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Abstract

Alzheimer’s disease (AD) is the most common dementia in the elderly and its increasing prevalence presents treatment
challenges. Despite a better understanding of the disease, the current mainstay of treatment cannot modify pathogenesis or
effectively address the associated cognitive and memory deficits. Emerging evidence suggests adenosine G protein-coupled
receptors (GPCRs) are promising therapeutic targets for Alzheimer’s disease. The adenosine A; and A,, receptors are
expressed in the human brain and have a proposed involvement in the pathogenesis of dementia. Targeting these receptors
preclinically can mitigate pathogenic f-amyloid and tau neurotoxicity whilst improving cognition and memory. In this review,
we provide an accessible summary of the literature on Alzheimer’s disease and the therapeutic potential of A; and A,,
receptors. Although there are no available medicines targeting these receptors approved for treating dementia, we provide
insights into some novel strategies, including allosterism and the targeting of oligomers, which may increase drug discovery
success and enhance the therapeutic response.
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Introduction

Dementias are the most prevalent neurological disorder
in the aged population, affecting more than 50 million
people worldwide in 2020 [1]. In the absence of effective
therapies, the number of people with dementia is projected
to double every 20 years, reaching 152 million in 2050 [1].
While there are hundreds of described neurodegenerative
dementias, the most common is AD [2]. Sporadic AD, the
most common form, seems to be multifactorial, with age,
genetic, and environmental factors contributing to disease
risk, manifestation, and progression [3, 4]. AD is classically
defined as a dual clinicopathological entity, meaning
that to fully diagnose AD requires (i) observations of a
specified clinical presentation over time, related to episodic
memory impairment and other cognitive, behavioural, and
neuropsychiatric abnormalities and (ii) observations of
specific neurological changes (e.g. neurofibrillary tangles,
amyloid plaques, synaptic loss). Recent advances in amyloid
positron emission tomography (PET) and structural magnetic
resonance imaging (MRI) have enabled the detection of
in vivo biological evidence of AD pathologies to assist the
classification of presymptomatic AD stages [5-7].

Neuropathological alterations in Alzheimer’s
disease

Compared to age-matched non-AD individuals, AD patients
experience an accelerated rate of brain mass shrinkage due
to neuronal death and grey matter loss; the amount of neu-
ronal atrophy correlates with AD severity [8—11]. AD neu-
ropathology is characterised by significant gyral shrinkage,
widened sulci, and enlarged ventricles present in multiple
areas within the brain, along with a significant reduction
in the volume and/or cortical thickness of regions such as
hippocampus and entorhinal, temporal, parietal, and fron-
tal cortex [12—15]. There are currently three main theories
regarding the mechanisms underlying neurodegeneration in
AD. Although some features are shared by all three theories,
each postulates a different causal event or sequence of events
leading to neurodegeneration.

The amyloid cascade hypothesis posits the accumulation
of toxic amyloid f (Ap) peptides as the main cause of neu-
rodegeneration [16]. The formation of amyloid plaques is
driven by aberrant processing of amyloid precursor protein
(APP) into Ap40 and AP42 peptides, which normally play
important physiological roles, including synaptic function,
neuronal development and plasticity, and lipid homeostasis
[17-19]. Although AP40 is more abundant than AP42 in
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normal conditions, in AD the ratio shifts in favour of AB42
generation. The formation of Af deposits could be due to
altered AB42/AP40 ratios or the failure of A clearance pro-
cesses [20, 21]. Neuritic dense core A plaques are deposited
in the hippocampus, amygdala, and cortex, resulting in a cas-
cade of events that include sustained inflammatory responses,
imbalanced neuronal ionic homeostasis, altered kinase and
phosphatase activity, tau phosphorylation, neurofibrillary tan-
gle (NFT) formation, and neuronal and synapse loss [22-24].
Ap pathology is widespread in early diseases, whereas tau
pathology develops much later, suggesting changes in Ap are
the initial insult driving tau pathology. As such, the amyloid
theory has become the dominant model of AD pathogenesis;
guiding the development of potential AD disease-modifying
treatments.

An opposing view suggests tau pathology is responsible
for the initiation of AD neurodegeneration. Under normal
conditions, soluble tau protein acts as a microtubule stabiliser,
maintaining neuronal integrity, neurite outgrowth, and axonal
transport [25-27]. The degree of tau phosphorylation is
critical in regulating microtubule assembly and, in AD, tau
protein becomes hyperphosphorylated through the actions
of multiple kinases [28-34]. Hyperphosphorylated tau
detaches from microtubules and self-aggregates to form
NFTs, which disrupt axonal transport and subsequently lead
to neuronal loss [35, 36] (Fig. 1). Furthermore, NFTs are
often associated with Af plaques and chronic inflammation,
as evidenced by the accumulation of activated astrocytes
and microglia [37-41]. The tau theory is supported by the
correlation between tau pathology and the degree of AD
dementia, with the distribution and amount of NFTs in AD
brains related to the severity and time course of the disease
[42, 43]. In symptomatic subjects, NFTs are widespread and
correlate well with the AD-affected functional brain circuits
[44—47]. Importantly, AP and tau pathologies do not develop
in the same brain region; thus, it is debatable whether the
Ap pathology drives tau pathology (Fig. 2). Targeting tau
pathology with drugs or vaccines to inhibit tau aggregation
or promote tau degradation is being investigated for both
symptomatic and preventative treatment [48, 49].

Another pathological feature shared by all AD patho-
genesis theories is chronic inflammation. The inflammation
theory of AD pathogenesis postulates that activated micro-
glia and reactive astrocytes trigger AD pathogenesis and this
event precedes the presence of Af plaques and NFTs [50].
This theory is supported by the presence of inflammatory
changes very early in AD neuropathology [51, 52] (Fig. 2).
Given activated microglia and astrocytes are commonly
found in close proximity to AP and tau deposits, dysfunc-
tion of astrocytes or microglia may lead to the formation of
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Fig.1 Schematic diagram of brain atrophy and neuropathological
alterations between normal, healthy brain versus AD brain. On the
left is a healthy aged brain, while on the right, an aged Alzheimer’s
brain (shaded in yellow) has marked atrophy, including widened
sulci, enlarged ventricles, and gyral shrinkage. At the cellular level,

plaques and NFTs [53-57]. While the precise mechanisms
are yet to be defined, it is suggested intracellular accumula-
tion of A oligomers leads to preclinical AD inflammation
before clinical hallmarks of AD are present [58, 59]. The
imbalance between pro-inflammatory and anti-inflammatory
mechanisms and a shift from neuroprotective to neurotoxic
glial phenotypes further exacerbates disease pathology, lead-
ing to late clinical AD inflammation [60-62] (Fig. 2). While
the concept of chronic inflammation has been recognised as
an important AD feature, most drug discovery efforts are
directed towards agents targeting AP peptides and tau pro-
tein. This is likely due to an incomplete understanding of
mechanisms underlying microglial and astrocytic activation
and the mechanistic link between amyloid, tau, and inflam-
matory pathologies. Despite these unresolved problems,
reducing neuroinflammation has recently attracted more
interest and is still under investigation [63, 64].

Activated microglia
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dying neurons are surrounded by reactive astrocytes, activated micro-
glia, extracellular A plaques, and intracellular neurofibrillary tangles
in aged AD brain. Adapted from “Pathology of Alzheimer’s Disease
2” template by BioRender.com (2022). Retrieved from https://app.
biorender.com/biorender-templates

Glial cells in Alzheimer’s disease-associated
inflammation

Microglia and astrocytes are two of the most common glial
cells present in the CNS. Microglia are actively involved in
regulating various aspects of neuroplasticity and mediating
neuroprotection, while the principal role of astrocytes is to
maintain overall brain homeostasis via the uptake and release
of ions and neurotransmitters from the extracellular fluid
surrounding neurons [65-69]. When the brain is injured,
microglia and astrocytes undergo rapid activation, resulting in
phagocytosis of cellular debris and production of neurotoxic
and inflammatory compounds (e.g. reactive oxygen species,
growth factors and cytokines) [66, 70]. In AD, chronic
activation of glial cells results in the release of a variety of
pro-inflammatory cytokines, chemokines, reactive oxygen
species, and N-terminally truncated Afs that impair neuronal
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Fig.2 Simplified overview showing the spatiotemporal patterns of
AP and tau pathologies in conjunction with proposed model of early
and late inflammation occurrence during AD progression. Yellow
and green shading in the brain indicates areas affected by tau and
AP pathology, respectively. Extensive Af pathology can be detected
in individuals with preclinical AD, and the extent of AP pathology
alters minimally in symptomatic stages, whereas tau pathology devel-

activity and survival [71-75]. Analysis of neuroinflammatory
gene expression in the frontal cortex of early-, mid-, and late-
stage AD patients revealed activated microglia are present
throughout the disease course. Additionally, there are signs
of reactive astrogliosis in plaque-containing areas, with glial
AP clearance mechanisms becoming impaired [76-78]. A
buildup of AP oligomers and fibrils can activate microglial
cell-surface receptors, leading to chronic activation of
store-operated calcium (Ca>*) entry and upregulation of
pro-inflammatory mediators [79-84]. Activated microglia
and astrocytes intensify and sustain activation of each other
via secretion of pro-inflammatory molecules, exacerbating
chronic neuroinflammation and impairing their ability
to promote neuronal survival, growth, synaptogenesis,
and phagocytosis [85—-88]. The best approach for anti-
inflammatory use in AD is to target the activated microglia
and/or reactive astrocytes to disrupt inflammation in the
initial stages of AD. Indeed, there is increased interest in the
expression and distribution of various GPCRs connected to
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ops considerably later. Further, early inflammation is likely to begin
before the presence of AP plaques, while late inflammation should
commence when the first Af plaques are established. The early and
late inflammation overlaps at the later stage of preclinical AD. At
the clinical stage, the late inflammation becomes predominant. The
scheme of the evolution of the AD pathology is adapted from [304].
Created with BioRender.com

microglial and astroglial activation in the AD brain and the
ability to attenuate AD inflammation [89, 90].

Current status of drug development

Pharmacotherapeutic options for patients diagnosed with
AD are extremely limited, most only treat symptoms rather
than disease progression. As such, it is imperative to seek
new AD treatments to prevent, delay, and treat AD clinical
symptoms. To date, only five agents have been approved based
on modest symptomatic clinical effects; the cholinesterase
inhibitors tacrine, donepezil, rivastigmine, and galantamine
for mild-to-moderate AD and the glutamate antagonist
memantine for moderate-to-severe AD [4]. Around 20% of
ongoing clinical trials are focused on new symptomatic agents
aimed at enhancing cognitive function through modulation of
neurotransmitter synthesis, receptor activation and reuptake
[91-93]. For disease-modifying treatments, attention for
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both Ap-targeted and tau-related therapies has increased; as
of March 2022, around thirty anti-Af or anti-tau agents are in
phase 2 or 3 trials, with many more in the preclinical stages.
However, there is an increasing diversity of targets for disease-
modifying therapies, including vasculature, inflammation, and
metabolism, reflecting the constantly changing understanding
of AD disease biology [92, 93].

Only one disease-modifying agent has been approved for
AD. In 2021, the FDA controversially approved the use of the
anti-AP monoclonal antibody aducanumab in mild cognitive
impairment and early-stage Alzheimer’s disease [94-97]. While
both phase III clinical trials of aducanumab were terminated
early due to lack of clinical benefit, post hoc analyses revealed
one trial met its outcomes of reducing cognitive and functional
decline at high aducanumab doses [94—-97]. Additionally, both
trials revealed a marked decrease in amyloid plaques with high
dose aducanumab. Newer monoclonal anti-Af antibodies have
also shown efficacy in reducing the levels of AD biomarkers
in phase II trials, but results are again mixed when considering
cognitive and functional benefits [98—100]. Trials of other
anti-Af or tau therapies have also had mixed results. The
y-secretase inhibitor semagacestat, anti-Af} monoclonal
antibodies bapineuzumab and solanezumab, anti-aggregation
agent scyllo-inositol (ELNDO00S), RAGE receptor inhibitor
(PF-04494700), and tau aggregation inhibitor TRx0237 have
displayed no clinical efficacy in phase III trials of mild-to-
moderate AD patients [101-106]. Ap peptides and tau protein
remain strong candidates as therapeutic targets; however, the
failure of multiple therapeutic trials highlights the need to
consider other targets.

Of note, few anti-inflammatory agents have reached phase
IIT clinical trials to date, although inflammation reflects the
second most popular target for current preclinical and clinical
AD drug development [92, 93]. The main reason for the
delayed development of anti-inflammatory agents is due to
conflicting results of epidemiological studies and clinical trial
results for nonsteroidal anti-inflammatory drugs (NSAIDs).
Multiple epidemiological studies indicate long-term NSAIDs
usage reduces AD risk by about 50% in individuals bearing
one or more &4 alleles of apolipoprotein E (apoE), which is
strongly associated with increased risk of both familial and
sporadic AD [107-112]. Conversely, prospective clinical
observations reported traditional NSAIDs or selective
cyclooxygenase 2 (COX2) inhibitors did not slow down
the cognitive decline associated with mild-to-moderate
AD [113-115]. Interestingly, in one large prevention trial,
asymptomatic participants showed reduced AD incidence
18-24 months post-NSAID use; however, NSAIDs had adverse
effects in patients with cognitive impairment and/or were at
a later stage of presymptomatic AD [116]. Taken together,
anti-inflammatory agents seem to elicit different effects at
various AD stages; anti-inflammatory therapy is beneficial in

preventing AD onset but becomes completely non-beneficial in
symptomatic AD patients. Counteracting inflammation at later
stages by preventing the prolonged microglial and/or astroglial
activation during the presymptomatic phase or earlier may be
a promising protective strategy.

G protein-coupled receptors implicated
in Alzheimer’s disease

Numerous studies have presented compelling results
relating GPCRs to AD pathogenesis [117-119]. GPCRs are
membrane-bound receptors that transduce external stimuli
into signalling cascades within the cell and are important
for numerous physiological and pathophysiological
processes [120]. Gene expression profiles from AD
patients’ postmortem brains via cDNA microarray analysis
demonstrate transcript levels of a number of GPCRs changed
dramatically, among which were inflammation-associated
GPCRs, hormone receptors, and neurotransmitter receptors
[121]. Given altered GPCR expression levels would
influence the related biological processes, mounting evidence
implicates several GPCRs in AD pathogenesis. Several
GPCR families have been targeted by putative AD therapies;
however, many of these discovery programs have been
discontinued (Fig. 3). Of note, there are currently 35 agents
targeting GPCRs in the discovery, preclinical, and clinical
stages of drug discovery pipelines [122]. Among these are
ligands for a range of different GPCR families including
serotonergic, cannabinoid, muscarinic, opioid, glutamatergic,
and purinergic receptors [122]. Drugs targeting adenosine
A, and A, , receptors are of particular interest, owing to the
potential role of these receptors in inflammatory processes,
as well as both tauopathy and AP pathologies [123, 124].

Adenosine receptors

The adenosine receptors are family A GPCRs, with four
structurally similar members; the adenosine A; (A|R), the
adenosine A,, (A,,R), the adenosine A,z (A,5R), and
the adenosine A; receptor (A;R) [125]. Through these
receptors, adenosine exerts neuromodulatory effects to
regulate essential processes (e.g. neuronal signalling,
astrocytic function, learning and memory, motor function,
control of sleep and arousal, and normal ageing processes)
[126]. Of the four adenosine receptors, AR and A,,R show
the greatest expression in the brain and have relevance to
AD [127, 128], whereas A,3R and A;R show relatively
lower levels of expression [129]. To date, little is known
about the role of A,zR and A;R in AD pathologies.
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Fig.3 Current status of GPCR-targeted AD therapy development. Of
80 GPCR-targeting agents that have been investigated, 45 have sub-
sequently been discontinued or development halted. Thirty-five are
currently in various phases of preclinical and clinical development
for AD as both disease-modifying and symptomatic agents, targeting
a wide range of GPCR families. “Other” receptors include purinergic
(including adenosine), adrenergic, histamine, sphingosine, calcium

Adenosine A, receptor

Mapping AR expression in both the rat and human brain
has demonstrated widespread AR distribution, with greater
abundance in the hippocampus, cerebral cortex, cerebellum,
thalamus, and basal ganglia [130, 131]. In the human cer-
ebellum, AR density is low with strong AR immunore-
activity observed in Purkinje cells. In contrast, in the rat
cerebellum, moderate AR expression is detected with weak
labelling of Purkinje cells, suggesting these discrepancies
in AR expression may reflect species differences. In the
rat brain, the highest A|R immunoreactivity was found in
the large pyramidal neurons of layer 5 of the cerebral cor-
tex and the pyramidal cells in the fields CA2-CA3 of the
hippocampus [132]. Furthermore, A;Rs are most abundant
in synapses, particularly in the presynaptic active zone and
postsynaptic density [133, 134]. A;Rs are also present in
astrocytes, microglia, and oligodendrocytes at a much lower
level [135-137].

Adenosine A,, receptor

Like AR, A,,R is also expressed throughout the brain.
Highly enriched in the striatum, olfactory tubercle, and
nucleus accumbens, A, 4R is ubiquitously expressed in other
brain regions (rat and human) at lower densities [138, 139].
In the rat basal ganglia, A,,Rs are predominantly located in
dendritic spines and postsynaptic densities, where A,,Rs
control the integration of signal responses from corticotha-
lamic glutamatergic neurons and medium spiny GABAe-
rgic neurons [140, 141]. However, in rat cortical regions,
A, ,Rs are predominantly located in synapses, particularly
in the presynaptic active zone [142]. In contrast to A|Rs,
A, Rs have a broader localisation in different types of nerve
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terminals. In addition to being expressed in neurons, A,,Rs
are also located in astrocytes [143, 144] and microglia [145].

Adenosine A, and A, , receptor signalling
General signalling

Signal transduction mediated by AR and A,,R is largely
driven by coupling to heterotrimeric G protein complexes,
which are composed of a Ga subunit and Gfy heterodimeric
complex (Fig. 4) [146]. Pertussis toxin-sensitive G;,, pro-
teins are preferentially activated by A R, whereas A,,R
shows a preference for G, and G proteins, with the latter
being primarily restricted to striatal brain regions [147-149].
These G proteins affect the activity of adenylyl cyclase (AC),
with Gay proteins activating AC and increasing the produc-
tion of the second messenger cyclic adenosine monophos-
phate (cAMP) from ATP [150]. Conversely, stimulation of
Goy, proteins results in AC inhibition and thereby reduces
cAMP production. Downstream targets of cAMP include
cyclic nucleotide-gated ion channels (HCN), the small G
protein guanine nucleotide exchange factor (EPAC) and pro-
tein kinase A (PKA), all of which play important roles in
neural physiology [151, 152].

In addition to cAMP signalling, both AR and A,,R
also signal via additional effectors, including mitogen-acti-
vated protein kinases (MAPK) and Akt/protein kinase B,
which play a role in cell growth, survival, differentiation,
and protein transcription and translation [153, 154]. A|R
stimulates the extracellular signal-regulated kinases 1 and
2 (ERK1/2), c-Jun N-terminal kinases (JNK), and the p38
MAPK, and additionally phosphorylates Akt via phospho-
inositide 3-kinase (PI3K) activation [155-162]. This signal-
ling is largely driven via interactions of By subunits with
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By-subunits-dependent mechanisms. Abbreviations: AC, adenylyl
cyclase; AKT, protein kinase B/Akt; ATP, adenosine triphosphate;
CaMK, Ca?*/calmodulin-dependent protein kinase; cAMP, cyclic

effectors upon dissociation from Ga;, proteins. Addition-
ally, A;R mobilises intracellular calcium stores and activates
multiple isoforms of protein kinase C, via direct py interac-
tions with phospholipase C [162—165]. Similarly, A,,R also
signals via ERK1/2, JNK, p38, and Akt, with these effects
thought to be downstream of o subunit activity of G, [156,
166-173]. Interestingly, some studies support a stimulatory
or inhibitory effect of these second messengers by A,,R,
suggesting this signalling can be conditional, depending on
cell background and disease context [174, 175].

Neuronal signalling

In addition to the above-generalised signalling pathways,
AR and A, ,R both stimulate additional pathways and effec-
tors that are either brain-specific or present in only niche
cell types. A, R has been established as a modulator of
neurotrophins, including brain-derived neurotrophic factor
(BDNF) and nerve growth factor (NGF), which play impor-
tant roles in neuronal differentiation and survival, in addition
to regulating synaptic transmission and plasticity [176]. In
microglia and hippocampal slices, A,,R can increase the
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adenosine monophosphate; CREB, cAMP response element-bind-
ing protein; EPAC, exchange protein directly activated by cAMP;
ERK1/2, extracellular signal-regulated kinases 1 and 2; GSK3p, gly-
cogen synthase kinase 3f; JNK, c-Jun N-terminal kinase; MAP3K,
mitogen-activated protein kinase kinase kinases; MEK1/2, mitogen-
activated protein kinase kinases 1 and 2; mTOR, mammalian target of
rapamycin; NF-kB, nuclear factor kappa-light-chain-enhancer of acti-
vated B cells; PDK1, 3-phosphoinositide dependent protein kinase-1;
PI3K, phosphoinositide 3 kinase; PKA, protein kinase A; PLC, phos-
pholipase C; Src, proto-oncogene tyrosine-protein kinase. Created
with BioRender.com

release of both BDNF and NGF, which may be mediated
by the transactivation of neurotrophic receptors [177-181].
AR has also been suggested to play a role in neurotrophin
signalling, although its effects are less well defined [182].

Modulation of ion channel activity represents another
vital signalling mechanism for both A|R and A,,R. A|R
couples to a number of ion channels mediating an overall
net hyperpolarisation of neurons [183]. It is well estab-
lished that AR couples to G protein-coupled inwardly-
rectifying potassium (GIRK) channels, which are a class of
transmembrane proteins that facilitate potassium flux into
the cytosol [184-186]. AR coupling to GIRK channels
is through the direct binding of Py subunits. Additionally,
AR reduces the current of voltage-dependent calcium
channels, with a proposed preference for N-type channels
[187-190]. Alongside AR, A,,R also couples to voltage-
dependent calcium channels; however, A, R has a stimula-
tory effect on the current [187, 191]. Both receptors can
also activate ATP-sensitive potassium channels (K pp),
which are present in plasma, mitochondrial, and nuclear
membranes, and play a role in neuronal excitability and
survival [192, 193].
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Collectively, these various signalling streams result in an
overall inhibitory effect of A;Rs and excitatory effects of
A, ,Rs, allowing fine-tuning of neuronal circuitry. Activation
of presynaptic A;Rs on excitatory neurons reduces neuro-
transmitter release and induces synaptic depression, whereas
presynaptic A,,Rs are involved in increasing neurotransmit-
ter release [133, 194]. Similarly, postsynaptic AR activation
causes membrane hyperpolarisation with subsequent inhibi-
tion of neuronal firing. In contrast, activated postsynaptic
A, Rs increase cellular excitability [195]. Importantly, the
effects of both A|R and A, ,R are not limited to the modula-
tion of neuronal activity, these receptors also coordinate the
function of additional cells, including astrocytes and micro-
glia (see [196] for review). These effects impart additional
fine-tuning of neural homeostasis and inflammatory balance.

The role of A;Rand A,,R in dementia

Animal models of AD and old age, alongside human post-
mortem analyses, have revealed evidence of a disruption to
the neural adenosine network [197, 198]. Levels of adeno-
sine and its related metabolites are altered in the brains of
patients with AD [199, 200]. Similarly, adenosine recep-
tors (AR) change their pattern of localisation and density in
affected brain regions of AD [201-203]. Postmortem analy-
sis of AD patients’ brains showed reduced AR expression
at the dentate gyrus and hippocampal CA3 regions [204],
which are focal points for the spread of NFTs and subsequent
neuronal loss [44]. PET studies with a radiolabelled AR
antagonist have also demonstrated reduced AR levels in
the temporal cortex in patients with AD compared to elderly
subjects [205]. Moreover, postmortem AD frontal cortex
samples showed increased AR and A, ,R expression, com-
pared to age-matched controls [202]. Analysis of patients
with frontotemporal lobar degeneration revealed increased
A, AR expression in the temporal cortex and enhanced
A, R immunoreactivity in neurons expressing tau pathol-
ogy [206]. Moreover, A,,R expression is increased in the
aged forebrain when compared to young subjects, with a fur-
ther significant increase in AD patients [207]. Significantly
increased brain A,,R levels in AD patients are coupled
with peripheral platelets also reflecting an increase in A,,R
[208]. Accordingly, peripheral A, R expression could act as
a biomarker for dementia and inform disease progression.
Animal and cellular models recapitulate these changes
to AR expression, with increased AR immunoreactivity
in neurons with NFTs and in amyloid plaques, alongside
enhanced glial A,,R expression [201]. In human neuroblas-
toma cells and primary rat cortical neurons, administration
of AP,s.35increased A R and A R/A,,R expression, respec-
tively [209, 210]. APP/PS1 AD mice show increased AR
and A, ,R levels compared to non-transgenic mice, and rats
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with sporadic dementia also show elevated A, ,R levels [123,
211, 212]. The 5SXFAD model of AD also demonstrates
increased AR expression, highlighting changes to ARs can
be found across different animal models, suggesting a central
role in the pathogenesis of dementia [209]. Overall, the pre-
cise mechanisms underlying the dysregulation of AR and
A, AR in AD/dementia remain unresolved. However, it has
been suggested that early in the disease process, disruption
to the homeostatic levels of adenosine may impart dysfunc-
tional regulatory feedback, which modifies the expression
and locality of AR receptors [200].

Epidemiological studies have reported an inverse asso-
ciation between caffeine intake and AD/dementia risk
[213-217]. Significant caffeine consumption is associated
with a lowered rate of AP positivity as measured by PET
[218]. Indeed, caffeine, acting as a nonselective AR and
A, R receptor antagonist, reduces AP toxicity and enhances
cognition in numerous models. The neuroprotective qualities
of caffeine have been demonstrated in cultured rat and mouse
neurons, where Ap-induced neurotoxicity and tau phospho-
rylation was reduced, respectively [123, 219]. In APPsw
transgenic mice and a rat model of sporadic dementia, caf-
feine promoted neuroprotection and mitigated cognitive
impairment [123, 212]. Long-term administration of caffeine
to AD transgenic mice also improved cognition and reduced
AP, generation and was accompanied by a modest reduc-
tion in presenilin-1 and p-secretase expression levels [220].
These neuroprotective actions have largely been ascribed to
caffeine’s A,,R antagonism, a notion supported by studies
using selective A, ,R antagonists (e.g. KW6002, SCH58261,
7ZM?241385, MSX-3). In animal models, including APP/PS1
mice and THY-Tau22 mice, administering selective A, R
antagonists improved memory deficits and mitigated the
Ap toxicity or tau hyperphosphorylation associated with
the disease [207, 211, 221]. Moreover, the administration
of human A, 4, fragment reduced memory performance in
rats, which was reversed by SCH58261 and KW6002 [222].
Interestingly, in this model, A,,R antagonism could not
mitigate acute memory deficits induced by the muscarinic
receptor antagonist scopolamine or the NMDA antagonist
MKS801. As such, it has been suggested the beneficial effects
of A,,R antagonists on memory may not be a generalised
effect but rather specific to the disease processes involved
in dementia/AD.

Alongside animal studies, pharmacological A,,R block-
age in neurons attenuated Af-induced neuronal death and
further reduced synaptic loss [223]. Similarly, in cultured
rat cerebellar neurons ZM241385 was neuroprotective;
however, AR antagonist CPX was ineffective, implying
Ap-induced neurotoxicity is primarily mediated through
A, R activity [224]. Additional studies have provided
diverging roles for A;R. In a model using human neural
cells, application of the selective AR agonist R-PIA led to
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soluble APP production and increased tau phosphorylation,
which was reversed by A R-selective antagonist DPCPX
[201]. In tau transgenic mice, AR antagonist rolofylline
restored memory deficits and reduced synaptic dysfunction
in neural cells [225]. Given that AR redistributes and co-
localises with NFTs and Ap plagues in AD patients, these
studies suggest A;R may play a direct role in mediating
some of the pathology [201, 202]. Importantly, in addi-
tion to pathological signalling, AR activation is strongly
neuroprotective in a number of settings [226] and elicits
anti-inflammatory effects in chronic neuroinflammation
[124, 227]. Indeed, acute administration of an AR agonist
decreased neurodegeneration in in vitro and in vivo models
challenged with noxious stimuli [227]. As such, selective
AR antagonists may protect against 3-amyloid and tau neu-
rotoxicity and enhance cognition, whereas A ;R agonists may
impart neuroprotection.

In addition to pharmacological studies, A, R genetic
deletion or overexpression has also revealed interesting find-
ings. In APP/PS1 mice, A,,R downregulation via sShRNA
restored long-term potentiation and improved memory defi-
cits [211]. In contrast, A,,R overexpression in cortical and
hippocampal neurons of rats resulted in increased glutamate
release, which was associated with changes in synaptic plas-
ticity [207]. In THY-Tau22 mice, genetic deletion of A,,R
protected against spatial memory deficits, reduced neuroin-
flammation, and decreased tau hyperphosphorylation [221].
Conversely, selective A,,R overexpression in the forebrain
of THY-Tau22 mice resulted in tau hyperphosphorylation
and increased memory deficits [206]. Mice also showed
increased expression of hippocampal clq complement
protein, a biomarker found in patients with frontotempo-
ral lobar degeneration, suggesting A,,R may contribute to
this process. Interestingly, upregulation of genes associated
with immune responses was also found in this study, with
further cell-specific enrichment analysis revealing these
genes were preferentially increased in microglia. As such,
microglial A,,R and its associated immune responses may
play a role in the pathogenesis of dementia. Indeed, addi-
tional studies support the importance of glial cells, with
A, R being upregulated in microglia and astrocytes after
treatment with AP, [228] and conditional genetic ablation
of astroglial A,,R enhancing long-term memory in young
and in ageing mice [229]. Targeting the NLRP3 (nucleotide-
binding oligomerisation domain-, leucine-rich repeat-, and
pyrin domain-containing 3) inflammasome to modulate
AD pathology has increasing interest as a therapeutic strat-
egy [230], with emerging evidence of A,,R in microglia
offers an upstream therapeutic target [231]. A,,R activa-
tion stimulates sustained NLRP3 inflammasome activity and
the production of proinflammatory cytokines (e.g. IL-1p)
in macrophages and primary microglia [232-235]. Notably,
in preclinical models of hypoxic-ischemia and autoimmune

encephalomyelitis, caffeine inhibited NLRP3 inflammasome
activation and microglial activation to confer neuroprotec-
tion and attenuate disease pathology [236, 237]. Therefore,
in addition to modulating neuronal signalling, targeting
A, R on microglia may present an opportunity to target
neuroinflammation associated with AD.

Therapeutic paradigms for targeting
adenosine receptors

A;Rand A,,R: antagonism or agonism?

The growing evidence supporting a role for A|R and A,,R
in dementia/AD highlights these GPCRs represent prom-
ising drug targets. Overall, the studies described predomi-
nantly indicate that A|R and A,,R antagonism may be a
viable therapeutic approach to mitigate pathology and
improve patient symptoms. Indeed, A;R antagonism may
afford protection against f-amyloid and tau neurotoxicity
and the enhancement of cognition is clearly desirable in the
setting of dementia. However, the neuroprotective nature of
A R is also an important consideration. Studies showing
reduced brain A R expression in patients with AD make
this particularly pertinent, as reduced AR expression could
facilitate neuronal excitotoxicity [238]. As such, it is inter-
esting to speculate how the administration of an agonist or
antagonist would fare clinically, given the divergent preclini-
cal data. Similarly, the protection afforded by A,,R antago-
nism against f-amyloid neurotoxicity and memory impair-
ment in preclinical settings makes it a desirable drug target.
The A,,R antagonist istradefylline enhanced cognition in
mice with amyloid pathology and is a clinically used adjunc-
tive therapy in Parkinson’s disease [239, 240]. Istradefylline
has not been tested in humans with AD/dementia; however,
this may represent a worthwhile exploratory investigation
given this compound is clinically available in some coun-
tries. Interestingly, A,,R agonism may be useful very early
in the disease process, where its anti-inflammatory effects
may dampen disease progression [241]. A,,R induction of
BDNF signalling could also contribute to greater neuronal
survival and maintenance of synaptic plasticity; however,
these considerations remain largely unexplored.
Nonetheless, despite the promising preclinical data, the
void of clinically approved drugs targeting AR or A, ,R for
AD/dementias remains apparent. This may be partly owing
to the need for a deeper understanding of the precise roles
of A|R and A,,R in AD/dementia. Moreover, the wide-
spread distribution of ARs and their role in fundamental
biological processes is an additional hurdle for the drug dis-
covery process. For example, AR activation is associated
with lowered heart rate and altered blood pressure [242],
whilst antagonism is associated with increased seizure risk
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and sleep disturbance [243, 244]. A,,R antagonism, such as
that mediated by istradefylline, can cause involuntary move-
ments and hallucinations [245]. Many of these on-target side
effects are centrally driven, making it difficult to dissociate
the therapeutic and adverse effects. As such, prototypical
AR agonists or antagonists may encounter challenges during
clinical translation. Alternative pharmacological approaches
that circumvent these limitations can minimise the risk of
on-target adverse effects.

Allosterism

Allosteric ligands may overcome many of the limitations
associated with traditional agonists and antagonists. Allosteric
compounds bind to a topographically distinct site acting to
modulate the affinity and/or efficacy of the orthosteric endog-
enous ligand, in this case, adenosine [246]. A larger number
of pharmacological parameters drive the activity of allosteric
ligands when compared with orthosteric compounds, which
affords more nuanced signalling. This is evidenced by the
broad categories in which they can be classed, including
(i) allosteric agonists, which increase (agonist) or decrease
(inverse agonist) signalling by binding to the allosteric site;
(i1) positive or negative allosteric modulators (PAM or NAM),
which can increase or decrease, respectively, the affinity and/
or efficacy of an orthosteric ligand; and (iii) neutral allos-
teric ligands (NAL), which exhibit neutral cooperativity with
the orthosteric ligand and have no intrinsic efficacy in their
own right [247]. Moreover, the pharmacological parameters
encoded by allosteric ligands can be fine-tuned by medici-
nal chemistry and structure-based efforts. As such, allosteric
modulators belonging to the same class (PAM, NAM, or allos-
teric agonist) can elicit a broad spectrum of activity and thus
can be rationally selected based on the underlying disease.

Allosteric ligands offer numerous advantages. Since
allosteric sites typically show greater sequence divergence
compared to orthosteric sites, allosteric ligands typically
exhibit greater subtype selectivity [246, 248]. As such, allos-
teric ligands can impart efficacy and/or affinity modulation
upon endogenous adenosine in a subtype-selective manner.
Additionally, allosteric modulators can signal in a spati-
otemporally specific manner, modifying the signalling of
adenosine only where and when it is present [246, 249]. This
feature is especially important in AD/dementia, as evidence
suggests adenosine levels in the brain can vary in a region-
specific manner [199].

Therapeutic potential of A,R and A, R allostery
Allostery has been detected and quantified at both AR and
A, 4R, although there has been significantly more traction at

A R. A large number of A;R PAMs have been discovered,
with very early studies characterising the allosteric enhancer
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PD 81,723 [250]. The utility of A;R PAMs has been demon-
strated preclinically and in a phase II trial, confirming this
pharmacological approach has the translational potential
[249, 251]. To date, selective A;R NAMs have not been iden-
tified. A,,R allosteric modulators are limited. A fragment-
based drug discovery approach identified potential PAM and
NAM scaffolds for A,,R [251-253]. These findings, along
with recent structural advances in the AR field [254-257], are
likely to accelerate the discovery of new AR and A, R allos-
teric ligands. Despite the paucity of A|R and A, R NAMs
and the lack of evaluation of these classes of compounds in
AD models, the physiological advantages remain conceptu-
ally promising. For A|R and A,,R NAMs, inhibiting signal-
ling only where there is increased adenosine tone could miti-
gate f-amyloid neurotoxicity and enhance cognition, whilst
avoiding the risk of seizures, sleep, and motor disturbances
commonly associated with antagonism. This could afford a
much more nuanced fine-tuning of AR signalling, without
globally reducing adenosine function across all brain areas.
Furthermore, this would also likely reduce the incidence of
peripheral cardiovascular side effects.

Receptor oligomerisation (homo-
and heteromerization)

Another form of allostery to consider when targeting A|R
and A,,R is protein—protein interactions. The traditional
model of GPCR activity depicted the receptors to function
exclusively as monomeric entities. Over the last two dec-
ades, increasing evidence indicates GPCRs form homomers
and heteromers or higher-order oligomers as part of GPCR
normal trafficking and function [258, 259]. Homomerisation
describes the self-association of receptor subunits, while het-
eromerisation describes the association of two or more dif-
ferent receptor subunits, with biochemical properties demon-
strably different from individual components. Recent studies
support the existence of A;R homomers at the plasma mem-
brane using bimolecular fluorescence complementation and
fluorescence correlation spectroscopy [260]. Conversely, cell
surface A,,R homomers were confirmed in bioluminescence
resonance energy transfer (BRET) or Forster resonance
energy transfer (FRET) experiments [261] and may form
into oligomers with three or more A,,R protomers [262].
Heteromers and/or higher-order oligomers between different
AR subtypes (for review see [263]), as well as with unrelated
GPCRs receptors and signalling complexes with other mem-
brane proteins in the brain have increased attention. For an
oligomeric interaction to be considered physiologically sig-
nificant, it is critical to show physical association in native
tissue or primary cells and demonstrate unique ‘biochemical
fingerprints’ distinct to the oligomer [264].

There are two general mechanisms by which receptor oli-
gomerisation can influence the drug effect [265]. (1) The
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receptor oligomer becomes a new conduit, whereby ligand-
oligomer interactions generate a unique biochemical signal-
ling fingerprint. For example, A,,R agonists decrease the
affinity and intrinsic efficacy of D,R agonists in A,,R-D,R
heteromers [266]. (2) One receptor modulates ligand bind-
ing and/or signalling effects mediated by the other receptor.
For example, D,R selectively confers negative cooperativity
towards the A,,R antagonist SCH442416 in a A,,R-D,R het-
eromer, compared to when not forming heteromers or form-
ing heteromers with A R [267]. As such, SCH442416 would
less effectively target A,,R-D,R heteromers expressed in stri-
atopallidal neurons, compared to presynaptic A,,R-A R het-
eromers localised in cortico-striatal glutamatergic neurons.
Heteromers/homomers with allosteric properties provide an
exciting possibility to fine-tune receptor signalling, traffick-
ing, and pharmacological properties.

Therapeutic potential of targeting AR oligomers

Receptor oligomerisation gives rise to novel therapeutic
interventions, such as co-activation or co-inhibition of both
protomers and activation of one protomer while inhibiting
another protomer. Targeting A,,R-D,R heteromers is a
well-established therapeutic strategy for Parkinson’s disease
where A,,R antagonism in conjunction with D,R agonism
is highly desired. Commonly, A, R antagonists are dosed in
conjunction with L-DOPA; however, there are continuing
efforts to develop bivalent ligands to co-occupy and
specifically target A,,R-D,R heteromers [268-270]. Beyond
A,,R-D,R heteromers, multiple bona fide AR heteromeric
complexes are of therapeutic interest and relevant in the
setting of AD (Table 1). A number of recent reviews provide

in-depth coverage of the scope of AR heteromerisation [263,
271, 272].

As discussed above, A|R and A,,R are promising
therapeutic targets for AD. A;R-A,,R heteromers are
expressed in neurons and glia, with heteromers modulating
neurotransmitter levels in the context of a tripartite synapse
[273, 274]. A;R-A,,R heteromers can be considered a
‘thermostat’ for extracellular adenosine levels, with the
opposing effects of G; versus G, coupling controlling brain
cell responses depending on whether adenosine levels are
high or low. Therefore, receptor oligomerisation may also
raise unexpected confounds and impacts due to altering the
signalling balance of heteromers. Further, oligomerisation
may be cell type- or brain region-specific. For example,
recent reports of A,,R-A;R heteromers show differential
brain-region expression, being the highest in striatal
neurons compared to the hippocampus or frontal cortex
but are also found in microglia [275]. To therapeutically
exploit A,,R-A;R, it would be desirable to inhibit A, R,
thereby removing A,,R functional antagonism of A;R
signalling and shifting the balance towards A;R activation
by endogenous adenosine. Despite being found at low
levels in the brain, A;R is suggested to be neuroprotective
in a number of settings, including traumatic brain injury
and cerebral ischemia [276, 277]. Targeting AR oligomers
linked to disease biology also offers the potential for
greater selectivity. Proximity-based approaches suggest
heterocomplexes between A,,R and N-methyl-D-aspartate
ionotropic glutamate receptors (NMDAR) are increased
in activated microglia as well as in the hippocampus of
transgenic AD mice (APPg, 1,4) [278]. A,4R has a central
role in modulating mGlus, D|R, and NMDAR signalling
in the hippocampus under physiological conditions

Table 1 Selected examples of AR heteromers and summary of evidence for in vitro and in vivo physical interactions and functional effects

Heteromer In vitro-heterologous expression In vivo-native cells/tissue Criteria fulfilled for ~ References
- - native heteromers®
Co-loc  Co-IP PBA  Unique Co-loc  Co-IP PBA  Unique
properties properties

AR-A,R v v v v v v n.d v 2 [273,274]

A R-mGlu,, v v n.d v v v n.d v 2 [281, 282]
AR-P2Y R v v n.d v v v n.d v 2 [283-286]

A, R-A;R n.d n.d v v n.d nd v v 2 [275, 287]

A, ,R-mGlug v v v v v v v v 1,2 [141,288-292]
A, R-D,R v v v v v v v v 1,2,3 [270, 293-298]
A,,R-CBR v n.d v n.d v v v v 1,2 [299-303]
A,,R-NMDAR Vv n.d v v nd nd v v 2 [278]

v/, demonstrated; AR, adenosine receptor; CB, cannabinoid receptor; Co-loc, co-localisation; Co-IP, co-immunoprecipitation; D,R, dopamine
D2 receptor; mGlu, metabotropic glutamate receptor; n.d, not determined; NMDAR, N-methyl-D-aspartate ionotropic glutamate receptor; P2Y;R,

purinergic P2Y, receptors; PBA, proximity-based assays

Criterion 1: Heteromers exhibit appropriate colocalisation and interaction to enable allosterism (considered fulfilled if there is evidence from
roximity-based assays, colocalisation and coimmunoprecipitation). Criterion 2: Heteromers exhibit distinct properties. Criterion 3: Heteromer-
p y y precip prop

selective reagents alter heteromer properties
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[279], possibly linked to the propensity of A,,R to form
heteromeric complexes.

Concluding remarks

Dementia remains a significant neurological disorder. This
review has highlighted preclinical studies implicating AR
and A,,R as promising GPCR targets for Alzheimer’s
disease. Overall, AR and A,,R inhibition seems to
mitigate the neurotoxicity associated with the f-amyloid
accumulation and tau hyperphosphorylation and improve
cognition and memory. Stimulation of A R can also
promote neuroprotection and therefore adds an additional
layer of complexity in considering agonism versus
antagonism when targeting this receptor. Although not
explored for AD, the notion of biased agonism, which is a
growing paradigm at adenosine receptors [249, 280], could
conceptually be harnessed to develop an AR compound
to improve cognition but also remain neuroprotective.
Indeed, although drug discovery at adenosine receptors
has traditionally experienced hurdles, the novel therapeutic
paradigms covered in this review, including allostery and the
targeting of oligomers, present a promising future avenue
of investigation. It is hoped harnessing this knowledge
may increase the development and translation of clinical
candidates with enhanced therapeutic responses and limited
side effects.
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