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Abstract Nuclear magnetic resonance (NMR) and liquid

chromatography-mass spectrometry (LCMS) are frequently

used as technological platforms for metabolomics appli-

cations. In this study, the metabolic profiles of ripe fruits

from 50 different tomato cultivars, including beef, cherry

and round types, were recorded by both 1H NMR and

accurate mass LC-quadrupole time-of-flight (QTOF) MS.

Different analytical selectivities were found for these both

profiling techniques. In fact, NMR and LCMS provided

complementary data, as the metabolites detected belong to

essentially different metabolic pathways. Yet, upon unsu-

pervised multivariate analysis, both NMR and LCMS

datasets revealed a clear segregation of, on the one hand,

the cherry tomatoes and, on the other hand, the beef and

round tomatoes. Intra-method (NMR–NMR, LCMS–

LCMS) and inter-method (NMR–LCMS) correlation

analyses were performed enabling the annotation of

metabolites from highly correlating metabolite signals.

Signals belonging to the same metabolite or to chemically

related metabolites are among the highest correlations

found. Inter-method correlation analysis produced highly

informative and complementary information for the iden-

tification of metabolites, even in de case of low abundant

NMR signals. The applied approach appears to be a

promising strategy in extending the analytical capacities of

these metabolomics techniques with regard to the discov-

ery and identification of biomarkers and yet unknown

metabolites.

Keywords Metabolomics � Liquid chromatography-

mass spectrometry � Nuclear magnetic resonance �
Correlations � Principal component analysis

1 Introduction

Analytical methods such as NMR and MS provide infor-

mation about the chemical composition of biological

samples, at the molecular level. In plant metabolomics,

these two technologies are commonly used as independent

approaches for profiling plant systems (Le Gall et al. 2003;

Moco et al. 2006a; Tikunov et al. 2005; Ward et al. 2003).

The (online) combination of NMR and MS technologies

(Jaroszewski 2005; Seger and Sturm 2007; Tatsis 2007;

Wolfender et al. 2005), in particular through LC-solid

phase extraction (SPE)-NMR-MS (Exarchou et al. 2003)

has been used for the efficient detection, separation, iso-

lation and unequivocal structural elucidation of metabolites

from plant origin. This analytical approach seems therefore
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especially useful in the identification of biomarkers dis-

covered in high-throughput LCMS and 1H-NMR

metabolomics studies.

LCMS and NMR are distinct analytical techniques,

concerning detection and sensitivity. On the one hand,

LCMS is a fast and sensitive technique. However, the

separation of metabolites is dependent on the chromato-

graphic column used, the detection is dictated by the

ionization aptitude of the analytes and the molecular elu-

cidation has some intrinsic limitations, such as the

resolution of isomers. On the other hand, NMR is indis-

criminative towards matrix properties, given that the

analytes are soluble. NMR is a highly selective technique

for distinguishing molecular structures, but has a lower

sensitivity compared to MS (Moco et al. 2007a).

The statistical combination of metabolomics data from

profiling equivalent samples by NMR and LCMS opens

opportunities to relate spectrometric and spectroscopic

properties for single metabolites. These statistical strategies

have been applied to large-scale analytical analyses of

urine (Crockford et al. 2006; Forshed et al. 2007a, b).

Beyond the analytical acquisition of data, the interpretation

of metabolomics data is highly dependent on the performed

data analysis. Due to the production of large datasets and

complexity of untargeted metabolic fingerprinting tech-

niques, appropriate conclusions arise only after pre-

processing and statistical validation of metabolomics

datasets. Multivariate analyses methods are useful in dis-

criminating information, dealing with the redundancy often

present in metabolomics data (Trygg et al. 2007).

One of the statistical methods to establish relationships

between metabolite signals belonging to a biological sys-

tem is correlation analysis. The presence of high

correlations in metabolomics data can be attributed to

several phenomena which might not be directly related to

pathway proximity (Camacho et al. 2005; Steuer 2006). It

has been proposed that the highest correlations belong to

either an equilibrium situation (positive correlations) or to

a mass conservation situation in which there is a moiety-

conserved cycle (negative correlations) (Camacho et al.

2005; Steuer 2006).

Both MS (Fraser et al. 2007; Moco et al. 2006a;

Schauer et al. 2005; Tikunov et al. 2005) and NMR

(Le Gall et al. 2003; Mattoo et al. 2006; Mounet et al.

2007) have previously been used for the profiling of

metabolites present in fruits of tomato (Solanum lycoper-

sicum). In the present study, we used both 1H NMR and

LC-QTOF-MS techniques to record the metabolic profiles

of 50 different tomato cultivars. The semi-polar metabolite

content of the fruits was captured by using methanol as

extraction solvent. These extracts were successively ana-

lysed by 1H NMR and LCMS, and relationships between

the various signals obtained by each method were studied

by performing correlation analyses within the datasets

separately. Additionally, the correlation between LCMS

and NMR signals across the 50 samples was investigated.

Our strategy provided new insight into the complementa-

riness and coincidence of LCMS and NMR as metabolite

profiling technologies and as molecular elucidators, applied

to the assignment of metabolites in tomato fruit.

2 Materials and methods

2.1 Plant material

Fruits from 50 different cultivars of tomato (Solanum lyco-

persicum), at the ripe stage of development, were obtained

from a series of 94 different genotypes grown simultaneously

in greenhouses in Wageningen (Tikunov et al. 2005). For

each cultivar, a selection of red ripe fruits (12 for round and

beef tomatoes and 18 for cherry tomatoes) was pooled to

make a representative fruit sample. The fruits were chopped

into small pieces and immediately frozen in liquid nitrogen.

The frozen material was ground to a fine powder and stored at

-80�C before further analysis. Based on the results from

analyses of natural volatile compounds in these tomatoes

(Tikunov et al. 2005), a sub-collection of 50 cultivars, cor-

responding to the most contrasting metabolite profiles, was

chosen for the analyses performed in this study. These 50

different cultivars included 17 cherry, 26 round and 7 beef

type of tomato fruits.

2.2 Chemicals

The standard compounds L-tryptophan (CAS number 73-22-

3), D-(+)-glucose (CAS number 50-99-7) and citric acid (CAS

number 77-92-9) were purchased from Merck (Damstadt,

Germany), rutin (CAS number 153-18-4) from Aldrich

(Steinheim, Germany) and chlorogenic acid (CAS number

327-97-9) and a-tomatine (CAS number 17406-45-0) from

Sigma (St. Louis, USA). Methanol-d4 (HDO + D2O \
0.03%) was purchased from Euriso-top (Gif-Sur-Yvette,

France) and protonated acetonitrile HPLC supra gradient

quality was obtained from Biosolve (Valkenswaard, The

Netherlands). Formic acid for synthesis, 98–100%, was pur-

chased from Merck-Schuchardt (Hohenbrunn, Germany).

Ultra pure water was obtained from an Elga Maxima purifi-

cation unit (Bucks, UK).

2.3 Sample preparation for NMR and LCMS analysis

About 0.3 g of fresh weight of tomato fruit powder was

freeze-dried immediately before proceeding with NMR and

LCMS analyses. To the dried powder, 1.2 ml of methanol-

d4 was added as extraction solvent. The extracts were
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sonicated for 15 min, followed by a 5 min-centrifugation

(3,000g) step. After filtration of the supernatants through a

0.2 lm inorganic membrane filter (Anotop 10 Whatman,

Maidstone, England), exactly 600 ll of tomato extract

were transferred to dry 5 mm NMR tubes and taken to

NMR analysis. After NMR analysis, the methanol-d4

tomato extracts were diluted to 25% (v/v) ultra pure water.

The diluted extracts were sonicated, centrifuged and fil-

trated before LCMS analysis. In between analyses, the

extracts were kept at 4�C.

Standard compounds were dissolved separately in

methanol-d4, to obtain a dilution series of six different

concentrations (between about 4 and 130 mg/l). These

samples were taken to NMR analyses and later prepared for

LCMS, as described above.

2.4 NMR analysis

1H NMR measurements were carried out in a 500 MHz

Bruker AMX NMR spectrometer, proton frequency

500.137 MHz, equipped with a 5 mm TXI probe. A zg

pulse sequence was used for the acquisition of 1H NMR

spectra. All measurements were performed at 298 K,

containing 1,536 scans with 4 initial dummy scans. The

receiver gain was set to 512 and the acquisition time to

2.23 s of 32,768 data points and spectral width of

14.7018 ppm. A 45� pulse was given with a delay of 1.5 s.

In total, each measurement took 1 h 35 min 56 s of

acquisition time. Data acquisition was done under the

control of Bruker XWIN-NMR version 2.1. The datasets

were Fourier-transformed, corrected for phase, calibrated

for the chemical shift axis towards the resonance of the

methanol signal (d = 3.31 ppm) and baseline corrected.

2.5 LCMS analysis

The extracts were analysed by reversed phase LCMS for

their metabolite contents, following the protocol described

previously (Moco et al. 2006a). The LC-QTOF-MS anal-

yses were carried out in electrospray (ESI) negative mode.

In brief, a Waters Alliance 2795 HT system equipped with

a Luna C18(2) pre-column (2.0 9 4 mm) and analytical

column (2.0 9 150 mm, 100 Å, particle size 3 lm) from

Phenomenex (Torrance, CA, USA) were used for chro-

matographic separation. The HPLC system was connected

online to a Waters 2996 PDA detector and subsequently to

a QTOF Ultima V4.00.00 mass spectrometer (Waters-

Corporation, MS technologies, Manchester, UK). Mass

range and scan rate were set to record m/z 100–1,500/s.

2.6 Data pre-processing

Acquisition, visualization and manual processing of LCMS

data were performed under MassLynx 4.0 (Waters). Mass

data were automatically processed by metAlign version 1.0

(http://www.metalign.nl). Baseline correction and noise

calculations, which are integrated within this software,

were performed from scan number 75 to 2,550, corre-

sponding to retention times 1.5 min (before injection peak)

to 50.1 min (before column washing) and the maximum

amplitude was set to 30,000. More details about the set-

tings of metAlign can be found elsewhere (De Vos et al.

2007). Mass signals below 50 units of intensity (average

through the samples) were discarded, reducing the size of

the matrix to 12%.

Processing and visualization of 1H NMR data was done

using Bruker TopSpin version 2.0. (Germany). The matrix

of chemical shift amplitudes across all tomato samples was

calculated by using a bucket analysis within the AMIX

software (Bruker, Germany). The signals were integrated

by sum of intensities and normalized to total spectral

intensity between samples. A bucket width of 0.01 ppm

was applied and the following spectral intervals were

excluded: 4.71–5.05 ppm (water signal) and 2.29–

3.32 ppm (methanol signal).

The NMR dataset was normalized to total signal inten-

sity per sample and was not further scaled. In contrast, the

LCMS data were not normalized to total intensities; instead

the intensity of each mass signal was separately scaled over

all samples, so that all variables had unit variance.

2.7 Data analysis

The data matrixes of NMR and LCMS were subjected to

multivariate and statistical analyses using MATLAB, ver-

sion 7.10 (MathWorks Inc). Principal component analyses

(PCA) were performed on the NMR and LCMS data sets

separately. Correlation analyses were performed within

NMR signals and LCMS signals, separately, as well as

between NMR and LCMS signals. For the correlation

analyses, the Pearson correlation coefficient (corrcoef) was

used. Equation 1 was applied in the calculation of NMR

and LCMS correlations, in which cov is the covariance

matrix of NMR and LCMS variables and rNMR and rLCMS

are the standard deviations of NMR and LCMS, respec-

tively (including the values of one variable in all samples).

The confidence level in all correlations was [99.99%.

corrcoef ¼ covðNMR; LCMSÞ
rNMR � rLCMS

ð1Þ

Using Mahalanobis distance calculation, spurious or

‘‘false’’ correlations were identified in the correlations.

These were correlations where only one sample gave rise to

correlation, while the rest of the samples were randomly

ordered. The Mahalanobis distance from the deviating

sample to the sample group were taken from the correlation

plots in which one axis represents the values from one
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variable in all samples, and the other axis represent another

variable in all samples, Eq. 2.

Mahalanobis distance ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

p

i¼1

xi � yi

ri

� �2

v

u

u

t ; ð2Þ

where the elements of x are denoted by xi, the elements of

vector y are denoted by yi and ri is the standard deviation

of xi over all samples. Each sample at a time was regarded

as y, and the distance to the centre (mean) of the remaining

samples in x were measured. One or more Mahalanobis

distances [50 in a given correlation plot revealed the

presence of a ‘‘false’’ correlation, therefore this correlation

was discarded.

Two samples were found to be outliers in the LCMS and

NMR data. These were discarded based on three criteria:

(1) distinct segregation from the other samples in the PCA

plots, (2) abnormal characteristics of the raw data (such as

evident differences in the baseline or noise) and (3) outlier-

dependent correlations within and between LCMS and

NMR data. The correlations presented here were subse-

quently calculated omitting these outliers.

The visualization of the NMR and LCMS positive cor-

relations was obtained using the open source bioinformatics

software Cytoscape version 2.5.2 (http://www.cytoscape.

org) which enables the visualization of molecular interac-

tion networks. The layout degree sorted circle was applied to

the NMR–LCMS positive correlation data (r C 0.8). This

layout algorithm sorts nodes in a circle by degree of the

nodes.

For the standard compounds, the coefficients of corre-

lation of the LCMS signal intensities (obtained by

metAlign) and NMR resonance intensities (obtained by

manual signal integration using Bruker TopSpin) were

obtained by the least squares linear regression, using the

Statistical Analysis Tools of Microsoft Excel 2003.

3 Results and discussion

3.1 1H NMR analyses

1H NMR profiling was performed on methanol-d4 extracts

of 50 different cultivars of tomato fruit. The NMR spectra

appeared as a complex ensemble of resonances, indicating

the presence of a multitude of metabolites. In addition,

given the presence of resonances throughout the whole

spectral width (0–10 ppm), variable chemical features

ranging from aliphatic to aromatic groups were detected in

the extracts. In particular, intense signals in the sugar

region, 3–6 ppm, were observed indicating the presence of

glycosylated metabolites and free sugars (Fig. 1). From the

visual comparison of the spectra, there is an obvious

similarity between all spectra, suggesting similar metabolic

profiles between the different tomato cultivars.

The assignment of NMR resonances to metabolites was

based on previously reported findings for tomato fruit samples

(Le Gall et al. 2003; Mattoo et al. 2006; Mounet et al. 2007;

Sobolev et al. 2003) and NMR-based databases: the Spectral

Database for Organic Compounds (SDBS; http://www.aist.

go.jp/RIODB/SDBS/cgi-bin/cre_index.cgi), the Flavonoid

Database (Moco et al. 2006b), the Human Metabolome

Database (HMDB; http://www.hmdb.ca) and the Biological

Fig. 1 NMR spectrum of a cherry tomato fruit cultivar (top frame),

indicating distinct regions: (a) aromatic region, (b, c) sugar region

and (d) amino acid region. Metabolites are indicated next to the

respective resonances: GABA = c-aminobutyric acid; ADP = aden-

osine diphosphate
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Magnetic Resonance Data Bank (BMRB; http://www.

bmrb.wisc.edu).

The analysis of (non-fractionated) tomato fruit extracts

by 1H NMR (Fig. 1) allowed the detection of essentially

primary (polar) metabolites such as sugars, amino acids,

organic acids and nucleotides, and the abundance of the

corresponding resonances indicated the high natural con-

centration of these metabolites in the fruits. The relatively

low abundance of secondary metabolites and the large

amount of resonances in the spectrum (as a consequence of

the presence of highly abundant metabolites and resonance

overlap) made the detection of secondary metabolites, such

as phenolic acids, flavonoids and alkaloids, more difficult

as compared to the detection of the primary metabolites.

Based on these NMR profiles, the relative differences

between the various tomato varieties were visualised by

plotting the scores of a principal component analysis

(PCA) (Fig. 2). On PC1 (largest variation of all variables) a

clear segregation between, on the one hand, the cherry

tomatoes and, on the other hand, the beef and round

tomatoes was found. The segregation between these two

groups was mainly the result of spectral differences in the

sugar region, as was concluded from the loading variables

of the PCA model (data not shown). Beef and round tomato

types were not separated by PC1, implying relatively

similarity of the metabolic profiles in the sugar region.

3.2 LCMS analyses

The same extracts used for 1H NMR were taken for LCMS

profiling, after aqueous dilution to 25% (v/v). The obtained

metabolic profiles (Fig. 3) were analogous to the ones

described before (Moco et al. 2006a, 2007b). The assign-

ment of metabolites was based on the previously published

LCMS-database of tomato fruit metabolites (MoToDB;

Moco et al. 2006a, 2007b).

Using C18-reversed phase-LCMS, essentially semi-

polar metabolites, such as phenolic acids, alkaloids and

flavonoids, were detected. The polar metabolites (i.e. more

polar than the stationary phase of the column used for the

chromatographic separation), which include sugars,

organic acids, most amino acids and nucleotides, elute as

large overlapping chromatographic signals before 4 min of

retention time. In the PCA scores plot (Fig. 4) the cherry

tomatoes were clearly separated from the round and beef

tomatoes. The tendency shown in this LCMS-based PCA

plot is, in a large extent, analogous to the plot obtained

from the NMR analyses (Fig. 2). The similarity between

both plots is remarkable given the observed divergence in

metabolites detected (compare annotations in Figs. 1 and

3). Therefore, it can be proposed that the metabolic dif-

ferences, which separate the cherry tomatoes from the

round and beef types, belong to both primary (mostly

detected by NMR) and secondary (mostly detected by

LCMS) metabolism.

3.3 NMR and LCMS dose–responses of standard

compounds

Six standard compounds (glucose, citric acid, tryptophan,

chlorogenic acid, rutin and tomatine) at different concen-

trations were analysed by both NMR and LCMS for the

assessment of instrumental dose–response relationships

(data not shown). As was expected, with both methods an

increase in signal height (for MS mass signals) or area (for

NMR resonances) was registered with increasing concen-

trations of the standard compound. However, the linearity

range of the instrumental signals along the compound

concentrations proved differently between the two tech-

niques. For NMR, the instrumental response was linear for

all resonances and for all metabolites tested. As a conse-

quence, the correlations between different resonances of

the same metabolite were linear as well (the obtained

correlation coefficients, r, were on average 1.00). It is well-

known that modern NMR spectrometers have a wide

dynamic range (up to 22 bits—more than one million—in

the latest hardware configurations), demonstrating the

power of NMR as a quantitative technique. On the other

hand, as to be expected, MS is more sensitive than NMR

which was made clear from the fact that its dynamic range

was shifted towards lower absolute concentration ranges as

compared to the NMR. The QTOF-MS Ultima instrument

used in this study has, however, limitations at the higher

concentrations, resulting in a saturation of the response, as

reported previously (Chernushevich et al. 2001; Moco

et al. 2006a). New types of MS instruments have improved

hardware configurations that enable detection in a larger

Fig. 2 PCA plot of normalized and mean-centred bucket NMR data

of fruits from tomato cultivars (explained variance by PC1 98.5%,

PC2 0.6% and PC3 0.3%)
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dynamic range. With the experimental conditions used in

our LCMS analyses, the detector response was linear for

parent ion intensities up to about 20,000 counts per scan,

corresponding to about 25 lM of the reference compounds.

Above this maximum, there was no longer a linear

response with increasing concentrations. At such relative

high concentrations, better linearity was obtained for the

2nd and 3rd isotope signals.

3.4 NMR–NMR signal correlations across samples

Correlation analyses allow the assessment of the degree of

linear association between two variables. Correlations can

range from the value -1 to +1. Negative correlations are

obtained for r \ 0, which indicate linear negative associ-

ations between two variables, while positive correlations

are obtained for r [ 0, indicating positive linear associa-

tions. The lack of any association between two variables is

originated by r = 0. In this study, the similarity in

behaviour across the various tomato samples was assessed

in terms of signal intensity. For example, the intensity of

signal x, present in all tomato cultivars, is consistently

related to the intensity of signal y. These associations

between signals are given by their correlation coefficients.

To identify significantly correlating NMR-signals in the

data matrix of tomato cultivars, correlation analysis was

carried out on the intensities of the different NMR signals

(buckets) over all tomato samples, after normalization

towards total signal intensities. In these NMR–NMR cor-

relation studies we firstly focussed on the subsection of the

matrix with correlation coefficients |r| C 0.8. This level is

considered to be sufficiently high to allow identification of

robust associations between variables. From a dataset of

1,008 NMR-buckets, more than 30,000 correlations were

found, corresponding to 3.0% of the mathematical possi-

bilities, in which all buckets participated at least once in a

correlation pair. In principle, NMR signals belonging to the

same compound should show the highest correlations with

each other across samples. As examples, NMR–NMR

correlations of signals from trigonelline, sucrose and citric

acid in the tomato samples are shown in detail in Fig. 5.

The alkaloid trigonelline produced very low signal

intensities in the NMR spectra of tomato fruits (see Fig. 1).

Due to high deshielding of some of the trigonelline protons,

this compound has resonances in a relatively empty region

of the NMR spectrum (e.g. at 9.2 and 8.9 ppm). The res-

onances belonging to trigonelline exhibited high linear

correlations (r C 0.81) between each other across all

samples, as shown in Fig. 5a. In fact, this correlation

analysis enabled the assignment of signals that otherwise

Fig. 3 Negative ion mode electrospray ionization (ESI-)-LCMS chro-

matogram of fruits from a cherry tomato cultivar. For the following

metabolites, the retention time (min) and the detected mass are indicated:

a, (phenylalanine)FA; b, zeatin hexose; c, e, caffeic acid hexose; d,

dehydrophaseic acid hexose; f, g, i, caffeoylquinic acid; h, (iso)pentyl

dihexose; j, (esculeoside B)FA; k, quercetin-hexose-deoxyhexose-

pentose; l, o, (lycoperoside F)FA or (lycoperoside G)FA or(esculeoside

A)FA; m, rutin; n, (dehydrolycoperoside F)FA or (dehydrolycoperoside

G)FA or(dehydroesculeoside A)FA; p, kaempferol-3-O rutinose; q, r, s,
dicaffeoylquinic acid; t, v, naringenin chalcone-hexose; u, (lycoperoside

A)FA or (lycoperoside B)FA or (lycoperoside C)FA; w, a-tomatin; x,

tomatoside A; y, z, aa, tricaffeoylquinic acid; ab, naringenin; ac,

naringenin chalcone

Fig. 4 PCA of mean-centred unit-variance scaled LCMS data of

tomato fruit cultivars (explained variance by PC1 90.0%, PC2 4.7%

and PC3 1.2%)
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would have been masked by the high complexity of the

tomato extracts and the relative low concentration of trig-

onelline. Using this NMR–NMR signal correlation

approach, a full 1H NMR characterization of trigonelline

was achieved (Fig. S.1, Table S.1).

Sucrose is an abundant compound in tomato fruits,

which was evident from the high and characteristic signal

at 5.385 ppm in the 1H NMR spectra (Fig. 1). This disac-

charide has a complex NMR spectrum, in particular in the

3–4.5 ppm region which overlaps with the resonances of

other free sugars and sugar moieties. Using NMR–NMR

correlations across the 50 tomato samples, it was possible

to identify other resonances belonging to sucrose (Fig. 5b).

Citric acid was also detected in tomato fruits and its

resonance signals appear around 2.8 ppm. The four reso-

nances of citric acid were readily identified from their

strong correlations (r C 0.82) (Fig. 5c).

Given the complexity of the 1H-NMR spectra of crude

tomato fruit extracts, the overlap of signals is a difficulty in

the assignment of endogenous metabolites. The identifi-

cation of NMR resonances belonging to the same

compound was facilitated by correlation analyses, enabling

the assignment of signals from the same compound within

complex mixtures. As the pre-processing of NMR data was

performed by bucketing, there was an associated loss in

spectral resolution, as well as propagation of resonances

through more than one bucket along the samples. However,

as there are unavoidable shifts between NMR spectra (even

under the best controlled experimental conditions), a direct

comparison of all signals is currently impossible, and a pre-

processing approach such as bucketing is mandatory.

3.5 LCMS–LCMS signal correlations across samples

Analogously to the NMR dataset, the LCMS dataset of the

tomato cultivars was statistically analysed for correlations

between LCMS signals across the samples. The pre-

processed data matrix contained 3,374 mass signals,

aligned by retention time and m/z. More than 130,000

significant strong correlations (|r| [ 0.80) were obtained,

corresponding to 1.2% of the mathematical possibilities, in

which all m/z signals participated at least once in a corre-

lation pair. The highest positive correlations (r C 0.96)

were found for mass signals belonging to the same

metabolite, such as adducts and fragments. As an example,

three compounds were analysed in more detail: sucrose

(341 m/z), phenylalanine (164 m/z), and caffeoylquinic

acid (353 m/z, retention time 14.9 min) (Fig. 6).

Sucrose was detected both by NMR and LCMS. Sucrose

has a short elution time from the LC column: between 2.1

Fig. 5 Selected normalized signal intensities of NMR buckets of 1H

NMR spectra of tomato cultivars belonging to resonances of the same

compound: (a) trigonelline, (b) sucrose and (c) citric acid. The

correlation coefficients (r) are displayed for each pair of NMR

buckets (x axis, y axis)

b
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and 2.8 min, with a large overlap with other eluting polar

metabolites. Parent ion adducts (dimer and trimer), iso-

topes and formic acid adducts of sucrose exhibited

correlations with the molecular ion of sucrose (341 m/z),

with r [ 0.96 (Fig. 6a).

Also the amino acid phenylalanine is detectable by both

NMR and LCMS in tomato fruit extracts. Very high cor-

relations (r [ 0.99) were found between isotopes and a

fragment of phenylalanine and the molecular ion of phen-

ylalanine (164 m/z) (Fig. 6b).

A series of caffeoylquinic acid derivatives have been

putatively assigned in tomato: three caffeoylquinic acid

isomers, three dicaffeoylquinic acid isomers and three

tricaffeoylquinic acid isomers (Moco et al. 2006a). For the

secondly eluting isomer of caffeoylquinic acid (m/z 353 at

retention time 14.9 min, assigned as 5-caffeoylquinic acid

(Moco et al. 2006a), not only signals related to this specific

isomer such as isotopes, adducts, parent ion adducts were

found to be highly correlated (r [ 0.98), but interestingly

also two signals derived from other caffeoylquinic acids

derivatives, including dicaffeoylquinic acids and trica-

ffeoylquinic acids (Fig. 6c, Table S.2). Thus, this

correlation analysis enabled us to verify the presence of other

caffeoylquinic acid derivatives in tomato fruit: clearly indi-

cating the potential of this strategy to identify biochemically

related compounds within complex mixtures.

High positive (r [ 0.8) LCMS–LCMS correlations were

found not only between signals belonging to the same

metabolite, but also among chemically related metabolites,

such as the isomer series of (di and tri)caffeoylquinic acids.

This observation suggests the presence of equilibriums and/

or asymmetric control between the various (di and

tri)caffeoylquinc acids (Camacho et al. 2005; Steuer 2006).

3.6 NMR–LCMS signal correlations across biological

samples

NMR and LCMS datasets acquired for the different tomato

cultivars were further analysed using an inter-method

correlation analysis. In order to achieve this, each LCMS

Fig. 6 Selected signal heights of LCMS signals (m/z) with high

correlation coefficients (r) to the compounds: (a) sucrose (341 m/z)—
387 m/z = [sucrose + HCOOH - H]-, 683 m/z = [sucrose + su-

crose - H]-, 684 m/z = 2nd isotope of [sucrose + sucrose - H]-,

1,025 m/z [sucrose + sucrose + sucrose - H]-; (b) phenylalanine

(164 m/z)—165 m/z = 2nd isotope of [phenylalanine - H]-, 147 m/z
= [phenylalanine - NH3 - H]- and (c) caffeoylquinic acid II (353 m/z
at 14.9 min)—677 m/z at 40.7 min = [tricaffeoylquinic acid II - H]-,

677 m/z at 39.4 min = [tricaffeoylquinic acid I - H]-, 515 m/z at

30.7 min = [dicaffeoylquinic acid III - H]-, 515 m/z at 28.6 min =

[dicaffeoylquinic acid II - H]-, 515 m/z at 27.9 min = [dicaffeoylqui-

nic acid I - H]-, 353 m/z at 13.2 min = [caffeoylquinic acid I - H]-.

The correlation coefficients (r) are displayed for each pair of LCMS

signals (x axis, y axis)

b
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signal (m/z value at a certain retention time) was directly

compared to each chemical shift present in the NMR

buckets, producing a 3,374 9 1,008 correlation matrix.

This correlation matrix can be visualized as a heat-map. As

an example, a section of the obtained NMR–LCMS cor-

relation map, for |r| C 0.8, is shown in Fig. 7. It can be

seen that resonances at 3.3 and 5.3 ppm had a high positive

correlation to numerous m/z signals (Fig. 3), suggesting

that these LCMS signals are originated from glycosylated

metabolites. In fact, at this retention time region (23.12–

27.55 min), metabolites such as glycosylated flavonoids

(quercetin and kaempferol glycosides) and alkaloids of the

lycoperoside-type are present (see Fig. 3).

The performed NMR–LCMS correlation analysis led to

514 significant positive and 47 significant negative corre-

lations for |r| C 0.8, corresponding to 0.16% of the

mathematical possibilities, in which 6% of the signals

(LCMS m/z’s and NMR buckets) participated at least once

in a correlation pair. To visualize the connectivities

between these highly correlated NMR buckets and LCMS

signals, a network was constructed (Fig. 8). This network

has 246 nodes (total number of unique NMR buckets and

LCMS signals) and 514 edges (total number of positive

correlations). The degree of connectivity between NMR

buckets and LCMS signals is high, as only a few isolated

clusters were observed within this network.

The largest cluster (Fig. 8a) comprehends more than

50% of the obtained nodes. The represented NMR buckets

belong to sugar resonances (between 3.4 and 5.4 ppm),

except for one bucket (at 8.205 ppm). This latter bucket is

tentatively assigned to formic acid and establishes high

correlations to a range of LCMS signals. Mostly sugars

(free and bound) are present in the LCMS signals within

this cluster, as seen by the abundance of signals related to

polar metabolites such as free sugars (retention times lower

than 4 min) and glycosylated alkaloids and saponins cor-

responding to high m/z values. In fact, the NMR buckets

5.375, 5.385 and 5.395 ppm, which correspond to the

anomeric protons of sugar moieties, correlated to 75% of

the total of LCMS signals within this cluster, suggesting

the abundance of glycosylated metabolites.

The second largest cluster (Fig. 8b) corresponds to mainly

naringenin or naringenin chalcone derivatives. Tomato

fruit contains endogenous naringenin chalcone which after

extraction slowly undergoes chemical cyclization into

naringenin (Moco et al. 2006a, b). Therefore the presence of

naringenin is linked to the presence of naringenin chalcone.

This cluster B contains various NMR buckets representing the
1H NMR chemical shifts of both naringenin and naringenin

chalcone (Table 1), as well as LCMS signals belonging to

these two metabolites, including molecular ions, isotopes (up

to the 4th), adducts, dimers (with Na-formic acid), fragments

and isotopes of fragments, as well as hexose-substituted

species. In total, eight different naringenin or naringenin

chalcone derivatives could be identified by means of this

NMR–LCMS correlation analysis. In fact, the intensity of the

NMR resonances belonging to naringenin is rather low, which

would make identification of this metabolite in tomato by only
1H-NMR profiling very difficult. Within cluster B are also

NMR–LCMS connectivities related to signals from two

kaempferol glycosides: kaempferol-hexose-deoxyhexose-

pentose ([M–H]- = 725 m/z, and kaempferol-3-rutinoside

([M–H]- = 593 m/z, 2nd isotope of [M–H]- = 594 m/z and

Na-formic acid adduct = 661 m/z). It is well known that na-

ringenin, naringenin chalcone and kaempferol are derived

from the same flavonoid biosynthetic pathway (see e.g.

KEGG PATHWAY Database; http://www.genome.jp/kegg/

pathway.html), so the high correlations between LCMS and

Fig. 7 Section of the correlation

map of NMR–LCMS for tomato

fruit: [3.005–6.995 ppm (NMR);

2,900–3,100 (LCMS peak

number) = (23.12–27.55 min)].

Horizontally, the NMR buckets

(ppm) of the samples are

overlaid and vertically the

LCMS peak numbers (peak

numbers increase with retention

time and m/z) of the samples are

overlaid. In the central frame, the

correlation coefficients, r, for

NMR–LCMS correlations are

displayed as a blue-red heat map
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A

G

FED

B C

Fig. 8 Network structures

shown in (a–g), obtained from

the NMR–LCMS correlations of

tomato fruit data, for r C 0.8.

Correlations between NMR

buckets (in ppm; as black

circles) and LCMS signals (as

m/z at a specific retention time,

in min; as white circles) are

linked by a grey line
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NMR signals of these flavonoids are a good indication of the

potency of this approach to complement metabolomics data.

The other structures observed within this NMR–LCMS

correlation network (Fig. 8c–g) correspond to metabolites

with either low NMR–LCMS overlap or to NMR regions

which were found to be more prone for chemical shift

shifts. A logical chemical dependency between NMR

buckets and LCMS signals could be identified in none of

these clusters. These structures may therefore be related to

chemical properties of yet unknown metabolites, or be a

consequence of statistical coincidence.

Upon lowering the NMR–LCMS correlation threshold

from |r| C 0.8 to |r| C 0.7, the number of significant cor-

relations increased considerably: from 514 to 5,258

positive correlations and from 47 to 1,638 negative corre-

lations. Within the dataset of 0.7 B |r| \ 0.8, several

metabolites with high intra-method signal correlations

(Figs. 5, 6) were also found to correlate in this inter-

method approach, such as sucrose (Fig. 9a), phenylalanine

(Fig. 9b) and trigonelline (Fig. 9c).

The observed correlations within and between NMR

and LCMS variables can be the result of different inter-

actions between the variables. They may be the effect of

the presence of different signals derived from exactly the

same metabolite (e.g. Figs. 5, 6a, b, 9), from biochemi-

cally related metabolites (Fig. 6c), or from unrelated

metabolites that have a similar abundance pattern across

the samples.

From the present correlation analyses, it can be con-

cluded that the chemical overlap between NMR and LCMS

signals obtained by our tomato metabolic profiling tech-

niques was significant. The percentage of overlap between

NMR and LCMS signals was roughly 6% (with r C 0.8).

However, it is difficult to infer the number of coincident

metabolites captured by both NMR and LCMS. Never-

theless, several adaptations or/and improvements in the

hardware, analytical set up, data pre-processing and sta-

tistical analyses strategies may help to increase the quality

and number of intra-method correlated signals obtained by

NMR- and LCMS-based metabolic profiling approaches.

Firstly, the investigation of sample fractionation protocols

can contribute to diminish NMR-spectral complexity and

inherent signal overlap. Secondly, optimization of the

nature of interaction and polarity range of the chromatog-

raphy used in the LCMS can be explored. For example, the

use of hydrophilic columns, which are more suitable for

chromatographic separation of polar metabolites also

detected by NMR (such as amino acids, organic acids,

sugars) than the reverse-phase column used in the present

study, may result in an increased chemical overlap.

Thirdly, an increase in the response linearity of MS at high

metabolite abundance, resulting in a better linear correla-

tion with the less sensitive NMR, can be obtained by using

wider-dynamic range MS instruments, such as modern

TOF-MS machines (e.g. equipped with an analog-to-digital

detector) or Fourier Transform (FT)-MS. The improved

Table 1 Putative assignment of naringenin and naringenin chalcone from the NMR buckets obtained by NMR–LCMS correlation analysis and

network representation

NMR bucket (ppm) Naringenin chalcone Naringenin

5.845 H30/H50 H8 or H6

6.805 H5/H3 H30/H50

6.815

6.825

7.475 H2/H6 H20/H60

7.495

7.675 H7 –

7.865 H2/H6 with 4-conjugation (glycolsylation?) H20/H60 with 40-conjugation (glycosylation?)

8.055 H8 –

8.085 –
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mass accuracy of FTMS instruments can also facilitate the

identification of metabolite signals observed in NMR–

LCMS correlations. In addition, the combination of data

obtained by negative and positive ionization modes can be

fruitful to increase the overlap of LCMS with NMR.

Fourthly, developments on the quality of NMR data, such

as obtaining flat baselines, very precise temperature control

and increase in sensitivity (by making use of cryogenic

probes, higher magnetic field instruments or other type of

NMR measurements), can be advantageous. Fifthly, the

development of improved deconvolution software for

NMR spectra, which can be used for batch-wise pre-pro-

cessing of NMR spectra from complex mixtures, to avoid

the usage of bucketing methods which result in a reduction

of spectral resolution and inherent overlap of frequency

signals from different metabolites. Sixthly, the develop-

ment of algorithms that can correct for non-linearity in

instrumental responses can contribute to the quality of the

inter-method correlations. The implementation of one or

more of these items can lead to improvements in both the

quantity and quality of the NMR–LCMS correlations and

may result in a wider application of this promising strategy

in metabolomics studies.

4 Concluding remarks

The application of intra- and inter-method correlation

analysis of untargeted metabolomics data, obtained by

LCMS- and 1H-NMR-based profiling of exactly the same

biological material, appears to be a powerful strategy in

discovering and linking metabolite information, which can

be used in biomarker discovery and annotation, and in the

analysis of metabolic pathways. The percentage of

obtained intra-correlations, in both cases B3%, indicates

the presence of a complex control among the metabolites,

for the amount of low correlations (|r| \ 0.6) prevails.

Despite the different analytical selectivities and sensi-

tivities of the NMR and LCMS used in the present study,

the fusion of metabolomics data through NMR–LCMS

Fig. 9 Examples of NMR–

LCMS correlations for specific

metabolites represented as

networks (a, b; for colour

coding see Fig. 8) or as a graph

(c): (a) sucrose (NMR–LCMS

correlations with

0.70 \ r \ 0.78); (b)

phenylalanine (NMR–LCMS

correlations with

0.70 \ r \ 0.78) and (c)

trigonelline (NMR–LCMS

correlation with r = 0.77)

Intra- and inter-metabolite correlation spectroscopy 213

123



inter-correlation analysis generated a substantial number of

significantly correlating metabolite signals. Based on these

correlating signals, the identification of the underlying

metabolites was facilitated and relationships between

chemically-related metabolites could be observed, proving

the validity of this approach. Precisely due the analytical

differences inherent to NMR and LCMS, a larger section of

the metabolome could be captured, as together, NMR and

LCMS, contributed to the detection of a larger and wider

range of chemically diverse metabolites. Hence, we can

conclude that intra- and inter-method correlation analyses

have potential applications in the interpretation of meta-

bolomics data obtained by 1H-NMR and LCMS.
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