret the graphs

generated by Bayesian network learning (which is an

important aspect of data analysis). Prior knowledge

obtained from literature is also taken into account in the

form of metabolite selection for the analysis. The dataset

used includes data of tomato volatile metabolite profiling,

as described in (Tikunov et al. 2005). A detailed descrip-

tion of this dataset can be found below in the materials

sections of the article.

2 Materials and methods

2.1 Description of the metabolite dataset

Flavors in tomatoes are important targets for plant breeders

to improve the quality of fresh tomatoes. Therefore it has

become a popular area of research among molecular biol-

ogists to study the pathways involved in biosynthesis, of

the oxylipin (lipoxygenase) pathway of volatile compounds

(VOC, volatiles) in tomatoes. In plants the substrates of

these pathways are linoleic and linolenic acid, while their

mammalian equivalents are arachidonic and eicosapenta-

enoic acids. Tomato volatiles are generally divided into six

groups (Yilmaz 2001) lipid derived, carotenoid related,

amino acid related, terpenoids, lignin related and miscel-

laneous. Each group participates in different pathways

involved in the biosynthesis of the aroma volatiles. Figure 6

shows formation of lipid-derived volatiles through one of

these pathways. There has been substantial research in this

area, however the exact nature of the relationship between

volatile compounds involved is still unknown.

Volatiles have been analyzed using gas chromatography

mass spectrometry in ripe fruits of 94 tomato (Solanum

lycopersicum L.) varieties as described in Tikunov et al.

(Tikunov et al. 2005). The varieties selected represent a

considerable collection of genetic and therefore phenotypic

variation. 322 VOC have been detected and 69 VOC

identified most reliably have been chosen for the present

study. This set of 69 VOC contains metabolites of 7 bio-

chemical groups: volatiles derived from lipids, two

phenylalanine derived groups, leucine and/or isoleucine

derived volatiles, open-chain carotenoid derivatives, cyclic

carotenoid derivatives and terpenoids. The last three groups

are biochemically related and called isoprenoids.

2.2 Analysis

We consider here finding relationships between volatile

metabolites of lipid derivatives involved in the oxylipin/

lipoxygenase (LOX) pathway which occurs during ripening

of tomato fruit (Yilmaz 2001) as depicted in Fig. 6. We

used the package pcalg (Kalisch and Buhlmann 2007)

which is an implementation of the PC algorithm in R

(R Development Core Team 2008) which is an open source

environment for statistical computing to perform the

analysis on a real-life dataset as mentioned in the Sect. 3 of

the article. The inputs were the tomato dataset and the

algorithm allows to set a threshold to find significant

conditional (independent) relationships between these

metabolites. The algorithm generates a graph object which

is an ADG. A bidirectional arrow in such network implies

presence of hidden variables from the experiment being

conducted (hidden factors or latent variables), e.g., when a

Fig. 6 Formation of lipid-derived volatiles through biosynthesis in

the oxylipin pathway
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metabolite is missing from the experiment (Beal et al.

2005). Here we show how this algorithm performs on a

real-life dataset and finds relationships among metabolites

of interest which are biologically meaningful and by taking

into account the prior knowledge the generated network is

compared to the established knowledge found in literature.

This can be done by counting missing edges (false nega-

tives) and extra edges (false positives) which were

computed for these metabolites by the algorithm. Finally

the structure Hamming distance metric (Tsamardinos et al.

2006) a measure to calculate the number of substitutions

required to transform one graph to another, is used to

calculate the distance (difference) of the computed network

from the actual network (pathway). The lower this score is,

the better the PC algorithm has performed on the dataset.

The visualization of complex networks is not easy and

the knowledge represented by them is sometimes not

obvious just by looking at these complex networks. The key

to solving these issues is to make use of an interactive graph

which allows looking at the chemical structures and getting

relevant information from online repositories using well-

established visualization techniques. We therefore imple-

mented a framework which handles these issues, and the

networks shown in this paper have been created using the

tools. The tool was developed using open source software

and standards, such as Graphviz (http://www.graphviz.org)

and SVG(http://www.w3.org/Graphics/SVG/). All the

scripts used for construction of networks are available from

the authors upon request.

3 Results and discussion

A primary interest in biology is finding novel biochemical

pathways describing relationships between metabolites and

their dependence on environmental factors. Often the data

arising from experiments are not completely observed; this

scenario is represented as “data being incomplete and the

structure of the Bayesian network being unknown”.

Clearly, this is also the most difficult case from a compu-

tational point of view. Incomplete data may involve

missing values, and imputation techniques are employed to

find appropriate values; these values are assumed to be

missing at random. Sometimes particular crucial variables

are missing, called hidden or latent variables. Using opti-

mization algorithms such as the Expectation Maximization

(EM) algorithm, it is sometimes possible to learn all

parameters, including the hidden ones (Dellaert 2002 &

Elidan and Friedman 2003).

In this study we show how parts of a plant metabolic

system can be reconstructed and visualized by applying

Bayesian networks. We focused on 69 volatile compounds

and the choice of these metabolites was based upon prior

knowledge obtained from the domain experts and relevant

literature (Tikunov et al. 2005; Yilmaz 2001; Yilmaz et al.

2001). We used constraint-based learning of Bayesian

networks with a very low significance level α of 0.0001 on

this dataset. The test statistic used to find the relationship

and their strength are based on Fisher’s Z transformation

(Kalisch and Buhlmann 2007). A Bayesian network esti-

mates a ADG and so relationships do not form a cycle,

observing all such relationships indicate hidden variables

which might have been missed by chance or not being

observed in the experiment. As Bayesian networks gener-

ate equivalent structures, considering the example from

Fig. 5, subgraphs A → B → C, A ← B ← C and

A ← B → C are equivalent. Therefore the methods

described in the analysis section estimated 13 arcs; when

comparing this estimated network with the relationships

found in the literature we were able to find 66 % true

positives, 7 % false positives and a structure Hamming

distance of 9, meaning that it would take 9 operations of

adding, deleting and changing the direction of arrows to

reach the true graph. Analysis of the experiment using the

search-and-score (Heckerman 1995) method produced a

graph with 16 arcs, and contained only 25% true positives

and 56% false positives (the corresponding network graph

can be found in the supplementary material) and a structure

Hamming distance of 15. The true positives and the

structure hamming distance are influenced by the fact that

not all metabolites are assigned, absence of metabolites

from the experiment and unknown relationships. Never-

theless, these figures still are useful to measure the

performance of these techniques. Quantitatively analyzing

techniques like these are common practice, but the real

advantage lies in the graphical representation which is

much more intuitive than standard statistical tests. From

Fig. 6 it can be seen that the enzymes involved in these

pathways are generally known to oxidize certain fatty acids

containing a cis, cis-1, 4-pentadine structure. The main

substrate is therefore linoleic acid (C18:2) and linolenic

acid (C18:3) as shown in Fig. 6. The upper part in Fig. 6

which consist of phospholipids, galactolipids and tria-

cylglcerols has not been taken into account in the

experiment in question as these metabolites are large

chemical structures and therefore are not volatile.

In principle the relationships (correlation and causal)

generated, can be compared to the relationships found by

Tikunov et al. (2005). We consider here 13 metabolites

1-pentene-3-ol, 1-penten-3-one, E-2-pentenal, 1-pentanol,

Z-2-penten-1-ol, Z-3-hexenal, hexanal, E-2-hexenal,

Z-3-hexenol, 1-hexanol, heptanal, E-2-heptenal, n-pentanal

which are involved in the substrate formation of free fatty

acids (lower section of Fig. 6) of the oxylipin pathway. As

the exact nature of these relationship is not known (Yilmaz

et al. 2001) a plausible explanation is still possible by
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looking at the chemical structures of these metabolites.

Figure 7 indicates such a network constructed using

Bayesian approach showing metabolites 1-pentene-3-ol,

1-pentene-3-one, 2-hexenal, E-2-pentenal, heptanal,

E-2-heptanal show significant causal relationships.

E-2-hexenal is derived by isomerization of Z-3-hexenal

(Baldwin et al. 2000) and the relationship of these two

compounds cannot be observed in the graph; the reason for

this could be absence of isomerization factor or less

number of samples. A relationship between 1-penten-3-one

and 1-pentan-3-ol also makes sense since the first is a

dehydrogenation product of the second. From Fig. 7 correct

relationships from 1-pentene 3-ol → 1-pentene-3-one, E-2

pentenal → Z-2-penten-1-ol and 1-pentanol → n-pentanal

can be deduced. There are certain relationships which may

not make sense just by looking at them, e.g., 1-hexa-

nol → Z-3-hexenol, but the advantage is such relationships

could be easily explained using Bayesian networks which

may indicate present of hidden variables (latent variables)

as not all the metabolites were observed in the experiment.

Similarly, bi-directional arrows also indicate presence of

such variables. To deduce exact relationships is difficult

but the advantage lies in searching for equivalent rela-

tionships which can be easily deduced such as Z-3-

hexenal → Z-3-hexenol can also be seen in Fig. 7.

4 Concluding remarks

Constructing graphically intuitive models has become a

popular technique inmetabolomics experiments (Morgenthal

et al. 2006; Beal et al. 2005). Models like this allow us to

understand the underlying biological processes involved in

metabolic networks and reconstruct pathways. This knowl-

edge is normally visualized by means of a directed graph,

where the nodes of the graph correspond to variables and

arrows in the graph are used to express statistical dependence

and independence information.

The approach described in the present study proved

useful to discover causal biochemical relationships in

complex metabolomics data. The results are confirmed by

previous observations on the same data as well as infor-

mation found in literature. Methods such as Bayesian

networks which are used for causal modeling of high-

dimensional data are powerful tools in modeling of com-

plex systems, since these approaches do take into account

correlation methods before constructing an equivalent or

exact causal relationship. Here we show how a Bayesian

network can be used to analyze metabolomics data which is

a powerful technique and helps us to get indepth under-

standing of the biological process. This method can be

exploited further by coupling it with pathway databases in

order to get exact and more plausible information to

understand the process changes at hand. As more and more

data become available these methods can outperform

classical statistical techniques and be used to find novel

biochemical pathways. We have shown here how this

approach can be used for exploratory data analysis in

searching for causal relationships in metabolomics. The

resulting hypothesis can then be used to form the basis of

subsequent analysis which can learn from data, take prior

inputs from molecular biologist and update probabilities in

the light of “new information” and/or “data”.
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