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Abstract
Pulmonary arterial hypertension (PAH) is a devastating progressive disease characterised by pulmonary arterial 
vasoconstriction and vascular remodelling. Endothelial dysfunction has emerged as a contributing factor in the development 
of PAH. However, despite progress in the understanding of the pathophysiology of this disease, current therapies fail to 
impact upon long-term outcomes which remain poor in most patients. Recent observations have suggested the disturbances 
in the balance between ATP and adenosine may be integral to the vascular remodelling seen in PAH. CD39 is an enzyme 
important in regulating these nucleos(t)ides which may also provide a novel pathway to target for future therapies. This 
review summarises the role of adenosine signalling in the development and progression of PAH and highlights the therapeutic 
potential of CD39 for treatment of PAH.
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Introduction

Pulmonary arterial hypertension (PAH) is a progressive 
disorder characterised by pulmonary arterial vasoconstric-
tion, vascular remodelling and smooth muscle cell prolif-
eration. The resultant increase in pulmonary vascular resist-
ance (PVR) leads to right ventricular afterload, hypertrophy 

and ultimately death due to right heart failure. Although the 
underlying pathogenesis of PAH is poorly understood, imbal-
ances in prostacyclin, nitric oxide and endothelin-1 have been 
implicated, and many current therapies target these pathways 
[1]. Despite this, the prognosis for PAH remains poor with 
a 43% 5-year mortality [2] and as such the development of 
therapeutic strategies targeting novel pathways contributing 
to the pathobiology of PAH is of great importance.

Pulmonary hypertension

PH is defined by a resting mean pulmonary arterial pressure 
(mPAP) greater than or equal to 20 mm Hg, measured by 
right heart catheterization [3]. PAH can be classified as pre- 
or post-capillary PH. Pre-capillary PAH is due to a primary 
elevation in the pressures in the pulmonary arterial system 
and post-capillary PH is due to elevations in the pulmonary 
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arterial pressures that result from back pressure from the 
venous system or left side of the heart [3]. Nevertheless, 
the World Health Organization has largely standardised the 
PH classification into five groups based on the underlying 
aetiology [3]. Pulmonary hypertension is the umbrella under 
which all 5 categories sit, pulmonary arterial hypertension 
(PAH) is used to describe patients in group 1. Table 1 out-
lines these classification groups which aims to differentiate 
pulmonary arterial hypertension (PAH group 1) from sec-
ondary causes. Whilst these groups display similarities, they 
are distinct in terms of pathophysiology and clinical course.

Group 1 is classified as those with pulmonary arterial 
hypertension (PAH) owing to a primary narrowing of the 
arterial vascular bed within the lungs. This narrowing can 
occur due to specific underlying causes such as familial 
traits, drugs or toxins, connective tissue diseases including 
scleroderma or lupus, infections such as human immunode-
ficiency virus (HIV) or schistosomiasis. If no clear under-
lying cause or association is found, it is termed idiopathic 
pulmonary arterial hypertension (iPAH) [3]. The remaining 
4 groups are outlined in Table 1.

The symptoms of PAH, although initially very nonspe-
cific, are generally progressive. They include breathless-
ness, fatigue, weakness, angina and syncope [4]. The non-
specific presentation along with poor correlation between 
severity and clinical signs often results in delays in diag-
nosis and advanced disease by the time the diagnosis is 
made [5, 6].

Currently PAH remains incurable and, for patients who 
are eligible, lung transplantation remains the only hope for 
long-term survival [7]. Current available therapies generally 
aim to dilate the small arterioles in the pulmonary vascular 
bed through vasodilatory medications or muscle relaxants 
[8–10]. Certainly, these advances in therapy often improve 
patients’ symptoms and quality of life; however, they do 
not improve long-term outcome [11]. Given none of the 
current therapies target the pulmonary vascular remodel-
ling or inflammation which are now thought to underpin 
the pathogenesis, further understanding of these processes 
could potentially provide novel therapeutics. The quiescent 
pulmonary endothelium maintains an antithrombotic surface 
that facilitates the transit of plasma and cellular constituents 

Table 1  Updated clinical 
classification of pulmonary 
hypertension (PH) [3]

PAH, pulmonary arterial hypertension; PVOD, pulmonary veno-occlusive disease; PCH, pulmonary capil-
lary haemangiomatosis; LVEF, left ventricular ejection fraction

Group 1 – Pulmonary arterial hypertension
1.1 Idiopathic PAH
1.2 Heritable PAH
1.3 Drug- and toxin-induced PAH
1.4 PAH associated with:
  1.4.1 Connective tissue disease
  1.4.2 HIV infection
  1.4.3 Portal hypertension
  1.4.4 Congenital heart disease
  1.4.5 Schistosomiasis
1.5 PAH long-term responders to calcium channel blockers (table 4)
1.6 PAH with overt features of venous/capillaries (PVOD/PCH) involvement (table 5)
1.7 Persistent PH of the newborn syndrome
Group 2 PH due to left heart disease
2.1 PH due to heart failure with preserved LVEF
2.2 PH due to heart failure with reduced LVEF
2.3 Valvular heart disease
2.4 Congenital/acquired cardiovascular conditions leading to post-capillary PH
Group 3 PH due to lung diseases and/or hypoxia
3.1 Obstructive lung disease
3.2 Restrictive lung disease
3.3 Other lung disease with mixed restrictive/obstructive pattern
3.4 Hypoxia without lung disease
3.5 Developmental lung disorders
Group 4 PH due to pulmonary artery obstruction
4.1 Chronic thromboembolic PH
4.2 Other pulmonary artery obstructions
Group 5 PH with unclear and/or multifactorial mechanisms
5.1 Haematological disorders
5.2 Systemic and metabolic disorders
5.3 Others
5.4 Complex congenital heart disease
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throughout the pulmonary vasculature [12]. More recently, 
the importance of an intact endothelium in the homeostatic 
mechanisms that regulate vascular tone, cellular adhesion 
and blood fluidity have been better understood. It is now 
clear the intact and normally functioning endothelium has 
an integral role in maintaining an anti-inflammatory and 
antithrombotic micro-environment essential for the pres-
ervation of microvascular circulation and organ perfusion 
[13, 14]. Owing to its primary role, it is unsurprising that 
endothelial dysfunction results in a myriad of disease pro-
cesses and endothelial dysregulation has been implicated 
in the pathogenesis of many occlusive vascular inflamma-
tory vasculopathies such as pulmonary arterial hypertension 
[13–18]. PAH is emerging as a disease of endothelial dys-
function resulting in loss of normal vasodilator responses, 
abnormal wall remodelling and luminal narrowing of the 
pulmonary vessels [19].

Stiffening of the large elastic main pulmonary arteries is 
attributed to the lesions occurring in the distal pulmonary 
arteries ranging in diameter from 500 to 70um [20]. Three 
factors are thought to contribute to the increased pulmonary 
vascular resistance which characterise PAH: vasoconstric-
tion, remodelling of the pulmonary vessel wall and thrombo-
sis in situ [21]. Uncertainty remains surrounding the homol-
ogy in pathogenesis across the different sub-types of PH. 
Nevertheless, the mechanisms driving PAH are still largely 
unclear despite advances in understanding the contributory 
factors such as inflammation, pulmonary endothelial cell 
dysfunction and aberrant cell proliferation in the vascular 
wall, as well as several gene mutations.

Purinergic signalling pathways are an essential regu-
lator of the pulmonary vasculature and increasingly 
alterations in these pathways have been implicated in the 
pathogenesis of PAH with altered expression of ectonucle-
otidases, the integral regulators of purinergic signalling, 
described in patients with PAH [18, 22–24]. Intravascu-
lar nucleotide concentrations are regulated primarily by 
ectonucleotidases such as CD39 and CD73. To abrogate 
the pathological effects of extracellular ATP, a dynamic 
cascade of enzymes hydrolyses ATP to adenosine; CD39 
hydrolyses the inflammatory ATP and prothrombotic ADP 
to AMP and subsequently CD73 dephosphorylates AMP 
into adenosine [25–27]. Extracellular nucleotide concen-
trations and adenosine homeostasis is largely governed by 
these ectoenzymes. CD39 appears to represent a built-in, 
molecular brake on endothelial and immune cells which 
ensures tight regulation of intravascular nucleotide concen-
trations, and thus vascular inflammation and thrombosis at 
sites of injury [28]. Owing to its role in short-term vascular 
tone and longer term control of cell proliferation, migra-
tion and death, it is unsurprising that purinergic signalling 
appears to play an important role in the development and 
progression of PAH.

Endothelial dysfunction is paramount 
in the pathogenesis of PAH

Endothelial dysfunction is a term used to denote the pheno-
typic switch from the quiescent monolayer intent on preserv-
ing vascular fluidity to one that activates the host defence 
and promotes inflammation and thrombosis. It encompasses 
changes in the vasodilatory properties caused by reduction 
in the bioavailability of nitric oxide (NO) [29] and activa-
tion of molecular machinery which promote interactions 
between the endothelial layer, leukocytes and platelets such 
as increased expression of adhesion molecules E-selec-
tin, ICAM-1 and VCAM-1 [12]. This imbalance impairs 
endothelial-dependent vasodilation but also results in a 
prothrombotic, pro-inflammatory and proliferative milieu 
which promotes vascular remodelling [30] in several dis-
eases including atherosclerosis.

This is apparent in PAH where dysfunctional pulmo-
nary endothelial cells contribute to the pulmonary vascular 
remodelling process as they foster proliferation and survival 
as well as migration of resident pulmonary vascular cells 
such as smooth muscle cells, myofibroblasts and pericytes 
[31, 32]. Chronically impaired production of vasoactive 
mediators, such as nitric oxide and prostacyclin, along 
with prolonged overexpression of vasoconstrictors such as 
endothelin-1, not only affect vascular tone and promote vas-
cular remodelling but also foster a prothrombotic environ-
ment [20, 32–34].

Underpinning PAH is the subsequent local adapted 
release of particular chemokines, cytokines and growth fac-
tors which inhibit angiogenesis and drive pulmonary vascu-
lar remodelling. Endothelial cells from patients with PAH 
appear to have an abnormal phenotype with features such as 
decreased capacity for vascular tube formation, heightened 
aerobic glycolysis [34]. Furthermore, ECs from patients with 
PAH appear to lose some of their endothelial cell mark-
ers such a PECAM and CD31 and acquire mesenchymal 
cell markers. This pro-inflammatory phenotype is also 
characterised by surface expression of E-selectin, ICAM-1 
and VCAM-1 [34] which promote interaction with inflam-
matory cells on the endothelial surface. Nevertheless, the 
exact mechanism responsible for the observed endothelial 
dysfunction in PAH remains unclear. Recent studies have 
focused on two possibilities—high shear stress and chronic 
hypoxia.

As pulmonary circulation is high-flow, laminar shear 
stress, defined as the tangential force per unit area caused 
by flowing blood, is imposed continuously upon the pul-
monary endothelium. It has been shown to modulate the 
endothelial phenotype, including its barrier function [35, 
36]. Shear forces play an intrinsic role in promoting qui-
escence or activation of the endothelial cell [37, 38] and 
EC response to shear force can be organ specific [37, 39]. 
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Laminar shear stress can vary significantly between different 
organs and even throughout the vascular bed of an organ. 
This is apparent in the lung where in the microvascular shear 
forces may be 5–20 dyne/cm2 but between 10 and 50 dyne/
cm2 in the large arteries [40] or much lower in the veins. 
Laminar shear stresses in PH can reach levels well above 
physiological state (> 80 dyne/cm2) [35]. In the pulmonary 
vasculature, conditions of increased shear stress result in 
loss off the normal EC cobblestone appearance and elon-
gates the EC in the direction of the flow; failure to mor-
phologically adapt is associated with a tendency to vascular 
remodelling [41–43]. Interestingly, ECs from microvascu-
lar pulmonary vessels of patients with PAH, but not those 
from proximal pulmonary arteries, exhibited this delayed 
morphological adaptation to high shear stress in vitro [41]. 
Additionally, pathological shear force has been shown to 
reduce vasodilator (i.e. NO and prostacyclin) release whilst 
also promoting vasoconstrictor (i.e. endothelin and throm-
boxane) release which appears to result in upregulation of 
endothelial alpha-smooth muscle actin without impacting 
on smooth muscle cell proliferation [35]. Shear stress alone, 
however, was insufficient to cause animals to develop PAH 
[43], suggesting maladaptive EC response to shear stress 
may be one of several “hits” required for the development 
and perpetuation of PAH.

Chronic hypoxia appears to be a potent driver of struc-
tural remodelling in the humans with PAH and experimen-
tal models. Within plexiform lesions, ECs appear to have 
disrupted hypoxia sensors, hypoxic-inducible factor (HIF1 
and HIF) [44]. In a mouse model, disruption of the pro-
lyl-4 hydroxylase 2 (PHD2) gene, the enzyme that facili-
tates degradation of HIF1 and HIF2, results in an oblitera-
tive pulmonary vascular remodelling and complex lesions 
resembling plexiform lesions found in human PAH [44]. 
Chronic hypoxia also appears to increase eATP concen-
trations with contributions from the endothelium and the 
circulating erythrocytes [22].

Furthermore, there may be a synergistic relationship 
between shear stress and hypoxia in stimulating eATP from 
EC [45].

Better understanding of the mechanisms that underpin 
EC adaptation in the context of shear stress, chronic hypoxia 
and endothelial toxins may provide opportunities for novel 
therapeutic targets. Crosstalk between damaged ECs and 
smooth muscle cells may exacerbate the pulmonary artery 
vasoconstriction driven by imbalance between endothelial-
derived vasodilators such as NO and prostacyclin and vaso-
constrictive factors such as endothelin-1. ATP release from 
damaged, hypoxic or shear-affected endothelial cells, and its 
subsequent downstream signalling via purinergic pathways, 
is potentially a significant player contributing to the develop-
ment of pulmonary hypertension [22, 34].

Purinergic signalling is disrupted in PAH

Purinergic signalling plays an integral role in the mainte-
nance of endothelial cell integrity and blood vessel patency; 
imbalance of the adenosine/ATP ratio is a potential con-
tributor to the propagation of endothelial dysfunction in the 
development and progression of PAH (Fig. 1). The puriner-
gic nucleotides adenosine triphosphate (ATP), adenosine 
diphosphate (ADP), adenosine monophosphate (AMP) and 
the nucleoside adenosine are extracellular signalling mol-
ecules that can signal downstream effector targets to modu-
late endothelial and smooth muscle cell growth, endothe-
lial apoptosis, coagulation, vascular tone and inflammation 
[28, 46]. These ligands interact with a variety of cognate P1 
(adenosine) and P2 (ATP and ADP) receptors to produce 
effects that may be complimentary or antagonistic to one 
another, depending upon tissue-specific receptor sub-types 
and concentrations [47, 48]. Nucleot(s)ides act via a series 
of purinergic receptors, of which there are 2 subfamilies, 
purinergic receptor 1 (P1R) and purinergic receptor 2 (P2R). 
The P1R family, also known as adenosine receptors, are a 
group of G-protein coupled receptors including A1R,  A2AR, 
 A2BR and A3R. The P2R subfamily has 2 subgroups consist-
ing of 7 P2XRs  (P2X1-7R) and 8 P2YRs  (P2Y1R,  P2Y2R, 
 P2Y4R,  P2Y6R,  P2Y11R,  P2Y12R,  P2Y13R and  P2Y14R), and 
these can be stimulated by ATP, ADP or UTP [49]. Whilst 
there is heterogeneity in the expression of these receptors 
across different animal species, all P1 receptors can be found 
in the lung tissue of humans and mice [50–52]. Additionally, 
 P2X1,  P2X2,  P2X4,  P2X5,  P2X7,  P2Y2,  P2Y6,  P2Y11 have all 
be demonstrated to be present on the pulmonary endothe-
lium, whereas  P2X1,  P2X3, P2X4,  P2X7,  P2Y1,  P2Y12 are 
expressed on the smooth muscle cells in the pulmonary vas-
culature [53–57].

ATP is released into the extracellular space in response 
to tissue damage or cellular stress and acts as danger-asso-
ciated molecular pattern (DAMP) and binds to P2 recep-
tors to prompt signalling cascades to induce an inflamma-
tory response [58]. Both shear stress and chronic hypoxia 
induce release of ATP from the endothelial surface [45, 
59, 60]. Additionally, ATP is released from erythrocytes 
is states of hypoxia which is increasingly recognised as a 
critical regulator in tissue perfusion [61]. The role of eATP 
in the pulmonary vascular bed is variably dependent on the 
receptor and cell on which it is exerting its activity. ATP 
causes vasoconstriction by activation of the  P2X1 receptor 
on smooth muscle cells [62] but can also act via the  P2Y1 
and  P2Y2 receptors to release NO resulting in vessel relaxa-
tion [59, 63]. Shear stress promotes the release of eATP 
by pulmonary endothelial cells. Both flow-induced shear 
stress and eATP are activators of transient receptor potential 
vanilloid 4 (TRPV4) channels in pulmonary arteries. More 
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recently, it has been shown that this is likely mediated via 
eATP-potentiation of the endothelial TRPV4 which results 
in calcium dependent upregulation of eNOS to dilate pul-
monary arterioles [64, 65]. Impaired caveolin-1-TRPV4 
signalling has been shown to reduce endothelial vasodila-
tation and consequently increase pulmonary artery pressure, 
which may be a key pathological event in development of 
PAH [64, 65]. Intriguingly, hypoxia in both humans and 
mice also appears to induce upregulation of the  P2X1 recep-
tor in the lungs in a maladaptive response–promoting vessel 
vasoconstriction [22]. ADP promotes platelet activation and 
thrombosis but also can exert vasoconstrictive activity via 
 P2Y1 and  P2Y12 particularly in the context of hypoxia [54].

Adenosine on the other hand is a potent immune-sup-
pressor particularly of cells that express  A2 and  A3 recep-
tors, such as lymphocytes [66]. Adenosine is an important 
bioactive agent in states of vascular inflammation; its effects 
are mediated on both vascular cells and leukocytes [67]. 
In addition, adenosine has known antithrombotic effects by 
blocking induction of tissue factor via  A2A and  A3 receptors 
[68, 69], particularly during ischemic or atherosclerotic pro-
cesses, and it also modulates the expression of antiapoptotic 

genes and has anti-inflammatory properties [69]. The pul-
monary vasculature is one of the few vascular beds where 
the P1 receptors exert dual function promoting both vascular 
contraction and relaxation to maintain basal tone [70]. In 
the pulmonary vasculature adenosine stimulation of the  A1 
receptor, to which it has high affinity, results in vasocon-
striction. However, stimulation of the  A2A generally results 
in vasodilation. In the low adenosine state seen in patients 
with PAH [23], the variable affinity adenosine has with its 
G-protein-coupled receptors may play a key role in the pre-
vailing phenotype of vasoconstriction due to its propensity 
for the  A1 receptor over others.

Indeed, plasma adenosine concentrations from patients 
with PAH are lower than in healthy subjects [23]. This 
finding is corroborated in a study of newborn lambs with 
hypoxia-induced PAH where lower adenosine levels were 
noted compared to normoxic lambs [71]. As such, adeno-
sine has long been of interest in the therapeutic strategy in 
PAH owing to its vasodilatory activity. Reduction in right 
ventricular pressure was seen with infusion of adenosine 
in newborn lambs; this effect was apparent at lower doses 
in hypoxic lambs suggesting that hypoxia may sensitise 

Fig. 1  Pulmonary hypertension  (PH) is characterised by vasocon-
striction, vascular remodelling, and endothelial dysfunction. Char-
acteristic findings include smooth muscle cell proliferation and infil-
tration, proliferation of fibroblasts, and increased inflammation in 
the adventia. Endothelial dysfunction promotes the release of extra-
cellular ATP (eATP). CD39 is expressed on endothelial cells in the 
vasculature and converts ATP and ADP into AMP. AMP is then 
catabolised by CD73 to generate adenosine. Whilst ATP and ADP 

potentiate inflammation and vasoconstriction. The sub-types and dis-
tribution of P2 receptors which are activated by ATP and ADP are 
shown here throughout the endothelial cell (EC) and SMCs. Adeno-
sine on the other hand promotes vasodilatation via the P1 receptors 
particularly  A2AR.Whilst stimulation of the  A2BR increases nitric 
oxide bioavailability, prolonged activation appears to promote vascu-
lar remodelling. (Created with BioRe nder. com)

https://www.BioRender.com
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the pulmonary vasculature to adenosine [71]. Curiously, 
response to adenosine in patients appears to be dependent 
on the underlying cause of the PH. In patients with elevated 
pulmonary pressures immediately post cardiac surgery intra-
venous administration adenosine-reduced PAP and improved 
cardiac output at doses which did no compromise systemic 
blood pressure [72]. Therapeutic efficacy has also been seen 
in patients with PH associated with congenital heart disease 
[73] and prematurity in the neonate [74, 75]. Nevertheless, 
only around 10–20% of patients with idiopathic PAH had 
a reduction in their PAP with adenosine infusion [76, 77]. 
The utility of adenosine as a therapeutic strategy has been 
hampered by its exceptionally short half-life (5–10 s), and its 
propensity for systemic effects including hypotension with 
accompanying increased heart rate and cardiac output. As 
such, the role of more specific purinergic signalling path-
ways continues to be explored.

A2AR stimulation is appears to be protective 
in pulmonary hypertension

A2AR is an adenosine receptor, located on the endothelium 
and the smooth muscle cells, whose activation leads to vaso-
dilation [78, 79]. The role of  A2AR in the development of 
PAH has been explored in several animal models including 
an  A2AR genetic knockout (KO) mouse. The genetic inacti-
vation of  A2AR selectively and spontaneously produced PAH 
with associated increased RVS pressures, right ventricular 
hypertrophy as well as associated increased smooth muscle 
proliferation and collagen deposition [80].

Lack of  A2AR signalling appears to correlate with 
increased mRNA protein expression of the Ras homolog 
gene family member A and Rho kinase (ROCK)1 particu-
larly on pulmonary endothelial and smooth muscle cells 
[80, 81]. Activation of Rho A and its downstream effec-
tors ROCKs activate  Ca2+/calmodulin-dependent muscle 
contraction but also appear to inactivate  Ca2+-independent 
smooth muscle relaxation. In a chronic hypoxia induced 
model of PH in rats, inhalation of fasudil, a Rho kinase 
inhibitor, markedly reduced the development of PH and 
improved lung vascular remodelling [82].

A2AR agonism appears to be protective in models of PAH. 
LASSBio-1359 and LASSBio-1386, both strong  A2AR ago-
nists, have been shown to have a potent vasodilator effect 
monocrotaline-induced PAH in rats [83, 84]. Treated ani-
mals showed reduced PAP as well as reduced vessel wall 
hypertrophy with chronic administration. This finding was 
further attributed to  A2AR agonism, since the vascular effects 
of LASSBio-1359 and LASSBio-1386, could be reduced by 
using a selective  A2AR antagonist [83, 84].

Taken together, these observations suggest that the low 
adenosine state seen in PAH and consequential reduction 

in  A2AR activation results in Rho/ROCK-driven vasocon-
striction and vascular cell hyperproliferation. Owing to 
its anti-vasoconstrictive and anti-remodelling properties, 
stimulation of  A2AR signalling is a potential therapeutic 
option in PAH.

The role of  A2B is uncertain in pulmonary 
hypertension

Unlike  A2AR signalling, which may be protective in the 
development of PAH, the  A2BR is known to promote the 
development of PAH. It is the receptor with the lowest affin-
ity for adenosine [85] and whilst stimulation of the  A2BR 
was generally thought to promote pulmonary vasodilation 
[86, 87], it has emerged as the likely modulator of pulmo-
nary vascular remodelling with prolonged activation [88, 
89].

A2BR appears to be upregulated on the pulmonary vas-
culature in various forms of PH, however, particularly those 
related to interstitial lung disease [89, 90], chronic obstruc-
tive airways disease [88] and idiopathic PAH [89]. Nullifica-
tion of  A2BR signalling, either using pharmacological inhibi-
tion with GS-6201 or genetic deletion of  A2BR, appears to 
be protective in animal models of bleomycin-induced and 
lung-injury induced PAH with reduction in the vascular 
remodelling seen in these animals [88, 91].

Interestingly, direct  A2BR activation promoted interleu-
kin-6 and endothelin-1 release from both SMCs and ECs 
and cell culture medium from  A2BR-stimulated ECs pro-
moted proliferation in SMCs [91]. This could be abrogated 
using an  A2BR blockade on SMCs where the release of 
several remodelling mediators such as interleukin 6 (IL-
6) and hyaluronan synthase 2 were reduced [89]. Unsur-
prisingly, specific deletion of  A2BR on the SMC of mice 
protected them from the development of PH and abolished 
the vascular remodelling seen in bleomycin-induced PH 
[89]. Furthermore, conditional deletion of  A2BR in mye-
loid cells in a mouse model of lung injury–induced PH 
altered the inflammatory milieu. Animals had less IL-6 
in bronchoalveolar lavage fluid and reduced pulmonary 
fibrosis [92].

Despite the findings regarding the role of  A2BR, long 
-term subcutaneous infusion of adenosine or NECA, a non-
selective P1R agonist, abrogates proliferation of the vascular 
cells and subsequent vascular remodelling which underpins 
PH development in chronic hypoxia [52]. Some hypothesise 
that under acute conditions, hyperactivation of the  A2BR by 
adenosine is protective and leads to lung tissue repair [91]. 
Nevertheless, in humans with lung fibrosis, sustained activa-
tion of this receptor appears to be deleterious contributing 
directly to development of pulmonary vascular remodelling 
and P(A)H [90].
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CD39 is the molecular break regulating 
extracellular nucleot(s)ide concentrations

Intravascular nucleotide concentrations are regulated pri-
marily by the ectonucleotidase CD39 [ectonucleoside 
triphosphate diphosphohydrolase 1 (ENTPD1) and CD73 
(5-nucleotidase). Extracellular ATP functions as a danger 
signal (DAMP), triggering activation of P2 receptors and 
downstream pro-inflammatory responses [93].

In addition to its role in promoting adenosine generation, 
CD39 appears to be integral in the leukocyte trafficking 
response across the endothelial surface in response to chem-
otactic stimuli [28, 94]. Via rapid alterations in the purine 
concentration in the proximity of endothelial or immune 
cells, CD39 regulates immune cell adhesion to the endothe-
lial layer [95]. Immune cell adhesion is generally promoted 
by an ATP-rich environment and inhibited by adenosine 
[94, 95]. Mouse models lacking CD39 display increased 
leukocyte adhesion to the vascular endothelium [96–98]. 
Impaired adenosine generation in these animals resulted 
in increased endothelial cell activation, greater monocyte 
recruitment and platelet aggregation and increased endothe-
lial permeability suggesting a critical role for CD39 in the 
pathophysiology of vascular inflammation and microthrom-
bosis [96–100].

Crucially, modulation of CD39 has been demonstrated to 
have therapeutic benefit in several diseases underpinned by 
endothelial dysregulation and microthrombosis. In a mouse 
model of myocardial infarction, CD39 deficiency resulted 
in increased susceptibility to myocardial injury [101]. Con-
versely, overexpression of CD39-induced protection from 
myocardial infarction as measured by infarct size in both 
mouse [102] and pig [103] models of cardiac ischemia. 
CD39 overexpression has been found to mitigate stroke [99], 
hypertension in pre-eclampsia [104] and antiphospholipid-
related miscarriage [105].

CD39 expression is downregulated in PAH

Whilst purinergic signalling is a potent modulator of pul-
monary vascular homeostasis, this fine balance is achieved 
through the activity of ectonucleotidases. Changes in the 
CD39/CD73 axis have recently been hypothesised to cause 
the imbalance in the extracellular ATP/adenosine ratios 
playing a central role in the pathophysiology of PAH [22].

Elevated levels of functional CD39 were detected on 
microparticles from patients with idiopathic PAH when 
compared with healthy patients [18]. The significance of 
this finding was unexpected and difficult to interpret, and 
study authors concluded that additional work was needed to 
elucidate whether CD39 could be implicated in the patho-
genesis of PAH or as a compensatory response. Since then, 

studies have consistently shown reduced CD39 expression 
on pulmonary vascular ECs from patients with idiopathic 
PAH compared with healthy controls [22, 56] and inter-
estingly, CD39 expression is reduced in vessels with more 
severe vessel remodelling [6]. Cultured ECs lacking CD39 
appear to have an apoptotic-resistant phenotype [56] and an 
ATP-rich environment has been shown to promote pulmo-
nary smooth muscle migration and proliferation [22]. Poor 
CD39 expression in the small pulmonary vessels ostensibly 
may be the underlying cause of the adenosine poor state 
seen in PAH.

The role of CD39 and its downstream impacts in PAH 
have been further explored using several animal models. In 
a chronic hypoxia model of PAH, CD39-knockout mice were 
found to have significantly elevated ATP:adenosine ratios 
and went on to develop an unexpectedly severe phenotype 
of pulmonary hypertension [22]. This phenotype could be 
salvaged with reconstitution of functional CD39 using solu-
ble apyrase (an endoculeotidase with ATPase and ADPase 
activity) or blockade of the  P2X1 receptor, the predominant 
ATP receptor [22]. The activity of CD39 can be potenti-
ated using apelin, an endogenous peptide which binds its 
respective G-protein coupled receptor, in both cultured pul-
monary endothelial cells from patients with PAH as well as 
those isolated from monocrotaline-induced PH in rats [56]. 
Consistent with this finding, apelin has been demonstrated 
to abrogate the effects of PAH in both animals and patients 
[106, 107]. Together, this suggests that the therapeutic ben-
efit derived from apelin is at least in some part mediated 
by modulation of downstream purinergic signalling in an 
otherwise CD39-impovrished environment. Inarguably, the 
downregulation of CD39 on pulmonary endothelial cells 
may alter the delicate ATP:adenosine ratios promoting 
vasoconstriction and vascular remodelling. Reconstitution 
of CD39 mediated purinergic signalling on the pulmonary 
endothelial surface may provide an avenue for novel thera-
peutic targets in the future.

Conclusions

Over the last 20 years, there has been advances in our 
understanding of the role of adenosine and its regulators 
in PAH which may provide a novel therapeutic target. 
This is a multifactorial issue exacerbated by maladaptive 
endothelial responses to altered conditions of shear stress 
and hypoxia. Sustained abnormal CD39 activity in the 
pulmonary vasculature results in ATP accumulation and 
adenosine diminution promoting the vasoconstriction and 
vascular remodelling seen in PAH. However, the complex 
interplay between the four P1R and their selective agonism 
or antagonism requires further investigation if clinical effi-
cacy is to be achieved.
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