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Abstract
Extracellular ATP is a potent signaling molecule released from various cells throughout the body and is intimately involved 
in the pathophysiological functions of the nervous system and immune system by activating P2 purinergic receptors. Recent 
increasingly studies showed that extracellular ATP exhibits circadian oscillation with an approximately 24-h periodicity, 
which participates in regulatory pathways of central oscillator suprachiasmatic nucleus and peripheral oscillator bladder, 
respectively. Oscillators modulate the protein expression of ATP release channels and ectonucleotidase activity through clock 
genes; indeed, real-time alterations of ATP release and degradation determine outcomes of temporal character on extracel-
lular ATP rhythm. The regulatory pathways on extracellular ATP rhythm are different in central and peripheral systems. 
In this review, we summarize the circadian rhythm of extracellular ATP and discuss several circadian regulatory pathways 
in different organs via ATP release and degradation, to provide a new understanding for purinergic signaling in the regula-
tory mechanism of circadian rhythm and a potential target to research the circadian regulation of extracellular ATP in other 
circadian oscillators.
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Introduction

Most organisms evolved endogenous daily physiological and 
behavioral rhythms to accommodate recurring changes of 
diurnal environmental, light, and food availability for opti-
mal fitness. These daily rhythms are called circadian (the 
Latin circa diem, about a day) [1]. Since the first discovery 
of circadian rhythm in cyanobacteria, its existences were 
observed successively in fungi, bacteria, plants, and animals 
[1]. Circadian clock not only generates strong rhythm, but 
also is flexible to adjust its phase in response to environmen-
tal perturbation [2]. On the one hand, in molecular level, the 
core of clock genes is a transcription–translation feedback 
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loop (TTFL) containing both positive components and nega-
tive regulatory complexes [3, 4]. The time-dependent vari-
ation of its function and interaction endogenously formed 
a highly rhythmic cycle, which takes approximately 24 h 
to complete [4]. On the other hand, the phase of circadian 
rhythm is regulated by environmental cues (termed zeit-
gebers) via intervening expression and degradation of some 
specific molecular clock genes; for example, transcriptional 
inhibitor Timeless (TIM) in Drosophila is decomposed 
under the light condition through the E3 ubiquitin ligase 
Jetlag (JET) and the photoreceptor protein Cryptochrome 
(CRY), which was also impaired by JET [5–7]. Thus, intrin-
sic rhythm of the circadian system is able to keep running 
with a period of approximately 24 h that is independent 
of external environment; the phase of circadian rhythm is 
altered by changed physiology and environment through 
circadian regulation. The circadian system is the hierarchi-
cal network structured by multiple oscillators to synchro-
nize internal rhythms and to coordinate internal clocks with 
external cycles [8, 9], which consists of three components: 
input pathways to perceive extrinsic circadian rhythm, a cen-
tral circadian oscillator, and output pathways leading to the 
advancement or delay of circadian clock [10]. The supra-
chiasmatic nucleus (SCN) as central circadian pacemaker 
sustained to its precision by autoregulatory TTFL, received 
time-of-day information from the retina to fitted in with 
external time (entrainment), and conveyed time information 
to downstream clocks in other peripheral oscillators [1, 9]. 
Based on the time optimization of physiological processes 
and circadian regulation, circadian rhythm has an adaptive 
advantage to fit in behavioral and environmental clock by 
circadian system.

Purinergic signaling, as a cotransmitter and an extracel-
lular signaling molecule, was firstly proposed by Burnstock 
[11]. Since the ATP release was discovered in neuron and 
glial, purinergic signaling has been implicated in the regula-
tion of physiological and pathophysiological activities in the 
nervous system. Purinergic signal encompasses ATP, ADP, 
AMP, and ADO, as well as P1 and P2 receptors. In the cen-
tral nervous system, ATP activates ion channel ligand–gated 
receptor subtypes (P2X1-P2X7) and G-protein coupled 
receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, 
P2Y14), and ADO activates P1 receptor subtypes (A1, A2A, 
A2B, and A3) [12, 13]. The ATP release induced by gentle 
mechanical stimulation is observed in virtually all cell types 
and tissues [14]. After release into extracellular fluid and the 
neuropil, extracellular ATP (eATP) is hydrolyzed to ADP 
and AMP by the ecto-nucleotide triphosphate diphospho-
hydrolase family of enzymes (eNTPDases), subsequently 
dephosphorylated to ADO by ecto-5′-nucleotidase (CD73) 
[13]. eATP, with its metabolisms ADP-ADO and subse-
quent receptor-triggered downstream pathways not only 
regulated the functional activities from cell to tissue, but 

also participated in the process from physiology to pathol-
ogy. Pain perception and analgesic effect of ankle arthritis 
were regulated by acupuncture through eATP [15, 16]. The 
circadian regulation of hematopoietic stem/progenitor cells 
release into peripheral blood was coordinated by the eATP-
associated pathway [17, 18]. The activation of purinergic 
receptors participates in the stem cell differentiation and 
in the neuronal function [19, 20]. In the pathogenesis of 
colorectal cancer and oral squamous cell carcinoma, eATP 
mediated cancer cell migration and invasion by the signal-
regulated kinase and inflammatory protein [21–24]. The 
occurrence of cancer is increasingly demonstrated to asso-
ciate with the chronic disruption of circadian clock [25]. 
eATP is rapidly hydrolyzed as short-term neurotransmitter 
in neuromodulation, secretion, and neurotransmission, and 
plays a role of long-term signaling molecule in cell differ-
entiation, proliferation, and death [26].

There are prominent manifestations of circadian rhythms 
observed in the daily fluctuation of eATP as neurotransmitter 
or signaling molecule. In the seminal paper by Yamazaki 
and Ishida, it was reported that three brain regions, SCN, 
AHA, and CPu, exhibit circadian rhythms in ATP content 
(both ATP and eATP) under constant dark conditions [27]. 
It was shown later that eATP level oscillated in SCN and 
bladder lumen, as well as in cell cultures from brain regions 
or bladder. In order to summarize the regulation mechanism 
of circadian rhythm, this review focuses on eATP rather than 
intracellular ATP. Time-dependent change of P2 receptors 
in the SCN and in the hippocampus has been observed at 
the mRNA and protein expression levels [28, 29]. eATP can 
not only activate rhythmic P2 receptors, but also provide a 
source for hydrolysis to ADO. The circadian rhythm of ADO 
and its associated enzyme CD73 has been deeply studied and 
applied in cognitive dysfunction, heart disease, and cancer 
[30, 31]. For extensive evidences of eATP rhythm and regu-
lation, it is noticeable in certain tissues that (1) the detec-
tion of eATP level under same conditions might be different 
at different period, and (2) these differences subsequently 
induce negative or inverse results in same experiment. Thus, 
exploring the distribution of eATP rhythm is indispensable 
for guiding experiment to avoid circadian interference, and 
summarizing the characters of ATP rhythm in various tis-
sues may provide a potential therapy to relief the circadian 
aggravation of chronic symptom by ATP-associated inter-
vention. In addition to eATP rhythm, circadian regulation 
of eATP is directly associated to ATP release pathways and 
eNTPDases in various oscillators. The occurrence of circa-
dian oscillations in cellular metabolism, electrical activity, 
and gene expression are accompanied by the generation of 
the eATP rhythm in an ensemble of SCN region, or even in 
individual SCN astrocytes [32–35]. Rhythmic fluctuation 
of eATP levels was observed in the culture of immortalized 
cell and primary astrocyte in vitro, as well as at SCN and 
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bladder lumen in vivo [32]. The ATP release pathways con-
nexins 43 and NTPDase2 also showed rhythmic expression 
in bladder and in rat serum [36, 37]. Approximate phase 
and amplitude were exhibited in the circadian rhythm of 
neurotransmitters ATP and ADO, which interacted with the 
regulation of circadian clock [38]. Subsequently, rhythmic 
eATP has been shown to regulate physiological processes of 
circadian tissues in the central system. The eATP regulation 
was involved in the inhibitory transmission of SCN synapses 
and mechanical pain perception as well as function recovery 
of astrocyte after metabolic inhibition [39–41]. The electri-
cal activity and arginine vasopressin secretion rhythms of 
SCN negatively correlate with eATP level [27, 32, 42]; the 
eATP level altered extracellular H+ flux in astrocytes of the 
hippocampus and cortex [43]. Thus, characterized by stable 
rhythm and wide participation in multiple system functions, 
eATP can be used as an important output signal of the circa-
dian rhythm to investigate internal clock and circadian regu-
lation. Although the eATP-associated mechanism in liver 
tumor and chronic kidney disease [44, 45] overlaps with the 
increasing rhythmic discoveries at the kidneys, liver, and 
spleen [46], the regulatory relationship of these overlaps that 
may form the circadian regulation of eATP is still unclear. 
In the research of ATP rhythm, there are little result of intra-
cellular ATP, and few articles in the circadian regulation 
of eATP at other arrhythmic organs and tissues. Because 
of space restrictions, it has been decided to concentrate on 
the most relevant articles about the eATP rhythm and its 
circadian regulation in brain and bladder. In this review, we 
summarize the ATP rhythm from pacemaker to oscillators, 
and emphasize the possible implication of circadian regula-
tion on eATP that may modulate various rhythmic diseases 
as a future intervention.

The circadian character of eATP rhythm

In the research of circadian pacemaker and oscillators, there 
were some results about the rhythmic variation of eATP 
level in central and peripheral systems.

The circadian character of eATP rhythm 
in the central system

In the central system, circadian rhythms of eATP level were 
observed in several brain regions (SCN, anterior hypotha-
lamic area (AHA), caudate putamen (CPu)) and in cell cul-
tures from different brain regions. Various experimental 
methods including microdialysis and biological and chemi-
luminescence assay detected about 24-h diurnal change in 
eATP levels, through the cycle of peak was different among 
these rhythms (Table 1). Integrating zeitgeber times (ZT) to 
synchronize the light/dark cycle, the single peak of eATP 

rhythm mainly presented at night (Table 1) and the low 
level of eATP slightly fluctuates at other cycles. The occur-
rence of different peaks on afternoon or at night might be 
because of (1) the difference of clock axis among circadian 
pacemaker and subordinate oscillators, and (2) the inevi-
table experimental affection on the light (rest) cycle dur-
ing the cultivation of immortalized cells, resulting in the 
shift of peak cycle. The oscillation can last about 2 to 3 days 
in short-term organotypic or primary cultures under con-
stant environmental conditions with an approximately 24-h 
periodicity [47, 48]. This persistent oscillation of eATP in 
astrocytes might be involved in the cell–cell communication 
of circadian rhythm in certain brain regions [49]. In addi-
tion, the rhythm of extracellular ATP is sensitive to the light 
changes of external environment: only one change of ampli-
tude increased in the rat SCN brain region after exposed to 
continuous darkness for 2 days [32]. Thus, eATP rhythm 
is strong, and sensitively exhibits the influence of entrain-
ment with its amplitude and phase. Noticeable, the paper 
by Alisa D reported that there is no fluctuation of real time 
eATP accumulation in the AHA, which is inconsistent with 
the seminal result in 1994 [27]. That is because the process 
of microdialysis or the rapid degradation of extracellular 
ATP itself might dilute the lower concentration of eATP in 
the AHA compared to in the SCN, eventually flattening the 
eATP fluctuation. Additionally, as displayed in Table 1, the 
low amplitude of eATP rhythm observed in organotypic-
cultured cell of non-SCN also consists with the result in 
1994 [48]. SCN contains numerous astrocytes that also show 
circadian rhythms both in protein and mRNA levels of the 
clock gene. In recent research, SCN 2.2 (immortalized rat 
SCN cells containing 80% astrocytes) and cortical astrocytes 
are more common to be chosen for the cell cultures in eATP 
rhythm studies [48]. Forskolin treatment coordinates rhyth-
mic change of clock gene expression and glucose uptake in 
SCN2.2 cell by enhancing cyclic adenosine monophosphate 
(cAMP) levels, and finally maintains the endogenous rhythm 
and pacemaker properties [32, 50]. Asynchronous peaks of 
astrocyte eATP between SCN and cortex, shown in Table 1, 
may implicate their regulatory relationship of hierarchical 
network among master clock pacemaker and subordinate 
oscillators in the nervous system. However, there are little 
research of eATP rhythm in other rhythmic brain regions 
such as the pineal gland, pituitary gland, and olfactory bulb 
[51], and in certain brain region abundant in astrocyte or 
other glial cells.

The circadian character of eATP rhythm 
in the peripheral system

In the peripheral system, the classic subordinate oscillator 
urinary bladder shows strong diurnal rhythm of functional 
capacity. In the period of bladder fulling, the stretch-released 
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ATP regulates the functional capacity of the bladder by 
mechanically conducting signals [36]; the content of stretch-
released ATP was also observed time-dependent variation 
in bladder lumen [32]. The eATP release exhibits circadian 
rhythm with the peak at 14:00–18:00 in primary-cultured 
urothelial cells and hTERT-immortalized human urothelial 
cells (TRT-HU1) that the clock genes of these cultures also 
oscillated at mRNA and protein levels daily [36, 52]. Thus, 
eATP exhibits the circadian rhythm both in vivo and in vitro 
as not only a neurotransmitter but also a signaling molecule. 
The influences of experimental or pathological interventions 
on circadian clock are presented by the amplitude and phase 
of ATP rhythm, which may explain the different cycles of 
peak between cell and organ/tissue. Additionally, the retina, 
as an input pathway that conveys the environmental infor-
mation of light/dark cycle to central nervous, also displays 
circadian rhythm of overall ATP content with a peak at early 
night [53]. The eATP released from synaptic vesicles or 
Muller glial cells supports the main source of extracellular 
adenosine (ADO), which might participate in the regulation 
of light/dark adaptation on ADO [53, 54]. However, there 
are few reports about diurnal change of eATP in the retina, 
as well as other rhythmic tissues.

The circadian regulation of eATP release

The circadian regulation of eATP release by clock 
genes

The diurnal effect from external environment or internal 
intervention on the eATP rhythm almost acts on the eATP 
release or the eATP degradation. As shown in Table 2, the 
alteration of eATP rhythm was various after the interven-
tion of light environment and clock gene. Under the lighting 
condition with constant darkness (DD), the eATP rhythm in 
the rat SCN displayed a higher peak during the middle of 
the subjective night [32]. The rhythm of eATP release was 
observed that lower diurnal fluctuation and sharply decreas-
ing release both in Clock mutant astrocytes and Per mutant 
astrocytes [47], whereas primary-cultured urothelial from 
Clock mutant mice [52] maintained a peak level approximate 
to wild-type urothelial in the diurnal variation of extracellular 
ATP release (Fig. 1). Conversely, the ATP release of urinary 
bladder lumen at ZT19 was reduced in arrhythmic Bmal1-
knockout mice, which was consistent with the amplitude of 
eATP rhythm in TRT-HU1 cells blunted by Bmal1 knock-
down [36]. Similar interventions in circadian rhythm lead 
to different or even opposite alteration of eATP rhythm, and 
indicate that clock genes might mediate different pathways of 
eATP release or degradation. Thus, it is crucial to investigate 
the eATP release pathway and its hydrolase to research the 
circadian regulation of ATP rhythm by clock genes.

The circadian regulation of eATP release by vesicular 
pathway

eATP level is directly mediated by associated release path-
ways and the ecto-nucleotide triphosphate diphosphohy-
drolase family of enzymes, and the 24-h temporal eATP 
rhythm is formed by the real-time ratio of its release and 
hydrolysis. In general, there are two release mechanisms 
of intracellular ATP: vesicular and non-vesicular pathways 
[14]. VNUT (a member of the solute carrier 17 family of 
ion transporters) transferred cytosolic ATP into secretory 
granules, and contributed to the eATP release as a vesicu-
lar nucleotide transporter [55]. Knocking down VNUT by 
small interfering RNA (siRNA) reduced KCl-associated exo-
cytosis of ATP [55]. Importantly, the stretch-released ATP 
at 12 h was significantly attenuated in the time-dependent 
variation of eATP in VNUT-knockout urothelial cell [52]. In 
in situ hybridization studies, extensive VNUT transcripts are 
observed in many brain regions, especially in the hippocam-
pus that has shown abundant purinergic neurotransmission 
[56], where it might exhibit undetected eATP rhythm. More-
over, the exocytosis release of ATP was also coordinately 
regulated by soluble N-ethyl maleimide–sensitive factor 
attachment protein receptor (SNARE) family of proteins 
[57]. Blocking vesicular release from cortical astrocyte by 
dominant-negative (dn) SNARE has no significant differ-
ence in the circadian rhythm of ATP release [48]. Thus, the 
circadian regulation of exocytotic ATP release is different 
between cortical astrocyte and urothelial cell.

The circadian regulation of eATP release 
by non‑vesicular pathways

In addition to the classical exocytotic release, non-vesicular 
mechanism of cellular ATP release has been demonstrated 
in various oscillators, which contains five groups of release 
channels: pannexin-1, calcium homeostasis modulator 1, 
connexin hemichannels, volume-regulated anion channels, 
and maxi-anion channels [58]. There are accumulating evi-
dences that ATP release was mediated by P2X7 [59–61] 
that associated with not only pannexin-1, but also unknown 
protein pathways [62–65].

The circadian regulation of eATP release by pannexin‑1

The pannexin (PANX) is the well-demonstrated non-junc-
tional membrane channels that are not evolutionarily con-
nected to gap junction-forming connexins [66, 67]. Among 
the pannexin gene family, PAN1 has been proved to regulate 
extracellular autocrine and paracrine purinergic signaling 
as ATP release channel; it is expressed in most cells with-
out vesicular ATP release. The ATP release site of polar 
secretion presents PAN1 with the absence of connexin [68, 
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Table 2   The effects of intervention on extracellular ATP rhythm. 
AHA anterior hypothalamic area, CPu caudate putamen, DD con-
stant darkness, dnSNARE blocking vesicular gliotransmission, VIPP 
impairing IP3-dependent calcium signaling pathways, Cx43 Con-
nexin 43, VNUT vesicle nucleotide transporter mediates ATP secre-
tion, Piezo1 piezo-type mechanosensitive ion channel component 

1, TRPV4 transient receptor potential cation channel subfamily V 
member 4, Cx26 Connexin26. + / − exhibits circadian rhythm or 
no rhythm. NA indicates amplitude/phase/period of circadian not 
applied; ↑or ↓ indicates amplitude/phase of circadian increases or 
reduction,; ± indicates amplitude/phase/period has no significant 
change

Species Tissue/cell Experimental 
techniques

Intervention Variation on rhythm References

Rhythm 
(+ / −)

Amplitude Phase Period

Rat SCN tissue Microdialysis; 
chemilumines-
cence assay

Light environ-
ment

DD  +  ↑  ±   ±  [32]

Mice Cortical astrocyte Bioluminescence 
recording; 
immunocyto-
chemistry

Clock gene Per1Per2 double 
mutant

 +  ↓ ↓ ↓ [47]

Mice Cortical astrocyte Bioluminescence 
recording; 
immunocyto-
chemistry

Clock/Clock mutant  +  ↑ ↓  ±  [47]

Mice urothelial cell Luciferin-lucif-
erase assay; 
photon imaging

Clock mutant  −  ↓ ↑ NA [52]

Mice TRT-HU1 cell Rtq-PCR; bio-
luminescence 
recording; 
luciferin-lucif-
erase assay

Bmal1 knockdown  +  ↓  ±  NA [36]

Mice Cortical astrocyte Bioluminescence 
recording; 
immunocyto-
chemistry

Vesicular release dnSNARE  +   ±   ±   ±  [47]

Mice TRT-HU1 cell Rtq-PCR; bio-
luminescence 
recording; 
luciferin-lucif-
erase assay

Connexin 
hemichannel

Cx43 knockdown  −  ↓ NA NA [36]

Mice TERT-NHUC 
cell

Rtq-PCR; bio-
luminescence 
recording; 
luciferin-lucif-
erase assay

Cx43 overexpression  −  ↑ NA NA [36]

Mice Urothelial cell Luciferin-lucif-
erase assay; 
photon imaging

Cx26 knockdown  +  ↓  ±  NA [52]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Pannexin plasma 
membrane 
channel

Inhibition of pan-
neixn-1 hemichannels 
carbenoxolone

 +   ±   ±   ±  [48]

Mice Cortical astrocyte Bioluminescence 
recording; 
immunocyto-
chemistry

Calcium signal-
ing pathway

VIPP  −  ↓ ↓ NA [47]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Selective inhibition 
of mitochondrial 
Na + -Ca2 + exchange 
transporter 
CGP37157

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

The Ltype Ca2 + chan-
nel inhibitor nifedi-
pine

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Voltage-gated 
Ca2 + channel blocker 
La3 + 

 −  ↓  ±  NA [48]
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69]. Carbenoxolone (Cbx, a gap junction and hemichannel 
inhibitor) significantly flattened the diurnal fluctuation of 
mechanical-induced ATP release in immortalized urothelial 
cell [36], but had a partial inhibitory effect on the amplitude 
of circadian eATP rhythm in SCN cell [48]. There must be 
subtle differences of circadian regulation in eATP release 
pathways from different pacemakers/oscillators. PANX1 
presents two kinds of open channel conformations through 
different activation modes: a large-conductance, non-selec-
tive, ATP-permeable conformation and an intermediate-con-
ductance, anion-selective, ATP-impermeable conformation 
[70]. eATP can activate PANX1 to the transformation of 
ATP permeability conformation via direct excitement of 
P2X7 or through Ca2+-dependent P2YR stimulation, subse-
quently contributing to ATP-induced ATP release [70, 71]. 
The positive feedback loop is ended by the inhibition of 
its ATP permeability conformation by the high concentra-
tion of eATP. Thus, this positive feedback loop of eATP 
release on PAN1 might be associated with the amplitude of 
eATP rhythm as the factor that produces the peak of eATP 
rhythm, consistent with the results of PAN1 or P2 receptors 
on Table 2. However, the electrophysiological fingerprint 
of PANX1 activation mode inducing the ATP-impermeable 
conformation remains unclear.

The circadian regulation of eATP release by calcium 
homeostasis modulator 1

The calcium homeostasis modulator 1 (CALHM1) is the 
pore-forming subunit of a plasma membrane voltage-gated 
ion channel similar to the structure of connexin and pan-
nexin [72–74]. The rhythm of ATP release oscillated in 
SCN astrocyte independent of neuronal cell populations 
[32], and its release was induced by transient increase of 
Ca2+ [75]. Importantly, there is an inverse phase relationship 
between the circadian rhythm of intracellular Ca2+ concen-
tration and the eATP rhythm [76]. CALHM1 is closed at 
the resting membrane voltage of physiological extracellu-
lar Ca2+ concentration and opened at strong depolarization 
and more negative membrane voltages [47, 73]; the peak of 
intracellular Ca2+ rhythm is not enough to trigger calcium-
dependent ATP release [77]. This character of CALHM1 
may explain the inverse phase relationship of circadian 
rhythm between intracellular Ca2+ concentration and the 
eATP accumulation. In cortex astrocyte, the daily circadian 
of ATP release depends on IP3 signaling-associated Ca2+ 
channel and clock genes (Clock and Per). In SCN astro-
cyte, three Ca2+ channels, selective inhibition of mitochon-
drial Na+-Ca2+ exchange transporter, L-type Ca2+ channel 

Table 2   (continued)

Species Tissue/cell Experimental 
techniques

Intervention Variation on rhythm References

Rhythm 
(+ / −)

Amplitude Phase Period

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Purinergic signal-
ing pathway

Selective P2X7R antag-
onist AZ10606120

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Selective P2X7R 
antagonist A438079

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Classical P2X7R 
antagonist BBG

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Positive allosteric 
modulator of P2X7R 
GW791343

 +   ±  ↑ NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

Nonselective P2 recep-
tor antagonist PPADS

 −  ↓  ±  NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

P2X4R-selective nega-
tive allosteric modula-
tor 5-BDBD

 +   ±   ±   ±  [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

P2Y1R-selective 
antagonist MRS2179

 −  ↓ ↓ NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

P2Y1R-selective ago-
nist MRS2365

 +  ↑ ↑ NA [48]

Rat SCN cell Bioluminescence 
assay; immuno-
histochemistry

P2Y2R-selective ago-
nist MRS2768

 +  ↑ ↑ NA [48]
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inhibitor, and non-selective voltage-gated Ca2+ channel 
blocker, were demonstrated to abolish the circadian rhythm 
of ATP release and inhibit the cumulated ATP release in 
SCN cell (Fig. 1) [45]. The expression of CALHM1 was 
detected both in hippocampal and cortical neurons, which 
inferred that CALHM1 was involved in the circadian regu-
lation of extracellular ATP by modulating the expression 
of P2X and P2Y [28, 73]. The ATP release rhythm of corti-
cal astrocyte was abolished by high expression of enzyme 
that terminates IP3 signaling (VIPP) through impairment 
of IP3-dependent calcium signaling pathways (Fig. 1) [47]. 
These data provide considerable evidences that astrocyte 
activates calcium signaling pathways to mediate the release 
of ATP rhythms [47]. As shown in Table 2, P2X7 and P2Y1 
on astrocyte were involved in the oscillation of eATP cir-
cadian rhythm: the amplitude of this rhythm was markedly 
increased by P2Y1-selective agonist, P2Y2-selective agonist, 
and positive allosteric modulator of P2X7; the phase of 
eATP rhythm had a significant increase after two treatments 
of P2Y antagonists. Single cell calcium measurement showed 
that ATP- or BzATP-induced increasements of intracellular 

Ca2+ concentration are inhibited by selective blockers of 
P2X7 and P2Y1 [48]. To sum up, P2X7 and P2Y1 positively 
promoted eATP release by elevating intracellular calcium 
concentration (Fig. 1), which may be an important element 
to generate the steep peak of eATP rhythm.

The circadian regulation of eATP release by connexins

Connexin subunits are the structural component of vertebrate 
gap junction channels with more than 20 kinds of molecular 
weight; connexins can be divided into intercellular channels 
(gap junctions) and plasma membrane inserted hemichan-
nels (undocked hemichannels) in various mammalian tissues 
[58, 78, 79]. Main connexin hemichannels are activated by 
positive membrane potentials; the gating of positive mem-
brane potential modulates connexin hemichannel function 
via phosphorylation and the redox state in physiological or 
pathological conditions [80–83]. Although more than 20 
connexin subunits confer different permeability property to 
hemichannels through different single-channel conductance, 
charge selectivities, and tracer permeability, the pores of 

Fig. 1   The regulation on pathway of eATP rhythm in central (pros-
encephalon, cortex, and SCN) and peripheral (serum and urothelium) 
systems. Molecular clocks in central and peripheral systems drive 
eATP rhythm by specific release pathways and degradation pathways. 
Regulation that impacts any rhythmic eATP release (e.g., Ca2+ chan-
nels, icon channel, exocytosis, or connexins) represents latent tar-

gets for controlling circadian pathways by molecular clocks (Bmal1, 
Clock, and Per) at organs and tissues. Shown are on the top the degra-
dation pathway regulated by melatonin in the prosencephalon through 
CD39 and mediated by restraint stress in serum via ATPase. Upper 
right clock of icon denotes its own circadian rhythm. + indicates 
release pathway;—indicates degradation pathway
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functional connexin channels are commonly wide enough 
to be an access of a variety of small and soluble molecules. 
ATP is a significant part of small signaling molecular per-
meations released by connexin hemichannels pores into the 
extracellular space [58].

Connexin 43 (Cx43 named after its predicted molecular 
weight) is a major gap junction channel to release ATP in 
urothelium [84], and Cx43 also showed circadian rhythm 
at mRNA level and at protein expression in  vivo [36]. 
The rhythm of Cx43 protein expression peaks at ZT07 
and falls to the trough at ZT19, which was in accordance 
with the cycle of peak and trough on ATP rhythm in the 
bladder lumen [36]. The ATP concentration derived from 
mechanically induced release was significantly decreased 
by Cx43-knockdown (Table 2), and this concentration had a 
considerable increase in Cx43-overexpressing immortalized 
urothelial cells (TERT-NHUC cells). Furthermore, GAP19 
(specific Cx43 hemichannel blocker) efficiently inhibited the 
mechanically induced ATP release in TERT-NHUC cells 
and the ATP release caused by bladder distention in mice 
at ZT19 [36]. Therefore, the daily variation of Cx43 may 
directly contribute to the circadian change of eATP release 
in mice urothelium. In Bmal1-knockout mice, the circadian 
rhythm disappeared both in the mechanically induced ATP 
release and in Cx43 protein expression, which suggests 
that BMAL1 exhibits circadian rhythm of mouse bladder 
through direct regulation of ATP release by Cx43 (Fig. 1). 
Synchronous circadian oscillations between ATP release and 
Cx43 expression also supply a valuable reference to further 
searching for other unclear circadian regulation of eATP. 
The time-dependent change of stretch-released ATP photons 
was not observed for Clock19/19 mice compared to rhythmic 
WT mice, and the peak of stretch-released ATP rhythm at 
12:00 was significantly attenuated in Cx26-knockdown pri-
mary urothelial cell [52]. Therefore, Clock19/19 regulates 
the circadian rhythm of eATP in urothelial cell that may also 
depend on the ATP release channel Cx26 (Fig. 1).

The circadian regulation of eATP release by ion channels

The activation and conformational transformation of con-
nexin hemichannels are robustly regulated by the extracel-
lular Ca2+ concentration [85, 86]. In the urinary bladder, 
the significant inhibitory effect of nonspecific CALHM1 
blocker on ATP release was induced by the hypotonic stress 
and the depletion of Ca2+ [87]. The knockdown of other ion 
channels, such as piezo-type mechanosensitive ion channel 
component 1 (Piezo1) and transient receptor potential cation 
channel subfamily V member 4 (TRPV4), showed a signifi-
cant inhibitory effect on stretch-released ATP levels at 12 h 
in urothelial cell [52]. To sum up, clock genes might exhibit 
circadian rhythm of eATP through different ATP release 
pathways in different pacemakers or oscillators. In addition, 

investigating the level on two time points (the peak and the 
trough) might be not enough to exhibit the circadian rhythm 
of eATP and to demonstrate the impact of intervention on 
eATP release.

The circadian regulation of eATP 
degradation

Extracellular nucleotides and nucleosides are degraded by 
a cell surface–located group of enzymes called ectonucle-
otidase. Ectonucleotidase comprises the nucleoside triphos-
phate diphosphohydrolase enzyme family (NTPDases) and 
ecto-5′-nucleotidase, which has been demonstrated to widely 
distribute in the vascular system and nervous system [88]. 
NTPDases and 5′-nucleotidase mediate purinergic signal-
ing through the ligand availability to P1 and P2 receptors 
expressed in various tissues, then regulate the duration of 
extracellular ATP, ADP, and adenosine [89]. NTPDases con-
tain NTPDases 4–7 that has been observed its intracellular 
localization, as well as NTPDases 1, 2, 3, and 8 located on 
the cell surface as an extracellular catalytic site [90]. NTP-
Dase1 was also called CD39 by immunologists and enzy-
mologists [91]. In the mRNA detection of NTPDases on the 
prosencephalon, NTPDase1 was inspected in the striatum, 
hypophysial pars tuberalis (PT), and the anteroventral tha-
lamic nuclei (AV), and the signal of NTPDase2 was probed 
in the hippocampal dentate gyrus (DG) and the medial 
thalamus, as well as the high expression of NTPDase3 was 
observed in the striatum, paraventricular thalamic nucleus, 
and anterodorsal thalamic nucleus [92]. These results from 
various brain regions may contribute to the subsequent 
research of eATP rhythm in more regions and of the circa-
dian network regulation. In the bladder, the high expression 
of NTPDase1 was observed in endothelial cells, NTPDase2 
(also known as ATPase) uniquely distributed in the deeper 
layer of detrusor, and the localization of NTPDase3 partially 
occurred in the cell membrane of intermediate and basal 
cells [93]. Differential expressions of NTPDases in different 
pacemakers/oscillators may provide an explanation to eATP 
temporal pattern for maintaining low-level fluctuation and 
for quickly dropping to the trough.

According to the 24-h temporal pattern of ATPase in 
blood serum, ATPase activity presented diurnal changes 
with the peak in dark (activity) cycle and the trough on light 
(rest) cycle (Fig. 1) [37], consistent with the time-dependent 
variations of NTPDase 1–3 expression in the prosencepha-
lon: the mRNA levels of NTPDase 1–3 peaked during the 
active phase (CT18) [92]. This might explain the drastic 
reduction of eATP level on the late dark phase and the occur-
rence of ADO-peak during late dark cycle. In addition, the 
activation of NTPDases depends on a certain concentration 
of Ca2+ or Mg2+ [94]; Ca2+-induced ATP release and active 
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NTPDases might lead to increased release and sufficient 
hydrolysis during early dark phase, consequently contrib-
uting to the occurrence of the peak on ADO rhythm after 
hydrolysis. The mRNA expression of NTPDase1 was sig-
nificantly inhibited in melatonin-deficient mice during light 
(rest) cycle, and elastically rose back to same peak as in 
melatonin-proficient mice during dark (activity) cycle [94]. 
After hormonal intervention in the dark phase of NTPDases 
peak, only physiological-level epinephrine promoted the 
hydrolysis of adenine nucleotides, rather than melatonin or 
dexamethasone at physiological-level [37]. Thus, the regu-
lation of NTPDase1 rhythm in the prosencephalon may be 
limited by melatonin when its concentration is higher than 
physiological level (Fig. 1).

There are few articles about the circadian regulation 
between eATP degradation and clock genes (internal cir-
cadian). In the research of circadian rhythm intervened by 
external environment, restraint stress significantly depressed 
the activity of serum ATPase at night (Fig. 1) [95]. The cir-
cadian rhythm of eATP was not only mediated by clock 
genes, but also affected by external environment. In addition 
to restraint stress, there are many methods to make rhythm 
disorder model by light condition, sleep, and temperature. 
However, the circadian regulation of external intervention 
on eATP rhythm is not clear.

The clock gene was also transiently influenced by ATP 
in microglial cells. After 1 mM ATP exposure to microglial 
cell line BV-2 cells or murine microglia, the mRNA expres-
sion of Per1 transiently increased in a manner dependent on 
P2X7 activity, and no variation in other clock genes (Per3, 
Dec1-2, Cry1-2, Dbp, Bmal1, and Npas2) [96]. The role of 
exogenous ATP suggests that the pathological change, like 
inflammation with high concentration of ATP, might induce 
the endogenous rhythm disorder, and subsequently exhibit 
the diurnal variation of inflammatory symptoms.

Conclusion and perspectives

It is clear from this review that eATP exhibits strong circa-
dian rhythm as a cotransmitter released from nerves/astro-
cytes and as an autocrine or paracrine messenger released 
from urothelial cells. Next, eATP release pathways and 
NTPDases that directly affect the circadian rhythm of eATP 
level are being elucidated, like calcium signaling pathway, 
panx1 and Cx43, and NTPDase1 and ATPase in Fig. 1. 
Understanding how release and degradation of eATP rhythm 
work together has supported a direct view of the relation-
ship between clock genes and eATP rhythm, in particular 
the peak of eATP rhythm. These advances of circadian 
regulation on eATP are showing us how pacemakers/oscil-
lators from different tissues/cells exhibit synchronous eATP 
rhythm via different regulatory pathway, and how oscillators 

output different environmental/internal stimuli to eATP 
rhythm. However, the downstream mechanisms of regula-
tory pathways also interact, which increases the complexity 
of mechanism research. Finally, investigating the circadian 
character and the intricate regulation of eATP rhythm will 
allow us to modify the time for experimental detection to 
reduce diurnal interference, and to develop time-efficient 
treatments.
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